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|e exterior Bernoulli free boundary problem was studied via shape optimization technique. |e problem was reformulated into
the minimization of the so-called Kohn-Vogelius objective functional, where two state variables involved satisfy two boundary
value problems, separately. |e paper focused on solving the second-order shape derivative of the objective functional using the
velocity method with nonautonomous velocity oelds. |is work conorms the classical results of Delfour and Zolésio in relating
shape derivatives of functionals using velocity method and perturbation of identity technique.

1. Introduction

Shape optimization is a key research topic withmany applica-
tions in various oelds of pure and applied sciences, especially
in biomechanics and engineering (cf. [1, 2] for applications
in structural mechanics, [3] for some applications in nuid
mechanics or aerodynamics, and [4] for other applications).
A typical problem in this line of research is to ond a domain,
for instance, Ω, in a set of admissible domains A such that
an objective functional ý achieves aminimum (ormaximum)
on it [3]. For instance, suppose, among all three-dimensional
shapes of given volume, thatwewish to ond the onewhich has
a minimal surface area. In this particular case, the problem
can be described mathematically as onding the minimum of
ý(Ω) = Area(ÿΩ) with the constraint ý(Ω) = Volume(Ω) −
constant. Obviously, the answer to this question would be the
sphere. In general and in most cases of greater interest, shape
optimization problems can be described mathematically as

min
(ÿ,Ω)

ý (ÿ, Ω)
s.t. ý (ÿ,Ω) = 0, Ω ∈ A,

(1)

where the state ÿ is the solution to a partial diferential
equation (PDE) ý on the domain Ω. For an extensive

introduction to shape optimization problems, we refer to the
book of Delfour and Zolésio [5] (see also [6]).

Recently, there has been an increasing interest in the
applications of shape optimization in the study of Bernoulli
problems. Abda et al. [7] rephrased the Bernoulli problem
into a shape optimization problem and explicitly determined
the shape derivative of the cost functional being studied. In
[8], a framework for calculating the shape Hessian for the
domain optimization problem with a PDE as the constraint
was presented. In [9], a similar approach as in [8] was applied
in solving a shape optimization problem.

Another way to approach the solutions of shape opti-
mization problems is through iterative methods. For the past
few decades, several numericalmethods have been developed
to solve the two-dimensional Bernoulli problem (see, e.g.,
[10–13]). |ese strategies were also developed based on
reformulating the Bernoulli problem as a shape optimization
problem.|is reformulation can be achieved in several ways.
For instance, for a given domain, one can choose one of
the boundary conditions on the free boundary to obtain a
well-posed state equation. |e domain is determined by the
requirement that the other condition on the free boundary is
satisoed in a least square sense (see [13–15]).

Hindawi Publishing Corporation
International Journal of Diûerential Equations
Volume 2015, Article ID 954836, 10 pages
http://dx.doi.org/10.1155/2015/954836



2 International Journal of Diferential Equations

Many authors have also studied the second variation of
a cost functional for linear PDEs. Building on the shape
optimization setting that is based on the perturbation of the
identity method introduced byMurat and Simon (cf. [16, 17]),
Fujii [18] used a second-order perturbation of the identity
along the normal of the boundary for second-order elliptic
problems in 1986. Simon [19] computed the second variation
via the orst-order perturbation of the identity in 1988. A
general approach via the velocity method (Figure 2) was
systematically characterized by Delfour and Zolésio [20, 21],
and they computed the shape Hessian for a simple Neumann
problem in [20] and a nonhomogeneous Dirichlet problem
in [21].

However, a standard approach in dealing with the solu-
tion to (1) requires some information on gradients. So shape
derivatives are essential in understanding the problem.

|e recent paper focuses on the exterior Bernoulli free
boundary problem (FBP).As far as the authors are concerned,
the same functional was orst studied by Eppler andHarbrecht
andpublished in [22]wherein the orst-order shape derivative,
or equivalently the shape gradient, was derived for arbitrary
variations in terms of the perturbation of the identity.
Moreover, the second-order shape derivative, or equivalently
the shape Hessian, has been computed and analyzed for
the special cases of star-like domains. As a main result, by
analyzing the shape Hessian at the optimal domain, Eppler
and Harbrecht found out that the optimization problem
is algebraically ill posed. In the present paper, the same
functional is studied again but we focus on the application of
velocity method in dealing with shape optimization problem.
It would be a challenging research in the near future to
study the ill-posedness of the shape optimization problem
for general domains, as well as the comparison of the shape
Hessians in this paper from [22] for the former uses Cartesian
coordinates, while the latter used spherical/polar coordinates.
|e nice thing in the present paper is that the results attest to
classical results in shape optimization problems.

Now, the exterior Bernoulli FBP is formulated as follows.
Given a bounded and connected domain ý ⊂ R

2 with a
oxed boundary ÿý fl Γ, we need to ond a bounded connected
domain ý with a free boundary Σ that contains the closure of

ý,ý, and an associated real-valued (state) function ÿ deoned
on Ω (where Ω is the annulus formed by ý and ý; refer
to Figure 1) such that both unknowns ÿ and Ω satisfy the
following boundary value problem:

−Δÿ = 0 in Ω,
ÿ = 0 on Σ,
ÿ = 1 on Γ,

ÿÿ
ÿn = ÿ on Σ,

(BP)

where ÿ < 0.
In recent papers, Bacani and Peichl employed shape

optimization methods to study the exterior Bernoulli FBP by
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Figure 1: |e exterior Bernoulli free boundary problem.
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Figure 2: Transport of Ω by velocity method.

reformulating it into Kohn-Vogelius-type cost functional ýKV,
which is deoned as

ý (Ω) fl ýKV = 1
2 ∫
Ω

ÿÿÿÿ∇ (ÿÿ − ÿý)ÿÿÿÿ2 ýý, (KV)
and minimizing this functional over a class of admissible
domains, where the two state functions ÿÿ and ÿý solve a
homogenous Dirichlet (ÿ) and nonhomogenous Neumann
(ý) problem, respectively:

−Δÿÿ = 0 in Ω,
ÿÿ = 1 on Γ,
ÿÿ = 0 on Σ,

(ÿ)

and

−Δÿý = 0 in Ω,
ÿý = 1 on Γ,

ÿÿý
ÿn = ÿ on Σ.

(ý)

Bacani and Peichl presented two strategies in computing
the orst-order shape derivative of the Kohn-Vogelius objec-
tive functional. One is by using the Hölder continuity of
the two state variables involved [9], and the other one is
by using the shape derivatives of states [23]. |e authors
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also computed its second-order shape derivative for general
domains via the boundary diferentiation scheme and via
Tiihonen’s approach [24]. |e computation is found in [25].

In this recent paper, we are going to solve the shape
optimization problem using velocity method, wherein we
consider nonautonomous velocity oelds. |e study is impor-
tant since it conorms a classical result of Delfour and Zolésio
in relating shape derivatives of functionals using velocity
method and the perturbation of identity technique (cf. [26]).

In the next section (Section 2), we present an overview
of some concepts necessary for the understanding of the
present study. |e section also includes some important
results of methods of shape optimization which will be
useful in our investigation. We formally present our main
contribution which pertains to the form of the second-order
shape derivative of the Kohn-Vogelius objective functional
in Section 3. Finally, we end our paper by summarizing our
results in Section 4.

2. Preliminaries

In this section we provide some important (but not exhaus-
tive) background of some shape optimization techniques.We
give an overview of these concepts to understand the present
study.

2.1. Perturbation of the Identity. Let Ω and the universal or

hold-all domain ý be smooth subdomains of R2, such that
Ω ⊆ ý. A class of perturbationsΩý of the domainΩ obtained
from the perturbation of identity operator ÿý is deoned as

ÿý = ý + ýV : ý ß→ R
2,

ÿý (ý) = ý + ýV (ý) , ý ∈ ý, (2)

where the deformation oeld V is in Θ1 deoned as

Θ1 = {V ∈ ÿ1,1 (ý,R2) : V|Γ∪ÿý = 0} . (3)

|en, for suociently small ý, (i) ÿý : ý → ý is a

homeomorphism, (ii) ÿý : ý → ý is a ÿ1,1 difeomorphism
and, in particular,ÿý : Ω → Ωý is aÿ1,1 difeomorphism, (iii)
Γý = ÿý(Γ) = Γ, and ÿΩý = Γ ∪ Σý, and (iv) ÿΩý = Γ ∪ Σý (cf.
[9, |eorem 7]). For convenience, we will use the following
notations throughout the discussion:

ýý (ý) = detÿÿý (ý) ,
ýý (ý) = (ÿÿý (ý))−ÿ ,
ý ý (ý) = ýý (ý)ýÿý (ý)ýý (ý) ,

ý ∈ ý,
ýý (ý) = ýý (ý) ÿÿÿÿÿÿ(ÿÿý (ý))−ÿ n (ý)ÿÿÿÿÿÿ , ý ∈ Σ.

(4)

|e next lemma provides some properties of the transforma-
tionÿý which are useful in accomplishing ourmain objective.

Lemma 1 (see [13, 27]). Consider a oxed vector oeld V ∈
Θ1 and the transformation ÿý (the perturbation of identity
operator). |en, we can ond a constant ýý > 0 such that the
functions deoned above restricted to the interval ýý = (−ýý, ýý)
have the following regularities and properties:

(1) ý ß→ ÿý ∈ ÿ1(ýý, ÿ1(ý)),
(2) ý ß→ ýý ∈ ÿ1(ýý, ÿ(Ω)),
(3) ý ß→ ýý ∈ ÿ1(ýý, ÿ(Σ)),
(4) ý ß→ ÿ−1ý ∈ ÿ(ýý, ÿ1(ý)),
(5) ý ß→ ý ý ∈ ÿ1(ýý, ÿ1(Ω)),
(6) ýý = 1 + ý divV + ý2 detÿV,

(7) there are positive constants ÿ1, ÿ2, and ÿ such that 0 <
ÿ1 f ýý(ý) f ÿ2 and ý ý(ý) g ÿý for ý ∈ Ω,

(8) (ý/ýý)ÿÿý|ý=0 = −(ý/ýý)(ÿÿý)−1|ý=0 = ÿV,

(9) (ý/ýý)ÿý|ý=0 = V,

(10) (ý/ýý)ýý|ý=0 = divV,

(11) limý↓0ýý = 1,
(12) (ý/ýý)ý ý|ý=0 = ý, whereý = (divV)ý−(ÿV+(ÿV)ÿ),
(13) (ý/ýý)ýý|ý=0 = divΣV, where the surface divergence

divΣ is deoned by

divΣV = divV|Σ − (ÿVn) ⋅ n. (5)

2.2. |e Velocity (Speed) Method (See [5, 20, 21]). In this
paper, we are interested in solving the second-order shape
derivative of the Kohn-Vogelius objective functional via
the velocity method with nonautonomous velocity oelds.
Detailed discussions about this method can be seen in [5,
20, 21]. We present some of the details here. As our primary
interest is focused on nonautonomous velocity oelds, we will

use the notation V̂ to denote time-dependent velocity oelds
in contrast to velocity oelds denoted byVwhich are not time-
dependent.

Let V̂ : [0, ýý] × R
2 → R

2 be a given velocity oeld for

some oxed ýý > 0.|emap V̂ can be viewed as a family {V̂(ý)}
of nonautonomous velocity oelds onR

2 deoned by

ý ßß→ V̂ (ý) (ý) fl V̂ (ý, ý) : R2 ßß→ R
2. (6)

Let V̂ satisfy

(V1) ∀ý ∈ R
2, V̂(⋅, ý) ∈ ÿ([0, ýý);R2),

(V2) ∃ý > 0, ∀ý, ÿ ∈ R
2, ‖V̂(⋅, ÿ)−V̂(⋅, ý)‖ÿ([0,ýý);R2) fý‖ÿ − ý‖,

where V̂(⋅, ý) denotes the function ý ß→ V̂(ý, ý). Associate
with V̂ the solution ý(ý; ÿ) of the ODE:

ýý
ýý (ý) = V̂ (ý, ý (ý)) , ý ∈ [0, ÿ] , ý (0) = ÿ ∈ R

2. (7)

|at is, we suppose that V̂ is continuous in ý and at the
same time Lipschitz in spatial variables. We remark that, in
the case of autonomous velocity oelds, the condition to be
satisoed can be simplioed as

(V2ÿ) ∃ý > 0, ∀ý, ÿ ∈ R
2, ‖V(ý) − V(ÿ)‖ f ý‖ý − ÿ‖.
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Remark 2. |eabove statement can be described equivalently

as follows: Let V̂ belong to ýý = ÿ([0, ýý); ÿý(R2,R2)) for
some integer ý g 2 and a small real number ýý > 0. Let Ω ⊂
R
2 be a smooth bounded domain with boundary Γ which is

at least twice diferentiable. |e oeld

V̂ (ý) (ý) = V̂ (ý, ý) , ý ∈ R
2 (8)

is an element of ÿý(R2,R2) which may depend on ý g 0. It
generates the transformations

ÿý (V̂) (ÿ) fl ÿý (ÿ) = ý (ý; ÿ) , ý g 0, ÿ ∈ R
2 (9)

through the diferential equation

ýý
ýý (ý; ÿ) = V̂ (ý, ý (ý; ÿ)) , ý (0; ÿ) = ÿ. (10)

As already described in the previous section, we denote
the transformed domain ÿý(Ω) at ý g 0 by Ωý.

Now, the following theorem describes the relation
between the perturbation of the identity method and the
velocity method. |e theorem basically tells us that we can

start from either a family of velocity oelds {V̂(ý)} on R
ý

or a family of transformations {ÿý} of Rý provided that the

map V̂, V̂(ý, ý) = V̂(ý)(ý), verioes (V1) and (V2) or the map
ÿ, ÿ(ý, ÿ) = ÿý(ÿ), verioes assumptions (T1), (T2) and (T3)
given below.

|eorem3 (see [21]). (i) Under assumptions (V1) and (V2) on

the map V̂, the maps ÿý deoned previously have the following
properties:

(T1) ∀ÿ ∈ R
ý, ÿ(⋅, ÿ) ∈ ÿ1([0, ýý];Rý),

∃ý > 0, ∀ÿ, ý ∈ R
ý, ‖ÿ(⋅, ý) − ÿ(⋅, ÿ)‖ÿ1([0,ýý];Rý) fý|ý − ÿ|,

(T2) ∀ý ∈ [0, ýý], ÿ ß→ ÿý(ÿ) = ÿ(ý, ÿ) : Rý → R
ý is

bijective,

(T3) ∀ý ∈ R
ý, ÿ−1(⋅, ý) ∈ ÿ([0, ýý);R2),

∃ý > 0, ∀ý, ÿ ∈ R
ý, ‖ÿ−1(⋅, ÿ)−ÿ−1(⋅, ý)‖ÿ([0,ýý);R2) fý|ÿ − ý|.

(ii) If there exists a real number ýý > 0 and a map ÿ :
[0, ýý] × R

ý → R
ý verifying assumptions (T1), (T2), and

(T3), then the map

(ý, ý) ßß→ V̂ (ý, ý) = ÿÿ
ÿý (ý, ÿ−1 (ý)) : [0, ýý] ×R

ý

ß→ R
ý

(11)

verioes assumptions (V1) and (V2), where ÿ−1ý is the inverse of
ÿ ß→ ÿý(ÿ).

In the above discussion, we see that the solution to the
diferential equation (10), V̂ = V ∈ Θ1, is the perturbation of
the identity operator ÿý. Conversely, if ÿý is the perturbation
of the identity operator, then (10) is satisoed. Hence, we

consider the special case, where ý(ý) = ý + ýV, and determine
the relationship of the autonomous oeld V ∈ Θ1 and the

nonautonomous V̂ deoned in (10). Diferentiating ý(ý) =
ý + ýV with respect to ý, we get

ýý
ýý (ý; ÿ) = V (ÿ) = V̂ (ý, ý (ý; ÿ)) , ÿ ∈ Ω. (12)

|is simply implies that V(ÿ) = V̂(ý, (ý + ýV)(ÿ)). Now,
replacingÿ by (ý + ýV)−1(ÿ), we getV(ÿ−1ý (ÿ)) = V̂(ý, ÿ) or,
equivalently, V̂(ý) = V∘ÿ−1ý .|is iswhymany results obtained
by the perturbation of identity technique can be acquired
as well through the velocity method using nonautonomous
velocity oelds. As an immediate consequence, we note that

V̂(0) = V. |e relation V̂(ý) = V ∘ ÿ−1ý also implies that

ÿV̂
ÿý (ý) = ÿV (ÿ−1ý ) ÿÿ−1ý

ÿý . (13)

So, in particular, we have

ÿV̂ (0)
ÿý fl

̇̂
V (0) = − [ÿV]V. (14)

2.3. Domain andBoundary Transformation. Werecall the fol-
lowing theorems on domain and boundary transformations.

Lemma 4 (see [28]). We have the following important trans-
formations which will also be central to our investigation:

(1) Let ÿý ∈ ÿ1(Ωý). |en ÿý ∘ ÿý ∈ ÿ1(Ω) and
∫
Ωý

ÿýýýý = ∫
Ω
ÿý ∘ ÿýýýýý. (15)

(2) Let ÿý ∈ ÿ1(Σý). |en ÿý ∘ ÿý ∈ ÿ1(Σ) and
∫
Σý
ÿýýýý = ∫

Σ
ÿý ∘ ÿýýýýý. (16)

2.4. Material Derivatives. |ematerial and shape derivatives
of the state variables are deoned as follows (see [4, 24]).

Let ÿ be deoned in [0, ýý] × ý. An element ÿ̇ ∈ ÿý(Ω),
called thematerial derivative of ÿ, is deoned as

ÿ̇ fl ÿ̇ (0, ý) fl lim
ý↓0

ÿ (ý, ÿý (ý)) − ÿ (0, ý)
ý

= ý
ýýÿ (ý, ý + ýV (ý))ÿÿÿÿÿÿÿÿý=0

(17)

if the limit exists inÿý(Ω).
Remark 5. As pointed out in [9], thematerial derivative of the
state function ÿ can be written as

ÿ̇ (ý) = lim
ý↓0

ÿý ∘ ÿý (ý) − ÿ (ý)
ý = ý

ýý (ÿý ∘ ÿý (ý))
ÿÿÿÿÿÿÿÿý=0 (18)

and it, in fact, characterizes the behavior of the function ÿ at
ý ∈ Ω ⊂ ý in the direction V(ý).
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Now, on the other hand, an element ÿÿ ∈ ÿý(Ω) is called
the shape derivative of ÿ at Ω at the direction of V, if the

following limit exists inÿý(Ω):
ÿÿ fl ÿÿ (0, ý) fl lim

ý↓0

ÿ (ý, ý) − ÿ (0, ý)
ý

fl

ÿ
ÿýÿý (ý)

ÿÿÿÿÿÿÿÿý=0 .
(19)

Remark 6. We note that if ÿ̇ and ∇ÿ ⋅ V exist in ÿý(Ω), then
the shape derivative can be expressed as

ÿÿ (ý) = ÿ̇ (ý) − (∇ÿ ⋅ V) (ý) . (20)

In general, if ÿ̇(ý) and ∇ÿ ⋅ V(ý) both exist inÿÿ,ý(Ω), then
so does ÿÿ(ý).
2.5. |e First- and Second-Order Eulerian Shape Derivatives.
We orst recall the deonition of directional Eulerian shape
derivative or simply shape derivative of a shape functional.

Suppose that the shape functional ý : Ω → R is

well-deoned. Given the deformation oeld V̂, the directional
Eulerian shape derivative of ý at Ω in the direction of

deformation oeld V̂ is deoned as

ýý (Ω; V̂) fl lim
ý↓0

ý (Ωý) − ý (Ω)
ý (21)

if the limit exists. |e objective functional ý is shape difer-

entiable at Ω provided that ýý(Ω; V̂) exists for all V̂ and if

ýý(Ω; V̂) is linear and continuous with respect to V̂. On the
other hand, the second-order Eulerian shape derivative of a
well-deoned shape functional ý at Ω in the direction of the

deformation oelds V̂ and Ŵ is deoned to be

ý2ý (Ω; V̂, Ŵ) fl lim
ý↓0

ýý (Ωý (Ŵ) ; V̂) − ýý (Ω; V̂)
ý

= ý
ýý (ýý (Ωý; V̂))ÿÿÿÿÿÿÿÿý=0

(22)

if the limit exists. |e functional is said to be twice shape

diferentiable if, for all V̂ and Ŵ, ý2ý(Ω; V̂; Ŵ) exists and
if ý2ý(Ω; V̂; Ŵ) is bilinear and continuous with respect to

V̂ and Ŵ. Following these deonitions, the second-order
shape derivative of the functional being studied can also be
computed as follows:

ý2ý (Ω; V̂; Ŵ) = ÿ
ÿý { ÿ

ÿýýý (Ωý,ý)
ÿÿÿÿÿÿÿÿý=0}

ÿÿÿÿÿÿÿÿý=0 . (23)

In this case, the transported domainΩý,ý which is a result
of two deformation oelds V̂ and Ŵ is illustrated in Figure 3.

Remark 7. Under appropriate hypothesis on the map V̂ ß→
ýý(Ω; V̂(0)), one can show that ýý(Ω; V̂) = ýý(Ω; V̂(0))
(cf. [21]). |erefore, if V̂ is associated with the deformation
oeld V in the perturbation of the identity, then ýý(Ω; V̂(0))

X1

x1(t) = X2

x2(t)

Ω

Ωt = Tt(Ω)

Ωt,s = Ts(Tt(Ω))

V
W

Figure 3: Transport of Ω aver two deformations.

coincides with ýý(Ω; V̂) by V̂(0) = V. Hence, the orst-
order shape derivative of a cost functional obtained via the
velocity method coincides with the one obtained from the
perturbation of the identity technique.

3. Analysis for the Nonautonomous Case

In this section, we will see how important is the expression

V ∘ ÿ−1ý in considering nonautonomous velocity oelds V̂. Of

course ifV is autonomous,V∘ÿ−1ý is no other than V̂(ý). Since
we are interested in the second-order shape derivative of
the Kohn-Vogelius objective functional, we should orst recall
(without proof) the orst-order shape derivative of the Kohn-
Vogelius objective functional which is stated in the following
theorem.

|eorem 8 (see [9, 22, 23]). For a ÿ1,1-bounded domain,
the orst-order shape derivative of the Kohn-Vogelius (KV) cost
functional in the direction of a perturbation oeld V̂ ∈ Θ,

where V̂ ∈ Θ = {V̂ ∈ ÿ1,1(ý,R2) : V̂|Γ∪ÿý = 0} and the state
functions ÿÿ and ÿý satisfy the Dirichlet problem (ÿ) and the
Neumann problem (ý), respectively, is given by

ýý (Ω; V̂) = 1
2

⋅ ∫
Σ
(ÿ2 − (∇ÿý ⋅ ÿ)2 − (∇ÿÿ ⋅ n)2 + 2ÿÿýÿ)V

⋅ n ýý.

(J1)

where n is the unit exterior normal vector to Σ, ÿ is a unit
tangent vector to Σ, and ÿ is the mean curvature of Σ.

|eabove result was orst proven by Eppler andHarbrecht
in [22]. Other proofs were also given by Bacani and Peichl
[9, 23], by using two diferent approaches.

Now, we give our main result of the second-order shape
derivative of the Kohn-Vogelius objective functional via
velocity method.

|eorem 9. Denote ý = ÿ2 − (∇ÿÿ ⋅n)2 +2ÿÿÿý− (∇ÿý ⋅ ÿ)2
and let V̂ and Ŵ be any two velocity oelds from the set

Θ2 = {V̂ ∈ ÿ2,1 (ý,R2) : V̂ÿÿÿÿÿΓ∪ÿý = 0} . (24)

Assume that, for some suociently small ý, ýý(Ωý(Ŵ); V̂(ý))
exists at Ωý(Ŵ) = ÿý(Ŵ)(Ω) in the direction V̂(ý). |en, for

a ÿ2,1-bounded domain, the second-order shape derivative of
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the Kohn-Vogelius (KV) cost functional in the directions of the

two perturbation oelds V̂ and Ŵ and the state functionsÿÿ andÿý which satisfy the Dirichlet problem (ÿ) and the Neumann
problem (ý), respectively, is given by

ý2ý (Ω; V̂; Ŵ) = ∫
Σ
ý̇ÿVÿ + (ÿý

ÿn + ÿý) VÿýÿýΣ

− ∫
Σ
ý (VΣ ⋅ ÿΣnýΣ + n ⋅ ÿΣkýΣ + n ⋅ ÿΣwVΣ) ýΣ

+ ∫
Σ
ý (ÿV)W ⋅ n + ýVÿ (0) ⋅ n ýΣ,

(25)

where n is the unit exterior normal vector to Σ, ÿ is a unit
tangent vector to Σ, and ÿ is the mean curvature of Σ.

Before we proceed in the formal computation of the
second-order shape derivative of the Kohn-Vogelius objective
functional, we orst prove the following auxilliary result.

Lemma 10. Let ý and ý̇ÿ be, respectively, deoned as follows:

ý fl ÿ2 − (∇ÿÿ ⋅ n)2 + 2ÿÿÿý − (∇ÿý ⋅ ÿ)2
ý̇ÿ fl −2 (∇ÿÿ ⋅ n) {− (ÿW)ÿ ∇ÿÿ ⋅ n + ∇ÿÿÿ,ÿ ⋅ n

+ ∇ (∇ÿÿ ⋅W) ⋅ n} − 2 (∇ÿý ⋅ ÿ) [(−ÿW)ÿ ∇ÿý
+ ∇ÿÿý,ÿ ⋅ ÿ + ∇ (∇ÿý ⋅W) ⋅ ÿ + ∇ÿý ⋅ ̇ÿÿ]
+ 2ÿ [ÿ̇ÿÿý + ÿ (ÿÿý,ÿ + ∇ÿý ⋅W)] .

(26)

|en, we have

ÿ
ÿý [(ýý ∘ ÿý) ýý]

ÿÿÿÿÿÿÿÿý=0 = ý̇ÿ + ýdivΣW. (27)

Proof. We orst note the following:

ýýÿÿÿÿý=0 = 1,
(ýý ∘ ÿý)ÿÿÿÿý=0 = ý,

ÿ
ÿýýý

ÿÿÿÿÿÿÿÿý=0 = divΣW.
(28)

Now, for the expression (ÿ/ÿý)(ýý ∘ ÿý)|ý=0, we note that
ýý ∘ ÿý = (ÿ2 ∘ ÿý) − ((∇ÿÿ,ý ∘ ÿý) ⋅ ný ∘ ÿý)2

+ 2 (ÿ ∘ ÿý) (ÿý ∘ ÿý) (ÿý,ý ∘ ÿý)
− [(∇ÿý,ý ∘ ÿý) ⋅ (ÿý ∘ ÿý)]2 ,

(29)

and since ÿ is constant, ÿ ∘ ÿý = ÿ. Hence, we get
ÿ
ÿý [(ýý ∘ ÿý) ýý]

ÿÿÿÿÿÿÿÿý=0
= { ÿ

ÿý (ýý ∘ ÿý) ýý + (ýý ∘ ÿý) ÿ
ÿýýý}

ÿÿÿÿÿÿÿÿý=0 ,
(30)

by applying product rule. Furthermore, by substitution and
distributing the (partial) diferential operator, we obtain

ÿ
ÿý [(ýý ∘ ÿý) ýý]

ÿÿÿÿÿÿÿÿý=0
= ÿ

ÿýÿ
2
ÿÿÿÿÿÿÿÿý=0 −

ÿ
ÿý [[(∇ÿÿ,ý ∘ ÿý) ⋅ (ný ∘ ÿý)]2]

ÿÿÿÿÿÿÿÿý=0
+ ÿ

ÿý [2 (ÿ ∘ ÿý) (ÿý ∘ ÿý) (ÿý,ý ∘ ÿý)]
ÿÿÿÿÿÿÿÿý=0

− ÿ
ÿý [[(∇ÿý,ý ∘ ÿý) ⋅ (ÿý ∘ ÿý)]2]

ÿÿÿÿÿÿÿÿý=0 .

(31)

Using the chain rule and again the product rule twice, we have

ÿ
ÿý [(ýý ∘ ÿý) ýý]

ÿÿÿÿÿÿÿÿý=0 = −2 (∇ÿÿ ⋅ n)

⋅ ÿ
ÿý [(∇ÿÿ,ý ∘ ÿý) ⋅ (ný ∘ ÿý)]

ÿÿÿÿÿÿÿÿý=0
+ 2ÿ ÿ

ÿý ((ÿý ∘ ÿý) (ÿý,ý ∘ ÿý))
ÿÿÿÿÿÿÿÿý=0

− ÿ
ÿý [[(∇ÿý,ý ∘ ÿý) ⋅ (ÿý ∘ ÿý)]2]

ÿÿÿÿÿÿÿÿý=0
= −2 (∇ÿÿ ⋅ n)
⋅ ÿ
ÿý [(ÿÿý)−ÿ ∇ (ÿÿ,ý ∘ ÿý) ⋅ (ný ∘ ÿý)]

ÿÿÿÿÿÿÿÿý=0
+ 2ÿ ÿ

ÿý ((ÿý ∘ ÿý) (ÿý,ý ∘ ÿý))
ÿÿÿÿÿÿÿÿý=0 − 2 (∇ÿý ⋅ ÿ)

⋅ ÿ
ÿý ((ÿÿý)−ÿ ∇ (ÿý,ý ∘ ÿý) ⋅ (ÿý ∘ ÿý))

ÿÿÿÿÿÿÿÿý=0 =: ý1
+ ý2 + ý3.

(32)

Now,we simplify each of the expressionsý1,ý2, andý3. In the
sequel, we will be needing the material and shape derivatives
of the vectors n and ÿ and the mean curvature ÿ. For their
corresponding forms, we refer the readers to [25,|eorems 4,
5, and 6] which are proven in [5, 28]. Sowe proceed as follows.
First, using the product rule twice and then the chain rule, we
get

ý1 = −2 (∇ÿÿ ⋅ n)
⋅ ÿ
ÿý [(ÿÿý)−ÿ ∇ (ÿÿ,ý ∘ ÿý) ⋅ (ný ∘ ÿý)]

ÿÿÿÿÿÿÿÿý=0
= −2 (∇ÿÿ ⋅ n) { ÿ

ÿý [(ÿÿý)−ÿ ∇ (ÿÿ,ý ∘ ÿý)]
ÿÿÿÿÿÿÿÿý=0

⋅ (ný ∘ ÿý)ÿÿÿÿý=0} − 2 (∇ÿÿ ⋅ n)

⋅ {(ÿÿý)−ÿ ∇ (ÿÿ,ý ∘ ÿý)ÿÿÿÿÿÿý=0
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⋅ ÿ
ÿý (ný ∘ ÿý)

ÿÿÿÿÿÿÿÿý=0} = −2 (∇ÿÿ ⋅ n)

⋅ { ÿ
ÿý [(ÿÿý)−ÿ ∇ (ÿÿ,ý ∘ ÿý)]

ÿÿÿÿÿÿÿÿý=0
⋅ n + ∇ÿÿ ⋅ [− [(ÿW)ÿ n]Σ]} = −2 (∇ÿÿ ⋅ n)

⋅ { ÿ
ÿý (ÿÿý)−ÿ

ÿÿÿÿÿÿÿÿý=0 ∇ (ÿÿ,ý ∘ ÿý)
ÿÿÿÿÿÿÿÿý=0 ⋅ n}

− 2 (∇ÿÿ ⋅ n) {(ÿÿý)−ÿÿÿÿÿÿÿý=0
ÿ
ÿý∇ (ÿÿ,ý ∘ ÿý)

ÿÿÿÿÿÿÿÿý=0
⋅ n} − 2 (∇ÿÿ ⋅ n) {∇ÿÿ ⋅ [− [(ÿW)ÿ n]Σ]} .

(33)

Interchanging the gradient and the diferential operator
and upon evaluation of ý at 0, we get

ý1 = −2 (∇ÿÿ ⋅ n)
⋅ {[(−ÿÿ)ÿ ∇ÿÿ + ∇[ ÿ

ÿý (ÿÿ,ý ∘ ÿý)
ÿÿÿÿÿÿÿÿý=0]] ⋅ n}

− 2 (∇ÿÿ ⋅ n) {∇ÿÿ ⋅ [− [(ÿW)ÿ n]Σ]}
= −2 (∇ÿÿ ⋅ n) {− (ÿW)ÿ ∇ÿÿ ⋅ n + ∇ÿ̇ÿ,ÿ ⋅ n}
− 2 (∇ÿÿ ⋅ n) {∇ÿÿ ⋅ [(ÿWn ⋅ n)n − (ÿW)ÿ n]} .

(34)

Here we note that ÿ̇ÿ,ÿ is the material derivative of ÿÿ in
the directionW. By deonition, ÿ̇ÿ,ÿ can be written in terms

of the shape derivative ÿÿÿ,ÿ: ÿ̇ÿ,ÿ = ÿÿÿ,ÿ + ∇ÿÿ ⋅W, where

ÿÿÿ,ÿ satisoes

−Δÿÿÿ,ÿ = 0 in Ω,
ÿÿÿ,ÿ = 0 on Γ,
ÿÿÿ,ÿ = −ÿÿÿ

ÿn W ⋅ n on Σ.
(35)

Now, for the second expression ý2, we have

ý2 = 2ÿ ÿ
ÿý ((ÿý ∘ ÿý) (ÿý,ý ∘ ÿý))

ÿÿÿÿÿÿÿÿý=0
= 2ÿ [( ÿ

ÿý (ÿý ∘ ÿý)) (ÿý,ý ∘ ÿý)

+ (ÿý ∘ ÿý) ( ÿ
ÿý (ÿý,ý ∘ ÿý))]

ÿÿÿÿÿÿÿÿý=0 = 2ÿ (ÿ̇ÿÿý
+ ÿÿ̇ý,ÿ) .

(36)

Here we stress that ÿ̇ý,ÿ is the material derivative of ÿý
in the directionW. Also, ÿ̇ý,ÿ = ÿÿý,ÿ+∇ÿý ⋅W, where ÿÿý,ÿ
satisoes

−Δÿÿý,ÿ = 0 in Ω,
ÿÿý,ÿ = 0 on Γ,

ÿÿÿý,ÿ
ÿn = divΣ (W ⋅ n∇Σÿý) + ÿÿW ⋅ n on Σ.

(37)

|e expression ÿ̇ÿ represents the material derivative of
the mean curvature ÿ and it can be shown that ÿ̇ÿ =
−Tr[ÿnÿW] − (ÿ[(ÿWn ⋅ n)n − (ÿW)ÿn])n ⋅ n.

Finally, for the last expression ý3, we have the following:
ý3 = −2 (∇ÿý ⋅ ÿ)

⋅ ÿ
ÿý ((ÿÿý)−ÿ ∇ (ÿý,ý ∘ ÿý) ⋅ (ÿý ∘ ÿý))

ÿÿÿÿÿÿÿÿý=0
= −2 (∇ÿý ⋅ ÿ)
⋅ [( ÿ

ÿý [(ÿÿý)−ÿ ∇ (ÿý,ý ∘ ÿý)]) ⋅ (ÿý ∘ ÿý)]
ÿÿÿÿÿÿÿÿý=0

− 2 (∇ÿý ⋅ ÿ) [(∇ (ÿý,ý ∘ ÿý)) ⋅ ÿ
ÿý (ÿý ∘ ÿý)]

ÿÿÿÿÿÿÿÿý=0
= −2 (∇ÿý ⋅ ÿ)
⋅ [[(−ÿW)ÿ ∇ÿý + ∇ÿ̇ý,ÿ] ⋅ ÿ + ∇ÿý ⋅ ̇ÿÿ] ,

(38)

where ̇ÿÿ is the material derivative of ÿ in the direction W

and is given by ̇ÿ = [(ÿW)ÿn ⋅ ÿ]n.
Combining all of these simpliocation expressions and by

the relations in (28), we get the desired result.

Now, we are in the position to prove our main result.

In the sequel, we suppose V̂ and Ŵ to be nonautonomous
velocity oelds and proceed for the computation as follows.

Letting ýý = ÿ2 − (∇ÿÿ,ý ⋅ ný)2 + 2ÿÿýÿý,ý − (∇ÿý,ý ⋅ ÿý)2, we
have

ý2ý (Ω; V̂; Ŵ) = lim
ý↓0

ýý (Ωý (Ŵ) ; V̂) − ýý (Ω; V̂)
ý

= ÿ
ÿý { ÿ

ÿýýý (Ωý,ý)
ÿÿÿÿÿÿÿÿý=0}

ÿÿÿÿÿÿÿÿý=0
= ÿ

ÿý (∫
Σ
[ýý (V ∘ ÿ−1ý ) ⋅ ný]

∘ ÿý detÿÿý ÿÿÿÿÿÿ(ÿÿý)−ÿ nÿÿÿÿÿÿ ýΣ)
ÿÿÿÿÿÿÿÿý=0

= ÿ
ÿý (∫
Σ
[ýý (V ∘ ÿ−1ý ) ⋅ ný] ∘ ÿýýýýΣ)

ÿÿÿÿÿÿÿÿý=0
= ∫
Σ

ÿ
ÿý {(ýý ∘ ÿý) [V ⋅ (ný ∘ ÿý)] ýý}

ÿÿÿÿÿÿÿÿý=0 ýΣ
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= ∫
Σ
[ ÿ
ÿý ((ýý ∘ ÿý) ýý)

ÿÿÿÿÿÿÿÿý=0] [V

⋅ (ný ∘ ÿý)ÿÿÿÿý=0] ýΣ + ∫
Σ
[ (ýý ∘ ÿý) ýýÿÿÿÿý=0]

⋅ [ ÿ
ÿý {V ⋅ (ný ∘ ÿý)}

ÿÿÿÿÿÿÿÿý=0] ýΣ =: ∫
Σ
Ξ1Ξ2ýΣ

+ ∫
Σ
Ξ3Ξ4ýΣ.

(39)

Note that we already have a simplioed form for Ξ1 from
Lemma 10, so we only need to simplify the expressionsΞ2,Ξ3,
and Ξ4. For Ξ2, we have need for Ξ2 = V ⋅ (ný ∘ ÿý)|ý = V ⋅ n
and, for Ξ3, we easily get Ξ3 = (ýý ∘ ÿý)ýý|ý = ý, where ý is
the same with what is given in Lemma 10. Now, for the last
expression Ξ4, we have

Ξ4 = ÿ
ÿý {V ⋅ (ný ∘ ÿý)}

ÿÿÿÿÿÿÿÿý=0
= V ⋅ ÿ

ÿý (ný ∘ ÿý)
ÿÿÿÿÿÿÿÿý=0 +

ÿ
ÿýV

ÿÿÿÿÿÿÿÿý=0 ⋅ n
= V ⋅ [(ÿWn ⋅ n)n − (ÿW)ÿ n] + (ÿWn ⋅ n) Vÿ

− (ÿW)V ⋅ n + V
ÿ (0) ⋅ n + (ÿV)W ⋅ n.

(40)

Here, we stress that (ÿV/ÿý)|ý=0 = (ÿV(0)/ÿý)|ý=0 and that the
relation V = V(ý) ∘ ÿý implies the identity

ÿV
ÿý

ÿÿÿÿÿÿÿÿý=0 =
ÿ
ÿý [V (ý) ∘ ÿý]

ÿÿÿÿÿÿÿÿý=0 = V̇ (0)
= V
ÿ (0) + ÿVW,

(41)

where Vÿ(0)(ý) = limý↓0(1/ý)[V(ý, ý) − V(0, ý)].
With these identities, we now have

ý2ý (Ω; V̂; Ŵ) = ∫
Σ
{[ý̇ÿ + ýdivΣW]V ⋅ n

+ ý [(ÿWn ⋅ n) Vÿ − (ÿW)V ⋅ n]
+ [Vÿ (0) + (ÿV)W] ⋅ n} ýΣ = ∫

Σ
{ý̇ÿVÿ

+ ý [divW − ÿWn ⋅ n] Vÿ + ý [(ÿWn ⋅ n) Vÿ]
− ý [(ÿW)V ⋅ n] + [Vÿ (0) + (ÿV)W] ⋅ n} ýΣ
= ∫
Σ
{ý̇ÿVÿ + ý (divW) Vÿ − ý (ÿW)V ⋅ n} ýΣ

+ ∫
Σ
{ý (ÿV)W ⋅ n + ýVÿ (0) ⋅ n} ýΣ

= ∫
Σ
{ý̇ÿVÿ + (ÿý

ÿn + ÿý) Vÿýÿ}ýΣ

− ∫
Σ
ý (VΣ ⋅ ÿΣnýΣ + n ⋅ ÿΣkýΣ + n

⋅ ÿΣwVΣ) ýΣ + ∫
Σ
{ý (ÿV)W ⋅ n + ýVÿ (0)

⋅ n} ýΣ.
(42)

Now,wenote that, for autonomous velocity oelds, we have

the relation V̂(0) = V (i.e., for V̂(ý) = V ∘ÿ−1ý , we have V̂(0) =
V). |us, we now have

ý2ý (Ω;V (0) ;W (0)) = ý2ý (Ω; V̂; Ŵ) = ∫
Σ
ý̇ÿVÿ

+ ý (divW) Vÿ − ý (ÿW)V ⋅ n + ý (ÿV)W ⋅ n ýΣ,
(43)

from which we see that

ý2ý (Ω; V̂; Ŵ) = ý2ý (Ω;V (0) ;W (0))
+ ýý (Ω;Vÿ (0))

(44)

and here we remark that this result coincides with the one
presented by Delfour and Zolésio in [5, page 1420, Equation
(28)]. |is proves the main|eorem 9.

3.1. On the Boundary Transformation Approach. Now, in this
section we compute for the second-order shape derivative
of the Kohn-Vogelius objective functional through boundary

transformation approach. Again, we assume V̂ and Ŵ to be
nonautonomous velocity oelds. So we proceed as follows.

First, using the deonition of the second-order shape

derivative and by the relation V̂ = V ∘ ÿ−1ý , we have

ý2ý (Ω; V̂; Ŵ) = ÿ
ÿý { ÿ

ÿýýý (Ωý,ý)
ÿÿÿÿÿÿÿÿý=0}

ÿÿÿÿÿÿÿÿý=0
= ÿ

ÿý (∫
Σý

ýýV̂ ⋅ NýýΣý)
ÿÿÿÿÿÿÿÿÿý=0

= ÿ
ÿý (∫

Σý
ýý (V ∘ ÿ−1ý ) ⋅ NýýΣý)

ÿÿÿÿÿÿÿÿÿý=0 .

(45)

Invoking the boundary diferentiation rule, we get

ý2ý (Ω; V̂; Ŵ) = ∫
Σ
{[ ÿ

ÿn (ýý (V ∘ ÿ−1ý ) ⋅Ný) + ÿýýý (V ∘ ÿ−1ý ) ⋅ Ný]W ⋅ n}ÿÿÿÿÿÿÿÿý=0 ýΣ

+ ∫
Σ
{ ÿ
ÿý (ýý (V ∘ ÿ−1ý ) ⋅ Ný)}

ÿÿÿÿÿÿÿÿý=0 ýΣ
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= ∫
Σ
{ýýÿÿÿÿý=0 ÿ

ÿý [(V ∘ ÿ−1ý ) ⋅ Ný]
ÿÿÿÿÿÿÿÿý=0 + [ ÿ

ÿn (ýV ⋅ n) + ÿýV ⋅ n]W ⋅ n}ýΣ

+ ∫
Σ
{[ ÿ

ÿýýý
ÿÿÿÿÿÿÿÿý=0] [(V ∘ ÿ−1ý ) ⋅ Nýÿÿÿÿÿý=0]} ýΣ

= ∫
Σ
{ý[ ÿ

ÿý (V (ý))ÿÿÿÿÿÿÿÿý=0 ⋅ Ný
ÿÿÿÿý=0 + (V ∘ ÿ−1ý )ÿÿÿÿÿý=0 ⋅

ÿ
ÿýNý

ÿÿÿÿÿÿÿÿý=0]}ýΣ

+ ∫
Σ
{[ ÿ

ÿn (ýV ⋅ n) + ÿýV ⋅ n]W ⋅ n}ýΣ + ∫
Σ
ýÿÿ (V ⋅ n) ýΣ

= ∫
Σ
{ý [(ÿV) (−W) ⋅ n + V ⋅ Nÿ] + [ ÿ

ÿn (ýV ⋅ n) + ÿýV ⋅ n]W ⋅ n + ýÿÿVÿ}ýΣ

= ∫
Σ
{ýÿÿVÿ + ýV ⋅ Nÿ + [ ÿ

ÿn (ýV ⋅ n) + ÿýV ⋅ n]W ⋅ n + ýV̇ (0) ⋅ n}ýΣ

= ∫
Σ
{ýÿÿVÿ + (ÿý

ÿn + ÿý) Vÿýÿ − ý (VΣ ⋅ ÿΣnýΣ + n ⋅ ÿΣkýΣ + n ⋅ ÿΣwVΣ)} ýΣ

+ ∫
Σ
ý (ÿV)W ⋅ n + ýV̇ (0) ⋅ n ýΣ = ý2ý (Ω;V (0) ;W (0)) + ýý (Ω; V̇ (0)) .

(46)

Remark 11. Here, ý2ý(Ω;V(0);W(0)) is the bilinear term
which Delfour and Zolésio refer to as the shape Hessian.

Remark 12. We remark that, as compared to the form of
the shape Hessian presented in [22], the result we have
established here in |eorem 9 clearly shows the relation
pointed in [26] by Delfour and Zolésio about the form of
shape Hessians obtained through nonautonomous velocity
oelds.

4. Conclusion

We have computed the second-order shape derivative

ý2ý(Ω; V̂; Ŵ) of the Kohn-Vogelius objective functional ýKV
in the direction of two (nonautonomous) deformation oelds
V̂ and Ŵ via velocity method. |e computed expression for

ý2ý(Ω; V̂; Ŵ) is given by

ý2ý (Ω; V̂; Ŵ) = ∫
Σ
ý̇ÿVÿ + (ÿý

ÿn + ÿý) VÿýÿýΣ

− ∫
Σ
ý (VΣ ⋅ ÿΣnýΣ + n ⋅ ÿΣkýΣ + n ⋅ ÿΣwVΣ) ýΣ

+ ∫
Σ
ý (ÿV)W ⋅ n + ýVÿ (0) ⋅ n ýΣ,

(47)

where ý = ÿ2 − (∇ÿÿ ⋅ n)2 + 2ÿÿÿý − (∇ÿý ⋅ ÿ)2, n is the
unit exterior normal vector to Σ, ÿ is a unit tangent vector to
Σ, and ÿ is the mean curvature of Σ. We stress out that the
expression computed for the second-order shape derivative
of ýKV is not yet in its explicit form. |e explicit form,
however, could easily be obtained by substituting all those
computed values for each of the expressions found on the

integrand or the interested reader may refer directly to [29]

for the explicit form of ý2ý(Ω; V̂; Ŵ). It is apparent in our orst
result that the computed expression for the shape derivative
coincides with the one presented by Delfour and Zolésio
in [5]. Interestingly, the result obtained through boundary
transformation approach which again uses nonautonomous
velocity oelds also verioes the result found by Delfour and
Zolésio in [5].
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