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Abstract. The exterior Bernoulli free boundary problem is considered and

reformulated into a shape optimization setting wherein the Neumann data is
being tracked. The shape differentiability of the cost functional associated with
the formulation is studied, and the expression for its shape derivative is estab-

lished through a Lagrangian formulation coupled with the velocity method.
Also, it is illustrated how the computed shape derivative can be combined
with the modified H1 gradient method to obtain an efficient algorithm for the

numerical solution of the shape optimization problem.

1. Introduction. In this paper, we are interested in the exterior Bernoulli free
boundary problem. In particular, we deal with the two-dimensional case of the
problem which is formulated as follows: given a bounded and connected domain
ω ⊂ R2 with a fixed boundary Γ := ∂ω and a constant λ < 0, one needs to find a
bounded connected domain B ⊂ U ⊂ R2 with a free boundary Σ := ∂B, containing
the closure of ω, and an associated state function u : Ω → R, where Ω = B \ ω̄, such
that the overdetermined boundary value problem

−∆u = 0 in Ω, u = 1 on Γ, u = 0 on Σ, ∂nu = λ on Σ, (1)

is satisfied. Here, n denotes the outward unit normal vector to the free boundary
Σ and ∂nu is the normal derivative of u. In (1), the boundary ∂Ω = Γ ∪ Σ of the
doubly connected bounded domain Ω has the following regularity: Γ is Lipschitz,
the free component Σ is a C2,1 boundary, and we assume that dist(Γ,Σ) > 0. The
existence of solution for the free boundary problem (1) is discussed in [2]. On the
other hand, it is known that the related interior free boundary problem admits an
elliptic solution for any λ < 0 (see [26]). This type of free boundary problem models
various physical systems such as electrochemical machining, potential flow in fluid
mechanics, tumor growth, etc. (see, e.g., [9, 26, 28]).
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Our goal is to examine the reformulation of the ill-posed system (1) in the context
of shape optimization. In this way, we can deal with the issue of having an overde-
termined boundary condition on Σ. We carry out our investigation by considering
the following minimization problem:

min
Σ
J(Σ) = min

Σ

1

2

∫
Σ

(∂nu− λ)
2
ds, (2)

where u = u(Ω) is a solution to the pure Dirichlet problem

−∆u = 0 in Ω, u = 1 on Γ, u = 0 on Σ. (3)

The variational least-squares cost function in (2) is known as the L2-least-square
tracking of the Neumann data. This tracking functional for solving Bernoulli prob-
lems is better than tracking the Dirichlet data for the following reason. Its second-
order shape derivative or shape Hessian is strictly coercive in its corresponding
energy space H1(Σ) (cf. [22]) while the tracking Dirichlet data is not, and whose
positivity only holds on the weaker space L2(Σ) (cf. [23]). We note that the strict
coercivity of the shape Hessian of a cost functional in its corresponding energy
space implies the stability of a local minimum (see., e.g., [24]). Moreover, having
this property implies that the shape optimization problem is well-posed. In contrary,
if positivity only holds on a weaker space, the problem is said to be algebraically
ill-posed. In the case of L2-least square tracking of the Dirichlet data, for instance,
the algebraic ill-posedness of the problem implies that tracking the Dirichlet data
in the L2-norm is not sufficient, and that, as strongly assumed by the authors in
[24], they have to be tracked relative to H1. For more details about this topic, we
refer the readers to the aforementioned works.

As in [33], we want to characterize the shape derivative of the cost functional
J over Σ along some perturbation field V. The derivation of the said expression
requires the evaluation of the limit [J(Σt)− J(Σ)]/t as t goes to 0, where Σt is the
result of deforming the free boundary Σ with a non-autonomous perturbation field
V. Here, instead of the rearrangement method introduced in [41], we shall compute
the desired expression for the shape derivative of J using a minimax formulation
in the spirit of [18], and then employ a Lagrangian method for the numerical real-
ization of the problem, differing from the approach used in [33]. The idea behind
minimax formulation is to rewrite the objective function as the min-max of an ap-
propriate Lagrangian which, as in most optimal control problems, is expressed as
the sum of a utility function and the equality constraints. In doing so, the direc-
tional differentiability of the cost functional is transferred to the differentiability of
the Lagrangian with respect to a particular parameter. As a result, one needs a
theorem to differentiate the minimax or the saddle point of the Lagrangian with
respect to a parameter. Fortunately, a tool to execute the task is already available
in the literature (see [16]). However, the application of this key result due to Correa
and Seeger is not completely straightforward. The difficulty arises primarily on the
time dependence of the underlying function spaces appearing in the minimax formu-
lation [19]. Nevertheless, we can get around this difficulty by employing either one
of the two strategies offered in [17]. That is, we can apply either the function space
parametrization technique or the function space embedding technique to get rid of
the time parameter t from the function spaces. We emphasize that Lagrange meth-
ods have the advantage of providing the shape derivative of cost functionals without
the need to compute the expressions for the shape and material derivative of the
states. For some recent investigations related to our work, see [12, 29, 30, 43, 45, 47].
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The rest of the paper is structured as follows. In Section 2, the essentials of our
present work are provided. The shape differentiability of the the cost functional J , as
well as the derivation of its form, is presented in Section 3. In Section 4, we illustrate
how the computed expression for the shape derivative can be combined with the
modified H1 gradient method to obtain an efficient algorithm for the solution of the
shape optimization problem. In this regard, two concrete examples with different
fixed boundaries are provided. The application of the aforementioned numerical
method to solve the optimization problem (2)-(3) is also novel to our work. Finally,
in Section 5, a concluding remark regarding the present study is stated.

2. Preliminaries. In this section, we give the requisites of our study. First, we
give a brief discussion about the velocity method.

Let V be an element of C([0, tV );Dk(R2,R2)), for some integer k > 2 and a small
real number tV > 0, where Dk(R2,R2) denotes the space of k-times continuously
differentiable functions with compact support contained in R2. The field V(t)(x) =
V(t, x), x ∈ R2, is an element of Dk(R2,R2) which may depend on t > 0. It
generates the transformations Tt(V)(X) := Tt(X) = x(t;X), t > 0, X ∈ R2,
through the differential equation

d

dt
x(t;X) = V(t, x(t;X)), x(0;X) = X, (4)

with the initial value X given. We denote the “transformed domain” Tt(V)(Ω) at
t > 0 by Ωt(V), or simply Ωt =: Tt(Ω). Given this transformation, we note that
any function ϕt : Ωt → R can be referred to the reference domain by the identity
ϕt = ϕt ◦ Tt : Ω → R. In this work, we shall consider annular domains Ωt with
boundary ∂Ωt, which is the union of two disjoint sets Γt and Σt, referred to as
the fixed and free boundaries, respectively. The evolutions of the domain Ω are
described using non-autonomous velocity fields

V(t)(x) ∈ V := {V(t, x) ∈ C1,1([0, tV ]× U,R2) : V|Γ∪∂U = 0}. (5)

For t ∈ [0, tV ], Tt is invertible and Tt, T
−1
t ∈ D1(R2,R2) (cf. [11, Lem. 11]).

In addition, the Jacobian It is strictly positive, i.e., It = detDTt(X) > 0, where
DTt(X) is the Jacobian matrix of the transformation Tt = Tt(V) associated with
the velocity field V. In this paper, the notation (DTt)

−1 and (DTt)
−T refer to the

inverse and inverse transpose of the the Jacobian matrix DTt, respectively. Also,
for simpilicty, we denote At = It(DT

−1)(DTt)
−T, and wt = It|(DTt)−Tn|, the

Jacobian matrix of Tt with respect to the boundary ∂Ω.
Before we end this section, we state the essentials of our analysis.

Proposition 1. For a function ϕ ∈ W 1,1
loc (R2) and V ∈ V, we have the following

formulas

(i) ∇(ϕ ◦ Tt) = (DTt)
T(∇ϕ) ◦ Tt,

(ii)
d

dt
(ϕ ◦ Tt) = (∇ϕ ·V(t)) ◦ Tt,

(iii)
d

dt
(ϕ ◦ T−1

t ) = −(∇ϕ ·V(t)) ◦ T−1
t ,

(iv)
d

dt
It = divV(t) ◦ TtIt,

(v) w′
t|t=0 = limt↘0

1
t (wt − w0) = divΣV(0),

where divΣ denotes the surface divergence and is defined by

divΣV(0) = div(V(0))−DV(0)n · n.
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The above results can be found in [17, 50], and given as properties of the trans-
formation Tt in [11, 33, 42].

Lemma 2.1. Let ϕt ∈ L1(Ωt) and ψt ∈ L1(∂Ωt), then ϕt◦Tt ∈ L1(Ω) and ψt◦Tt ∈
L1(∂Ω), respectively. Moreover, the following domain and boundary transformations
hold: ∫

Ωt

ϕt dxt =

∫
Ω

ϕt ◦ TtIt dx,
∫
∂Ωt

ϕt dst =

∫
∂Ω

ϕt ◦ Ttwt ds.

Also, we recall the so-called tangential Green’s formula (see [17, Eq. 5.27, p. 498]
and also [33, Lem. 3.3]) which is useful in our computation of the shape derivative
of J .

Lemma 2.2. Let U be a bounded domain of class C1,1 and Ω ⊂ U with boundary
Γ. Also, consider V ∈ C1,1(U,Rd) and f ∈W 2,1(U), then∫

Γ

(f divΓV +∇Γf ·V) ds =

∫
Γ

κ f V · n ds,

where κ denotes the mean curvature of Γ and the tangential gradient ∇Γ is given
by

∇Γf = ∇f |Γ − (∂nf)n.

Finally, we mention the following lemma which will also be useful in our investi-
gation.

Lemma 2.3. Let V ∈ V and ut = ut ◦ Tt. Then, the following results hold:

(i) for any f ∈ Lp(U), p > 2, we have

lim
t↘0

‖f ◦ Tt − f‖Lp(U) = 0 and lim
t↘0

‖f ◦ T−1
t − f‖Lp(U) = 0.

(ii) for any f ∈W 1,p(U), p > 2, we have

lim
t↘0

‖f ◦ Tt − f‖W 1,p(U) = 0;

(iii) let p > 1 and t → ut : [0, τ ] → W 1,p(U) be a continuous function in 0 with
u := u0. Then, t→ ut : [0, τ ] →W 1,p(U) is continuous in 0 and we have

lim
t↘0

‖ut − u‖W 1,p(U) = 0.

Proof. The proof of (i) can be found in [17, p. 529] (see also [17, Thm. 6.1, p.
567]). Meanwhile, (ii) follows from the triangle inequality and the application of
(i). Indeed, as it suffices to show that

lim
t↘0

‖∇(f ◦ Tt − f)‖Lp(U) = lim
t↘0

‖(DTt)T(∇f ◦ Tt −∇f)‖Lp(U),

we have, by triangle inequality,

‖(DTt)T(∇f ◦ Tt −∇f)‖Lp(U) 6 ‖∇f ◦ Tt −∇f‖Lp(U) + ‖((DTt)T − I)∇f‖Lp(U).

Clearly, we can apply (i) on the first term of the right hand side of the above
equation. Meanwhile, the second term vanishes as the the convergence (DTt)

T → I
holds in C(U ;R2×2). Finally, for (iii), we again apply the triangle inequality, so
that, for all t ∈ [0, τ ], we have

‖ut − u‖W 1,p(U) 6 ‖ut − u ◦ Tt‖W 1,p(U) + ‖u ◦ Tt − u‖W 1,p(U).
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Applying (ii), we see that the last term on the right hand side converges to zero as
t ↘ 0. On the other hand, by definition and using Lemma 2.1, the first term can
be written as

‖ut − u ◦ Tt‖W 1,p(U) =

(∫
U

I−1
t (|ut − u|p + |At∇(ut − u)|p)

)1/p

.

Using the boundedness of It and At (see, e.g., [11]), we get

‖ut − u ◦ Tt‖W 1,p(U) 6 C

(∫
U

(|ut − u|p + |∇(ut − u)|p)
)1/p

for some constant C > 0. Evidently, the right side of this inequality tends to zero
as t↘ 0, proving the last assertion. This completes the proof of the lemma.

We now present the minimax formulation of the cost function J in the forthcom-
ing section.

3. Minimax formulation. Let Ω be a bounded open domain in Rd with smooth
(enough) boundary ∂Ω. Let u = u(Ω) be the solution of the variational problem

inf
ϕ∈H1(Ω)

E(Ω, ϕ), (6)

where E denotes some energy functional. We associate with u a cost function

J(Ω) = F (Ω, u(Ω)). (7)

Consider the deformed domain Ωt = Tt(Ω) of the reference domain Ω along the
pertubation field V, where Tt is the perturbation of the identity operator associated
with V. Let ut = u(Ωt) be the solution of problem (6) on the transformed domain
Ωt, i.e.,

inf
ϕ∈H1(Ωt)

E(Ωt, ϕ), (8)

and let
F (Ωt, u(Ωt)) := J(Ωt). (9)

The minimization of the cost function J with respect to Ω can be achieved
by transforming the problem (8)-(9) into an inf-sup problem. This approach is
widespread in the engineering and mathematical literature. The solution of (8) is
completely characterized by the variational equation

dE(Ωt, ut;ϕ) = 0, ∀ϕ ∈ H1(Ωt).

Define
G(t, ϕ, p) = F (Ωt, ϕ) + dE(Ωt, ϕ;ψ). (10)

Noting that

sup
p∈H1(Ωt)

G(t, ϕ, ψ) =

{
F (Ωt, ϕ) if ϕ is a solution of (8)
∞ otherwise,

yields
J(Ωt) = inf

ϕ∈H1(Ωt)
sup

ψ∈H1(Ωt)

G(t, ϕ, ψ).

In this form, the spaces depend on the parameter t. So, one needs a theorem to
differentiate a saddle point with respect to the parameter t, and there are two
techniques that can be used, namely:

• Function space parametrization technique;
• Function space embedding technique.
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We are now ready to establish the shape derivative of J through a Lagrangian
formulation. To begin with, we recall the variational formulation of system (3): find
u ∈ H1(Ω) such that∫

Ω

∇u · ∇ϕdx = 0, ∀ϕ ∈ H1
0 (Ω), u = 1 on Γ, u = 0 on Σ. (11)

The weak solution u ∈ H1(Ω) of the above variational equation also belongs to the
Sobolev space H3(Ω) for bounded domain Ω having C2,1 free boundary Σ (see [11,
Thm. 29], [10, Thm. 3.9, p. 43] and also [27, Thm. 2.4.2.5, pp. 124–125]). We
mention here that we require this regularity condition on Σ so that we can apply an
auxiliary result (see Lemma 3.1) for the computation of the shape gradient. Even so,
this regularity assumption on Σ can be made weaker as we shall remark later on in
our discussion. Meanwhile, the weak solution of the PDE system (11) characterizes
the unique minimum of the energy functional E(Ω, ·) : H1

0 (Ω) → R defined by
E(Ω, ϕ) := 1

2

∫
Ω
|∇ϕ|2 dx. However, the existence of the extra constraints on Γ and

Σ demands the introduction of the Lagrangian multiplier ∂nϕ ∈ H−1/2(∂Ω). Thus,
we introduce the functional

L(Ω, u, ϕ) = −
∫
Ω

ϕ∆udx+

∫
Γ

(u− 1)∂nϕds+

∫
Σ

u∂nϕds, ∀ϕ ∈ H1
0 (Ω).

Also, we define the functional F (Ω, v) := J(Σ) for v ∈ H1(Ω) satisfying (3) and
compute the first order directional derivative of F at v in the direction ψ ∈ H1

0 (Ω),
denoted by dF (Ω, v;ψ), as follows:

dF (Ω, v;ψ) = lim
ε↘0

F (Ω, v + εψ)− F (Ω, v)

ε
=

∫
Σ

(∂nv − λ) ∂nψ ds.

To avoid finding the material derivative of u, we introduce an appropriate adjoint
equation as follows: find p ∈ H1(Ω) such that

dF (Ω, u, ψ) + dL(Ω, u; p, ψ) = 0, ∀ψ ∈ H1
0 (Ω), (12)

where

dL(Ω, u; p, ψ) = −
∫
Ω

p∆ψ dx+

∫
Γ

ψ∂np ds+

∫
Σ

ψ∂np ds.

In the same virtue as in (10), we define

G(Ωt, ϕ, ψ) = F (Ωt, ϕ) + L(Ωt, ϕ;ψ). (13)

This Lagrangian admits a unique saddle point (ut, pt) ∈ H1(Ωt) × H1(Ωt) and is
completely characterized by the following systems:

State equations

−∆ut = 0 in Ωt, ut = 1 on Γ, ut = 0 on Σt. (14)

Adjoint state equations

−∆pt = 0 in Ωt, pt = 0 on Γ, pt = ∂nut − λ on Σt. (15)

Given this formulation, our objective is to find the limit

dj(0) = lim
t↘0

j(t)− j(0)

t

where
j(t) := J(Σt) = inf

ϕ∈H1(Ωt)
sup

ψ∈H1(Ωt)

G(Ωt, ϕ, ψ).

and G(Ωt, ϕ, ψ) is given by (13).



SOLVING THE BERNOULLI PROBLEM BY TRACKING THE NEUMANN DATA 2689

To attain our goal, we apply Theorem 5.1 (see Appendix) to get the derivative
of the infimum with respect to the parameter t > 0 at t = 0. Meanwhile, to get
around the difficulty of dealing with the “time-dependent” function space H1(Ωt)
and obtain an infimum with respect to this function space that is independent
of t, we employ the function space parametrization technique and function space
embedding technique. First, we apply function space parametrization technique
below, and then proceed on using the function space embedding technique.

3.1. Function space parametrization. We parametrize the functions in H1(Ωt)
(resp. H1

0 (Ωt)) by elements of H1(Ω) (resp. H1
0 (Ω)) and introduce the following

parametrizations H1(Ωt) = {ϕ ◦ T−1
t : ϕ ∈ H1(Ω)} (resp. H1

0 (Ωt) = {ϕ ◦ T−1
t : ϕ ∈

H1
0 (Ω)}).
Under these parametrizations, we find that

J(Σt) = inf
ût∈H1(Ω)

sup
p̂t∈H1(Ω)

G(Ωt, û
t ◦ T−1

t , p̂t ◦ T−1
t ).

Note that the operator Tt is a diffeomorphism. So, the saddle points of the functional
G̃ defined as

G̃(t, ût, p̂t) = F (Ωt, û
t ◦ T−1

t ) + L(Ωt, û
t ◦ T−1

t ; p̂t ◦ T−1
t ), (16)

where (ût, p̂t) satisfies the variational equations:∫
Ω

At∇ût · ∇ϕ dx = 0, ∀ϕ ∈ H1
0 (Ω), ût = 1 on Γ, ût = 0 on Σ; (17)∫

Ω

At∇p̂t · ∇ψ dx = 0, ∀ψ ∈ H1
0 (Ω), p̂t = 0 on Γ, p̂t = ∂nû

t − λ on Σ. (18)

We first show that the function t 7→ G̃(t, ût, p̂t) is differentiable from the right
side at 0 and that the equality

d

dt
G̃(t, ût, ψ)

∣∣∣
t=0

= ∂tG̃(0, û, p̂) (19)

holds for arbitrary ψ ∈ H1(Ω), where (û, p̂) solves (17) and (18). Suppose (ût, p̂t) ∈
H1(Ω) × H1(Ω) is a saddle point. Then, by definition of a saddle point, we have

G̃(t, ût, ψ) 6 G(t, ût, p̂t) 6 G(t, ϕ, p̂t), for all ψ ∈ H1(Ω), for all ϕ ∈ H1(Ω). This

implies that both inequalities G̃(t, ût, p̂t) 6 G(t, û, p̂t) and G̃(0, û, p̂) 6 G̃(0, ût, p̂)

hold. Therefore setting ∆(t) := G̃(t, ût, p̂t)−G(0, û, p̂) gives

G̃(t, ût, p̂)− G̃(0, ût, p̂) 6 ∆(t) 6 G̃(t, û, p̂t)−G(0, û, p̂t).

By the Mean Value Theorem, we can find for each t ∈ [0, τ ] constants ρt, σt ∈ (0, 1)
such that

t∂tG̃(tρt, û
t, p̂) 6 ∆(t) 6 t∂tG̃(tσt, û, p̂

t). (20)

From (16), with Lemma 2.1 being applied, one can easily verify that the map

(t, ϕ) 7→ ∂tG̃(t, ϕ, p̂) is strongly continuous, while (t, ψ) 7→ ∂tG̃(t, û, ψ) is weakly
continuous. Moreover, from equations (17) and (18) and by following the discussion
delivered in [11, Sec. 4.2], it can be inferred that t 7→ ût is bounded in H1(Ω) and
t 7→ p̂t is bounded in H1(Ω). Therefore, for any sequence {tn} ⊂ [0, τ ], we have the
weak convergence ûtn ⇀ z ∈ H1(Ω) and p̂tn ⇀ q ∈ H1(Ω), as n→ ∞, for a pair of
elements (z, q) ∈ H1(Ω) ×H1(Ω). Passing to the limit in (17) and (18), and then
invoking Lemma 2.3, we see that the pair (z, q) solves the state and adjoint state
equation (14)-(15). By uniqueness of solution of the state and adjoint equation, we
get z = û and q = p̂. Selecting further a subsequence {tn} yields strong convergence
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of ûtn in H1(Ω), and p̂tn also in H1(Ω). In view of inequality (20), we conclude that

lim inft↘0
1
t∆(t) > ∂tG̃(0, û, p̂) and lim supt↘0

1
t∆(t) 6 ∂tG̃(0, û, p̂). Combining

these estimates leads to the equality of the supremum limit and the infimum limit,
i.e., lim supt↘0

1
t∆(t) = lim inft↘0

1
t∆(t). This proves identity (19), and thus the

shape differentiability of the functional J . Therefore, dJ(Σ)[V] = ∂tG̃(0, u, p),
where (u, p) satisfies systems (14) and (15) at t = 0, i.e.,

−∆u = 0 in Ω, u = 1 on Γ, u = 0 on Σ, (21)

−∆p = 0 in Ω, p = 0 on Γ, p = ∂nu− λ on Σ. (22)

Now, we characterize the expression for dJ(Σ)[V]. From Lemma 2.1, and taking
into account the informations given in (21) and (22) for u and p on Γ and Σ,
respectively, we get

dJ(Σ)[V] =
d

dt

{
F (Ωt, û

t ◦ T−1
t ) + L(Ωt, û

t ◦ T−1
t ; p̂t ◦ T−1

t )
}∣∣∣∣
t=0

=
d

dt

{
1

2

∫
Σ

wt
(
∂nû

t − λ
)2

ds+

∫
Ω

At∇ût · ∇p̂t dx−
∫
Γ

wtp̂
t∂nû

t ds

−
∫
Σ

wtp̂
t∂nû

t ds+

∫
Γ

wt
(
ût − 1

)
∂np̂

t ds+

∫
Σ

wtû
t∂np̂

t ds

}∣∣∣∣
t=0

.

The second integral above can be expanded according to [9] (see also [11, Lem. 32]);
that is, the following result holds.

Lemma 3.1. Let ϕ,ψ ∈ H2(Ω) and V be a vector field belonging to V. Then,∫
Ω

A∇ϕ · ∇ψ dx =

∫
Ω

∆ϕ(V · ∇ψ) dx+

∫
Ω

∆ψ(V · ∇ϕ) dx+

∫
Σ

(∇ϕ · ∇ψ)V · nds

−
∫
Σ

∂nϕ(V · ∇ψ) ds−
∫
Σ

∂nψ(V · ∇ϕ) ds.

Again, using the informations given in (21) and (22), we can further simplify the
expression for the shape derivative of J as follows:

dJ(Σ)[V] =

∫
Σ

1

2
p2 divΣV ds−

∫
Σ

p (p+ λ) divΣV ds+

∫
Σ

(∇u · ∇p)V · nds

−
∫
Σ

(p+ λ) (∇p ·V) ds−
∫
Σ

∂np(V · ∇u) ds

= −
∫
Σ

(
1

2
p2 + λp

)
divΣV ds−

∫
Σ

∇
(
1

2
p2 + λp

)
·V ds

−
∫
Σ

∂np(V · ∇u) ds+
∫
Σ

(∇u · ∇p)V · n ds.

In reference to Lemma 2.2, we take f = 1
2p

2 + λp to obtain

∇Σ

(
1

2
p2 + λp

)
= ∇

(
1

2
p2 + λp

)∣∣∣∣
Σ

− ∂

∂n

(
1

2
p2 + λp

)
n

which, upon taking the dot product of both sides with the vector field V and then
integrating over Σ, leads to∫
Σ

∇Σ

(
1

2
p2 + λp

)
·V ds =

∫
Σ

[
∇
(
1

2
p2 + λp

)
·V − ∂

∂n

(
1

2
p2 + λp

)
(V · n)

]
ds.
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Utilizing Lemma 2.2, we obtain

dJ(Σ)[V] = −
∫
Σ

(
1

2
p2 + λp

)
divΣV ds−

∫
Σ

∇Σ

(
1

2
p2 + λp

)
·V ds

−
∫
Σ

∂

∂n

(
1

2
p2 + λp

)
(V · n) ds

−
∫
Σ

∂np(V · ∇u) ds+
∫
Σ

(∇u · ∇p)V · nds

= −
∫
Σ

κ

(
1

2
p2 + λp

)
V · nds−

∫
Σ

∂nu∂np(V · n) ds

−
∫
Σ

∂np(V · ∇u) ds+
∫
Σ

(∇u · ∇p)V · n ds.

Note that u = 0 on Σ, so ∇u = (∂nu)n on Σ. Employing this identity, we get

dJ(Σ)[V] = −
∫
Σ

κ

(
1

2
p2 + λp

)
V · nds−

∫
Σ

∂nu∂np(V · n) ds

−
∫
Σ

∂np [V · (∂nun)] ds+
∫
Σ

[(∂nun) · ∇p]V · nds

= −
∫
Σ

κ

(
1

2
p2 + λp

)
V · nds−

∫
Σ

∂np∂nu(V · n) ds.

We formalize our result in the following theorem.

Theorem 3.2. Let Ω ⊂ R2 be a doubly connected, bounded domain with bound-
ary ∂Ω = Γ ∪ Σ, where Γ is Lipschitz and Σ is a C2,1 boundary. Also, let Θ ⊂
C1,1(U,R2). Then, the cost functional

J(Σ) =
1

2

∫
Σ

(∂nu− λ)
2
ds,

where u satisfies (14) at t = 0, is shape differentiable. For every V ∈ Θ, its
derivative dJ(Σ)[V] in the direction of the vector field V is given by

dJ(Σ)[V] = −
∫
Σ

[
κ

(
1

2
p2 + λp

)
+ ∂np∂nu

]
V · n ds, (23)

where the adjoint state p is the only solution of the adjoint equation (15) at t = 0.

3.2. Function space embedding technique. To compute the shape gradient
dJ(Σ)[V] using function space embedding technique, we note that D = R2 actually
holds all of the transformations of Ω under the action of the velocity field V ∈ Θ.
This gives us the following equivalent form of the cost functional:

J(Σt) = inf
Φ̂∈H1(R2)

sup
Ψ̂∈H1(R2)

G(Ωt, Φ̂, Ψ̂),

where the Lagrangian functional G(Ωt, Φ̂, Ψ̂) is given by

G(Ωt, Φ̂, Ψ̂) = F (Ωt, Φ̂) + L(Ωt, Φ̂, Ψ̂). (24)

In this regard, the following result (see [15] and also [1, Thm. 5.28, p. 156]) will be
useful for the verification of Theorem 5.1.
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Proposition 2 (The Calderón extension theorem). Let Ω ⊂ Rd, d ∈ N, be a
uniform Lipschitz domain and m be a positive integer. Then, there exists a linear
continuous extension operator

Π : Hm(Ω) → Hm(Rd)

such that for each u ∈ Hm(Ω)

‖Πu‖Hm(Rd) 6 C‖u‖Hm(Ω),

where the positive constant C depends only on the cone embedded in Ω.

We now proceed as follows. Since Ωt and the free boundary Σt are sufficiently
smooth, the unique solution (ût, p̂t) of systems (17) and (18) belongs to H2(Ωt)×
H2(Ωt) (and in fact, in H3(Ωt)×H2(Ωt)). Therefore, the sets X × Y ⊂ H2(R2)×
H2(R2) and the saddle points S(t) = X(t)×Y (t) are given byX(t) = {Φ̂ ∈ H2(R2) :

Φ̂|Ωt = ût} and Y (t) = {Ψ̂ ∈ H2(R2) : Ψ̂|Ωt = p̂t}, respectively, where (ût, p̂t) is the
unique solution in H2(Ωt) × H2(Ωt) to the saddle point equations (17) and (18).
We verify the four assumptions of Theorem 5.1 as follows.

Firstly, S(t) is non-empty since we can always construct a linear and continuous
extension Π : H2(Ω) → H2(R2) by Proposition 2. Then, using this map, we define
Πt : H

2(Ωt) → H2(R2) and Π(φ) = [Π(φ ◦ Tt)] ◦ T−1
t . Therefore, we can define the

extensions Φ̂t = Πtût and Ψ̂t = Πtp̂t of ût and p̂t, respectively. So, Φ̂t ∈ X(t) and

Ψ̂t ∈ Y (t), and these show the existence of a saddle point, i.e., S(t) 6= ∅. Thus,
(H1) is satisfied. Now, the regularity of the state and adjoint state allows us to use
Hadamard’s domain and boundary differentiation formulas [17]:

d

dt

{∫
Ωt

f(t, x) dxt

}∣∣∣∣
t=0

=

∫
Ω

∂tf(0, x) dx+

∫
∂Ω

f(0, s)V · nds;

d

dt

{∫
∂Ωt

f(t, x) dst

}∣∣∣∣
t=0

=

∫
∂Ω

∂tf(0, s) ds+

∫
∂Ω

(∂nf + κf(0, s))V · n ds,

where f : [0, τ ]×Rd → R, d ∈ {2, 3}, is a sufficiently smooth functional, to compute
the partial derivative of (24). That is, we have

∂tG(t, Φ̂, Ψ̂) =

∫
Σt

{
∂

∂n

[
1

2

(
∂nΦ̂− λ

)2
]
+ κ

1

2

(
∂nΦ̂− λ

)2
}
V · nt dst

+

∫
Σt

(
∇Φ̂ · ∇Ψ̂

)
V · nt dst

−
∫
Σt

{
∂

∂n

(
Ψ̂∂nΦ̂

)
+ κ

(
Ψ̂∂nΦ̂

)}
V · nt dst

+

∫
Σt

{
∂

∂n

(
Φ̂∂nΨ̂

)
+ κ

(
Φ̂∂nΨ̂

)}
V · nt dst, (25)

=:

∫
Σt

K(Φ̂, Ψ̂)V · nt dst.

where nt denotes the outward unit normal to the boundary Σt. This expression for
∂tG(t, Φ̂, Ψ̂) exists everywhere in [0, τ ] (τ is sufficiently small, i.e., τ ∈ (0, tV )) for

all (Φ̂, Ψ̂) since V ∈ D1(R2,R2). Thus, (H2) is also satisfied.
Next, we verify (H3)(i) and (H4)(i) and to this end we need the following lemma.
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Lemma 3.3 ([17]). For any integer m > 1, the velocity field V ∈ Dm(Rd,Rd)
and a function Π ∈ Hm(Rd), if ut → u0 in Hm(Ω)-strong, we have Φt → Φ0 in
Hm(Ω)-strong, where Φt := (Πut)◦T−1

t . One can also show that the this result also
holds for the weak topology of Hm(Rd).

Now, for a domain Ω having a boundary Γ ∪ Σ for Lipschitz Γ and C2,1 Σ, and
vector fields V ∈ D1(R2,R2), one can check without any difficulty that (ût, p̂t)
converges to (û, p̂) in the H2×H2-strong topology as t goes to zero. This, together

with Lemma 3.3, implies that Φ̂t → Φ̂ = Πû and Ψ̂t → Ψ̂ = Πp̂ strongly in H2(R2).
Assumptions (H3)(i) and (H4)(i) are satisfied for the H2 ×H2-strong topology.

We check (H3)(ii) and (H4)(ii) as follows. For (Φ̂, Ψ̂) ∈ H2(R2)×H2(R2), we can

use Stoke’s formula to rewrite (25) as ∂tG(t, Φ̂, Ψ̂) =
∫
Ωt

div[K(Φ̂, Ψ̂)V] dxt. Here

we have used the fact that ∂Ωt = Γ ∪Σt and that V|Γ = 0. Now, we introduce the

map (Φ̂, Ψ̂) 7→ K(Φ̂, Ψ̂)V which is bilinear and continuous. Finally, the map

(t,K) 7→
∫
Σt

K(Φ̂, Ψ̂)V · nt ds =
∫
Ω

[
div (K(Φ̂, Ψ̂) ·V)

]
◦ TtIt dx

from [0, τ ]×X × Y to R is continuous, and (H3)(ii) and (H4)(ii) are verified. This
completes the verification of the four assumptions of Theorem 5.1. Therefore,

dJ(Σ)[V] = inf
Φ̂∈X(0)

sup
Ψ̂∈Y (0)

∂tG(t, Φ̂, Ψ̂)
∣∣∣
t=0

. (26)

Notice that the expression (25) is a boundary integral on Σ which does not depend

on (Φ̂, Ψ̂) outside of Ωt, so the inf and the sup in (26) can be dropped. Hence, we

have dJ(Σ)[V] =
∫
Σ
K(Φ̂, Ψ̂)V ·nds. We proceed on simplifying the expression for

dJ(Σ)[V]. Note that the saddle point (Φ̂, Ψ̂) restricted on Ω is, in fact, given by
the pair (u, p), which is the unique solution of the systems (21) and (22). Thus,

dJ(Σ)[V]

=

∫
Σ

{
∂

∂n

(
1

2
p2
)
+

1

2
p2κ+∇u · ∇p− ∂

∂n
[p(p+ λ)]− κ [p(p+ λ)]

}
V · nds

=

∫
Σ

{
− ∂

∂n

(
1

2
p2
)
− 1

2
(∂nu− λ) pκ+∇u · ∇p− ∂

∂n
(λp)− λpκ

}
V · nds

=

∫
Σ

{
− ∂

∂n

(
1

2
p2
)
− 1

2
λpκ− 1

2
∂nupκ+∇u · ∇p− ∂

∂n
(λp)

}
V · n ds.

Rearranging the above integrand leads to the same expression given in Theorem 3.2
as desired.

Remark 1. The computed expression (23) for the shape gradient dJ(Σ)[V] can be
written in another way. In view of (15), we know that p = ∂nu − λ on Σ, and so,
using this equation, we can rewrite (23) as

dJ(Σ)[V] = −
∫
Σ

{
κ
[
(∂nu)

2 − λ2
]
+ ∂np∂nu

}
V · nds, (27)

where u and p satisfy (14) and (15), respectively, at t = 0. We shall utilize this
form in the numerical realization of the optimization problem (2)-(3) in the next
section.

Remark 2. We have mentioned in Introduction that the regularity assumption for
Σ is necessary so that we may apply Lemma 3.1. Nevertheless, it is sufficient to
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assume that Ω is C1,1 so that the weak solution u ∈ H1(Ω) of (11) also belongs to
H2(Ω) (cf. [11, Thm. 29]). But, in this case, the integral

∫
Ω
A∇u · ∇p dx should

be expanded by evaluating the derivative d
dt

{∫
Ωt

∇(u ◦ T−1
t ) · ∇(p ◦ T−1

t ) dx
}∣∣∣
t=0

.

However, taking the derivative of the given expression is difficult because p only
belongs to H1(Ω) when Ω is only C1,1. Nonetheless, this difficulty can be overcome
by approximating the functions u by {uk}∞k=1 ⊂ C∞(Ω̄) and p by smoother functions
pk satisfying the adjoint equation (12), and then infer from these that pk ∈ H2(Ω)
and limk→∞ pk = p ∈ H1(Ω) as done in [33]. On the other hand, Σ being C2,1

allows us to conclude that the state solution u is in H3(Ω). This, in turn, makes
p = ∂nu− λ to be in H3/2(Σ) by the trace theorem, and thus, p ∈ H2(Ω) (cf. [27,
Thm. 2.4.2.5, pp. 124–125]). This gives us the freedom to employ Lemma 3.1 for
the computation of the boundary expression for the shape gradient. In addition,
this regularity of the free boundary ensures the existence of the shape gradient of
J as it assures sufficient smoothness of the adjoint state.

4. Numerical examples. The existence of optimal solution of the shape opti-
mization problem (2)-(3) has already been studied in [34], where the C2-regularity
of the free boundary was used to construct a C1-diffeomorphism of a uniform tubu-
lar neighborhood of the boundary. Having this result at our disposal, we carry out
here a numerical realization of the optimization problem. To numerically solve the
problem, we employ an iterative algorithm based on the H1 gradient method. This
method was introduced in [3] and stems from the idea of the traction method (see
[4]). It was later on referred to as the H1 gradient method in [7], and its comparison
with other techniques was described in [8]. The basic idea of the gradient method in
a Hilbert space was presented in [44]. Although the gradient method was generally
defined for a functional on a Hilbert space [13], it was then extended to functionals
defined on a Banach space [4, 5, 6]. For more details of this method, we refer the
readers to the aforementioned papers.

As mentioned above, the numerical solution of (2)-(3) is obtained by adopting
an iterative process that decreases the cost value J at each iteration. Let us denote
by Σk the free boundary at the k-th iteration. Then, at the (k + 1)-th iterative
step, the free boundary Σk+1 becomes Σk+1 = {x+ tVk(x) : x ∈ Σk}, where t > 0
is a sufficiently small step size parameter and V is chosen such that it provides a
descent direction for the cost functional J . In reference to [6] (see also [40]), if such
a V exists, then (by traction method) it should satisfy

〈V, ϕ〉X = −〈Gn, ϕ〉L2(Σ), (28)

where G denotes the kernel of the shape gradient given in (23), for all ϕ taken
from an appropriately chosen functional space X . If we choose X := L2(Σ), then
V|Σ = −Gn and for this choice, dJ(Σ)[V] < 0 [40]. However, this choice of V may
lead to subsequent loss of regularity of Σ, hence creating oscillations of Σ [48]. It
is well-known that direct application of gradient method often results in oscillating
shapes [39] and these oscillations are caused by a lack of smoothness of the shape
gradient [5, 48]. In this work, we shall, however, employ the modified H1 gradient
method introduced in [6]. That is, we take X := H1(Ω) and utilize the equation

(V, ϕ)Ω + α〈(V · n)n, ϕ〉L2(Σ) = −〈Gn, ϕ〉L2(Σ), ∀ϕ ∈ H1(Ω), (29)

where α > 0 is a penalization parameter, to compute for V. We remark that the
resulting vector filed V (also called in some literature as the Sobolev gradient [46]),
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computed by using (28), provides an extension of Gn over the entire domain, which
may, as well, be shown to have not only a regularizing effect on the boundary Σ (cf.
[40, 48]) but also preconditions the descent direction. This fact is also true in the
case of using equation (29) in computing for V as seen in [6], wherein an intuitive
interpretation of the equation was also provided. For an alternative numerical
approach in solving the problem (2)-(3), using, for example, the fictitious domain
methods, we refer the readers to [33, 35].

The optimization algorithm using the H1 gradient method with Robin condition
(see [6]) can be summarized as follows:

Algorithm The boundary variation algorithm (Problem (2)-(3))

1: Choose an initial shape Ω0;
2: Solve the state equation (3) and adjoint state equation (12) on

the current domain Ωk using finite element method;
3: Compute the descent direction Vk by using (29), which amounts

to solving the following system
−∆V +V = 0 in Ω,

V = 0 on Γ,
∂V

∂n
+ α(V · n)n = −Gn on Σ,

with Ω = Ωk;
4: Modify the current domain by Vk to obtain a new domain Ωk+1,

i.e., set Ωk+1 := {x + tkVk(x) : x ∈ Ωk}, for some sufficiently
small scalar tk > 0.

For a concrete example of the problem, we consider the shape optimization re-
formulation (2)-(3) of (1) with λ = −1. That is, we consider the optimization
problem

min
Σ
J(Σ) = min

Σ

1

2

∫
Σ

(∂nu+ 1)
2
ds

where u satisfies (3). Thus, in view of (3.2), the kernel G is given by

G = −κ
(
1

2
p2 − p

)
− ∂np∂nu.

However, in the numerical computations below, we shall utilize its equivalent form
given by (27), i.e., we let

G = −κ
[
(∂nu)

2 − 1
]
− ∂np∂nu.

We remark that the kernel G involves the expression for the mean curvature κ of
the free boundary Σ. This may be evaluated as

κ := divΣ(nε),

where nε ∈ H1(Σ) is the smooth normal vector field on Σ satisfying the variational
equation given as follows:∫

Σ

(ε∇Σnε · ∇Σϕ+ nεϕ) ds =

∫
Σ

nϕds, ∀ϕ ∈ H1(Σ), (30)

where ε > 0 is some fixed small parameter (see [40]).
We shall now provide two numerical examples of the given optimization problem

by considering two different fixed boundaries in the next two sections.
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4.1. Example 1. First, we consider a circular fixed boundary centered at the origin
with radius r = 0.5; that is, we describe it as Γ = {(x, y) ∈ R2 : x2 + y2 = 0.52}.
For the initial shape of the free boundary, we let Σ = {(x, y) ∈ R2 : x2 + y2 = 22}.
The initial geometric profile of the annular domain Ω is shown in Figure (1). We
then implement the boundary variation algorithm presented above in FreeFem++
[37] with the following setup. The state and adjoint equation are solved by finite
element method. During each iteration, the step size parameter tk is chosen on
the basis of the scalar product 〈Vk,Vk−1〉H1(Ω) =: η. If η < 0, we suspect that
the algorithm is becoming unstable, so we recalibrate tk by reducing its size and
initialize the next iteration using the previous shape Ωk−1. If, on the other hand,
η > 0 (and is of a very small value) the step tk is increased. We also decreased the
size of tk if there are reversed triangles within the mesh after the update.

In the remeshing process, we choose the maximum mesh size hmax = 0.1. Mean-
while, we set ε = 0.1 in (30) for the computation of the mean curvature κ. For the
parameter α in Step 3 of the algorithm, we consider two values, namely α1 = 0.001
and α2 = 0.01. The computed values for the cost until the fourth iteration are
shown in Table (1). We experimented with other initial guesses for the free bound-
ary Σ, such as concentric/eccentric circles and ellipses, and also for different values
of α. In any case, the resulting (approx.) optimal shape after a modest number
of iterations converges to a domain which is graphically indistinguishable from the
ones shown in Figure (1).

-2 0 2

-1.5

-1

-0.5

0

0.5

1

1.5

Fixed boundary
Free boundary (initial)
Free boundary (α = 0.01)
Free boundary (α = 0.001)

Figure 1. Initial and final shape of the annular domain Ω.

4.2. Example 2. We consider a domain with an L-shaped fixed boundary, like
what is shown in Figure (2). The L-shaped boundary has the following coordinates
for the corner points (clockwise starting from the origin): (0, 0), (0, 1.1), (−1, 1.1, ),
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Iter. Cost Cost
(α = 0.001) (α = 0.01)

1 128.187510 128.187510
2 0.19825995 0.36967179
3 0.06116257 0.00004442
4 0.00000512 0.00000004

Table 1. Cost Values.

(−1,−1), (1,−1) and (1, 0). Meanwhile, we take a circular shape free boundary
Σ with radius R = 2.5 as an initial guess. Again, we implement the optimization
process in FreeFem++ as in Example (4.1) but with slightly different parameters.
Furthermore, we run the algorithm until J(Σk) < 10−5. The parameter ε in equa-
tion (30) is again set to 0.1. However, this time, we consider three different values
for α which are much smaller compare to the values considered in Example (4.1).
In particular, we take α = 10−9, 5 × 10−9 and 5 × 10−8. The resulting (approx.)
optimal shapes for each of these values of α after several iterations are shown in
Figure (2). Meanwhile, the histories of values of the cost functional J correspond-
ing to these parameter values are depicted in Figure (3). In the above setup, the
computed initial value for the cost J is approximately 115.2051. In the case when
α = 10−9, this cost value was reduced to approximately 3.34× 10−6 after 11 itera-
tions. Moreover, in the case when α = 5× 10−9, we got the value J = 1.39× 10−7

of the cost at the end of nine iterations. Lastly, for α = 5 × 10−8, we obtained
the value J = 3.63 × 10−6 of the cost after 10 iterations. In this example, we also
performed several simulations, taking various shapes for the free boundaries and
different values for α, and in any case, as expected, the computed free boundaries
are almost indistinguishable to what are shown in Figure (3).

5. Concluding remark. We have successfully verified the differentiability of the
cost functional J given in (2) and had established the boundary expression for the
shape derivative of the given functional through a minimax formulation, employing
Correa-Seeger’s theorem combined with function space parametrization technique
and also with the function space embedding technique. It is worth noting that there
is another method closely related to the one we have used here. More precisely, the
method, known as Céa’s Lagrange method [14], utilizes the same Lagrangian as
the minimax formulation. However, if one uses this approach without caution, the
computations may lead to a wrong expression for the shape derivative. The method
requires that the shape derivatives of the state and the adjoint state exist and belong
to the solution space of the PDE. Indeed, one may define G(t, ϕ, ψ) := G(Ωt, ϕ, ψ)
where G is given by (13) and assume that G is sufficiently differentiable with respect
to t, ϕ and ψ. Since the strong material derivative u̇ exists in H1

0 (Ω) (cf. [11]), then
we may calculate the shape gradient as follows

dJ(Σ;V) =
d

dt
G(t, ut, p)

∣∣∣∣
t=0

=
∂

∂t
G(t, u, p)|t=0︸ ︷︷ ︸

shape gradient

+
∂

∂u
G(0, u, p)[u̇]︸ ︷︷ ︸

adjoint equation

.

The second expression on the right side of the above equation vanishes due to
u̇ ∈ H1

0 (Ω), and therefore we are left with dJ(Σ;V) = d
dtG(t, u

t, p)
∣∣
t=0

. The
boundary expression of the shape derivative is easily calculated, following the line
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-2 0 2

-2

-1

0

1

2

Fixed boundary
Free boundary (initial)
Free boundary (α = 10 -9)
Free boundary (α = 5×10-9)
Free boundary (α = 5×10-8)

Figure 2. Initial and final shape of the annular domain Ω.

Number of Iterations
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10
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10-1

100

101

102

103

Figure 3. History of values of the cost functional J .
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of computations in Section 3 (see [49]). The computed expression for the shape
derivative agrees with the result in [33]. Consequently, the shape derivative of the
cost functional that was considered here was established independently from [33].
Also, we observed that the computed expression for the shape derivative of the cost
functional J depends on the normal component of the deformation field V at the
free boundary Σ; that is, there exists a function gΩ defined on the free boundary Σ
such that dJ(Σ;V) =

∫
Σ
gΩV · n ds. This result agrees with the Hadamard-Zolésio

structure theorem (cf. [32] and [17, Rem. 3.2, p. 481]). In addition, the computed
expression for the shape derivative enabled us to apply an efficient boundary vari-
ation algorithm based on the modified H1 gradient method to numerically solve
two concrete examples of the shape optimization problem (2)-(3). The numerical
results show the convergence of the proposed algorithm to an approximate solution
of the free boundary problem. As a result, the proposed iterative algorithm provides
an alternative efficient numerical procedure in solving the free boundary problem
through shape optimization approach.

Appendix. For the convenience of the readers, we state here the key result used
to establish the shape derivative of the cost functional studied in the paper. We
first introduce some notations. Consider a functional

G : [0, τ ]×X × Y → R,

for some τ > 0 and topological spaces X and Y . For each t in [0, τ ], we define

g(t) = inf
x∈X

sup
y∈Y

G(t, x, y) and h(t) = sup
y∈Y

inf
x∈X

G(t, x, y)

and the associated sets

X(t) =

{
x̂ ∈ X : sup

y∈Y
G(t, x̂, y) = g(t)

}
, (31)

Y (t) =

{
ŷ ∈ Y : inf

x∈X
G(t, x, ŷ) = h(t)

}
. (32)

Also, we introduce the set of saddle points

S(t) = {(x̂, ŷ) ∈ X × Y : g(t) = G(t, x̂, ŷ) = h(t)}, (33)

which may be empty. In general, the inequality condition h(t) 6 g(t) always holds.
Furthermore, for a fixed t in [0, τ ], and for all (xt, yt) = (x̂, ŷ) in X(t) × Y (t),
h(t) 6 G(t, xt, yt) 6 g(t), and when h(t) = g(t), the set of saddle points S(t) is
exactly the set X(t)× Y (t).

Now, the objective of this method is to seek realistic conditions under which the
existence of the limit

dg(0) = lim
t↘0

g(t)− g(0)

t

is guaranteed. We are particularly interested on the situation when G admits saddle
points for all t in [0, τ ].

Now we quote the improved version [17, Thm. 5.1, 556–559] of the theorem of
Correa and Seeger. The result also applies to situations when the state equation
admits no unique solution and the Lagrangian admits saddle points. The proof of
this theorem is also given in the said reference.
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Theorem 5.1. Let the sets X and Y , the real number τ > 0, and the functional

G : [0, τ ]×X × Y → R
be given. Suppose further that the following assumptions hold:

(H1) S(t) 6= ∅, 0 6 t 6 τ ;
(H2) for all (x, y) ∈ [∪{X(t) : 0 6 t 6 τ} × Y (0)] ∪ [X(t)× ∪{Y (t) : 0 6 t 6 τ}],

the partial derivative ∂tG(t, x, y) exists everywhere in [0, τ ];
(H3) there exists a topology TX on X such that for any sequence

{tn : 0 < tn 6 τ}, tn → t0 = 0, there exist an x0 ∈ X(0) and a subsequence
{tnk

} of {tn}, and for each k > 1, there exists xnk
∈ X(tnk

) such that
(i) xnk

→ x0 in the TX-topology, and
(ii) for all y in Y (0),

lim inf
t↘0
k→∞

∂tG(t, xnk
, y) > ∂tG(0, x

0, y); (34)

(H4) there exists a topology TY on Y such that for any sequence
{tn : 0 < tn 6 τ}, tn → t0 = 0, there exist y0 ∈ Y (0) and a subsequence {tnk

}
of {tn}, and for each k > 1, there exists ynk

∈ Y (tnk
) such that

(i) ynk
→ y0 in the TY -topology, and

(ii) for all x in X(0),

lim sup
t↘0
k→∞

∂tG(t, x, ynk
) 6 ∂tG(0, x, y

0). (35)

Then, there exists (x0, y0) ∈ X(0)× Y (0) such that

dg(0) = inf
x∈X(0)

sup
y∈Y (0)

∂tG(0, x, y) = ∂tG(0, x
0, y0)

= sup
y∈Y (0)

inf
x∈X(0)

∂tG(0, x, y). (36)

Thus, (x0, y0) is a saddle point of ∂tG(0, x, y) on X(0)× Y (0).

Acknowledgment. The authors wish to thank the anonymous referees for care-
fully handling and examining the previous version of this manuscript. Their con-
structive comments and suggestions greatly improved the quality of the paper. This
work was supported by the UP System Emerging Interdisciplinary Research (EIDR)
Program (OVPAA-EIDR-C05-015).

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, London, 1975.
[2] H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free

boundary, J. Reine Angew. Math., 325 (1981), 105–144.

[3] H. Azegami, A solution to domain optimization problems, Trans of Japan Soc. of Mech.
Engs., Ser. A, 60 (1994), 1479–1486 (in Japanese).

[4] H. Azegami and Z. Q. Wu, Domain optimization analysis in linear elastic problems: approach

using traction method, JSME Int J., Ser. A, 39 (1996), 272–278.
[5] H. Azegami, S. Kaizu, M. Shimoda and E. Katamine, Irregularity of shape optimization prob-

lems and an improvement technique, in Computer Aided Optimization Design of Structures V

(S. Hernandez and C. A. Brebbia eds.), Computational Mechanics Publications, Southamp-
ton, (1997), 309–326.

[6] H. Azegami and Z. Takeuchi, A smoothing method for shape optimization: traction method
using the Robin condition, Int. J. Comp. Meth-Sing., 3 (2006), 21–33.

[7] H. Azegami, S. Fukumoto and T. Aoyama, Shape optimization of continua using nurbs as
basis functions, Struct. Multidiscipl. Optimiz., 47 (2013), 247–258.



SOLVING THE BERNOULLI PROBLEM BY TRACKING THE NEUMANN DATA 2701

[8] H. Azegami, L. Zhou, K. Umemura and N. Kondo, Shape optimization for a link mechanism,
Struct. Multidiscipl. Optimiz., 48 (2013), 115–125.

[9] B. Abda, F. Bouchon, G. Peichl, M. Sayeh and R. Touzani, A new formulation for the
Bernoulli problem, in Proceedings of the 5th International Conference on Inverse Problems,

Control and Shape Optimization, (2010), 1–19.

[10] J. Bacani, Methods of Shape Optimization in Free Boundary Problems, Ph.D. Thesis, Karl-
Franzens-Universität Graz, Graz, Austria, 2013.

[11] J. B. Bacani and G. H. Peichl, On the first-order shape derivative of the Kohn-Vogelius cost

functional of the Bernoulli problem, Abstr. Appl. Anal., 2013 (2013), Article ID 384320, 19
pp.

[12] Z. Belhachmi and H. Meftahi, Shape sensitivity analysis for an interface problem via minimax

differentiability, Appl.Math. Comput., 219 (2013), 6828–6842.
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