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Abstract
This work proposes a novel shape optimization framework for geometric inverse prob-

lems governed by the advection–diffusion equation, based on the coupled complex bound-
ary method (CCBM). Building on recent developments [2, 45, 46, 47, 51], we aim to
recover the shape of an unknown inclusion via shape optimization driven by a cost func-
tional constructed from the imaginary part of the complex-valued state variable over the
entire domain. We rigorously derive the associated shape derivative in variational form
and provide explicit expressions for the gradient and second-order information. Optimiza-
tion is carried out using a Sobolev gradient method within a finite element framework.
To address difficulties in reconstructing obstacles with concave boundaries, particularly
under measurement noise and the combined effects of advection and diffusion, we intro-
duce a numerical scheme inspired by the Alternating Direction Method of Multipliers
(ADMM). In addition to implementing this non-conventional approach, we demonstrate
how the adjoint method can be efficiently applied and utilize partial gradients to develop
a more efficient CCBM–ADMM scheme. The accuracy and robustness of the proposed
computational approach are validated through various numerical experiments.

Keywords: Alternating direction method of multipliers, advection-diffusion model,
coupled complex boundary method, inverse geometric problem, shape optimization, shape
derivatives, adjoint method

1 Introduction
The advection–diffusion equation is a fundamental model in applied mathematics, describing
the combined effects of transport and dispersion of substances within a medium [43]. It arises
in key environmental applications, such as the spread of pollutants in air and water and the
transport of solutes in rivers and groundwater. Accurate modeling of these processes is essential
for pollution control, water resource management, and related environmental systems [57].
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Because of its central role in predicting and managing transport phenomena, the advection–
diffusion framework has been widely studied in both theory and applications.

In recent years, significant attention has been devoted to inverse problems for advection–
diffusion systems, particularly for identifying unknown shapes or sources from indirect mea-
surements. Many works have focused on point source identification [7, 10, 11, 31, 32, 41],
while others have investigated shape reconstruction using adjoint-based methods [54], domain
derivative techniques [55], and topological derivatives [29]. More recently, we have studied
inverse geometric problems for simplified advection–diffusion systems using conventional nu-
merical methods [17, 18]. Building on this foundation, the present work considers a more gen-
eral setting with spatially varying coefficients, and introduces a reconstruction strategy based
on a non-conventional numerical shape optimization framework combined with an augmented
Lagrangian method.

The objective of this paper is to recover both the solution u and an open, connected, bounded
region Ω ⊂ Rd in an advection–diffusion problem. The domain has an annular structure,
Ω = D \ ω, where the outer boundary Σ := ∂Ω is known and accessible for measurement,
while the inner boundary Γ := ∂ω is unknown and must be reconstructed. Here, D ⊂ Rd

represents the flow domain and ω ⊂ D is an inclusion modeling an obstacle or pollutant zone.
The reconstruction is based on a single pair of Cauchy data (f, g) prescribed on Σ, with a
homogeneous Dirichlet condition imposed on the unknown boundary Γ . The corresponding
mathematical model is the following overdetermined boundary value problem:

− div(σ∇u) + b · ∇u = 0 in Ω, u = 0 on Γ, u = f, σ∂nu = g on Σ, (1)

where, in the context of pollutant transport in water, σ := σ(x), x ∈ D, denotes the diffusion
coefficient, u := u(x), x ∈ D, is the contaminant concentration, b := b(x), x ∈ D, is the water
flow velocity, and ∂nu denotes the outward normal derivative of u on Σ.

Consequently, we consider the inverse geometry problem:

Find Γ and u that satisfy the overdetermined system (1). (2)

We address this problem using shape optimization [23, 37, 53], a well-established framework for
free boundary problems [28], including shape identification [13, 14, 27, 33, 34]. For overdeter-
mined systems such as (1), one typically prescribes a boundary condition on the free boundary
to ensure a well-posed state equation, while the remaining data are identified via least-squares
minimization [17, 18].

Here, we propose a non-conventional shape optimization method based on the coupled com-
plex boundary method (CCBM) [2, 16, 45, 51, 47]. The CCBM encodes Neumann data as the
real part and Dirichlet data as the imaginary part of a Robin-type complex boundary condi-
tion. The inverse problem is then solved by minimizing the L2 norm of the imaginary part of
the solution over the domain, which distinguishes the CCBM from conventional methods that
impose misfit penalties directly on the boundary [3, 4, 5, 6, 17, 18].

The main novelty of this study lies in extending the CCBM framework to advection–diffusion
systems with spatially varying coefficients σ and b. This setting provides a richer and more
realistic description of transport phenomena compared to constant-coefficient models. In addi-
tion, we consider complex geometries, including nonconvex shapes, beyond the smooth convex
cases commonly addressed in earlier works [54, 55]. Our formulation therefore broadens the ap-
plicability of these non-conventional shape reconstruction techniques to more general scenarios
relevant to practical modeling.

To improve the recovery of complex-shaped obstacles under noisy data, we embed the
CCBM within an augmented Lagrangian framework based on the Alternating Direction Method
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of Multipliers (ADMM) [17, 50]. This provides an alternative to conventional regularization
techniques such as perimeter or surface penalization. Note that existing ADMM-based shape
optimization methods use real-valued auxiliary variables. In our case, the state variable is
complex-valued, so the auxiliary variable must be redefined consistently and adapted to the
CCBM structure. This results in a state-of-the-art ADMM algorithm specifically designed for
CCBM. In addition, we propose a partial gradient scheme that further improves reconstruction
accuracy while reducing computational cost. Altogether, the resulting CCBM–ADMM frame-
work provides a unified and efficient optimization strategy, whose effectiveness is demonstrated
through numerical experiments, with particular emphasis on three-dimensional configurations.

The remainder of this paper is organized as follows. Section 2 introduces the problem set-
ting and formulates the shape optimization framework, emphasizing the application of CCBM
to system (1) and addressing the existence of a shape solution. Section 3 briefly reviews the
essentials of shape calculus, derives the material derivative of the state variable, and charac-
terizes the shape gradient of the cost functional using the adjoint method. Section 4 presents
a gradient-based algorithm and numerical experiments. Two-dimensional examples first il-
lustrate the conventional shape optimization procedure with CCBM. We then introduce an
ADMM approach, motivated by the increased complexity from spatially dependent coefficients,
and demonstrate its advantages through three-dimensional examples. Section 5 concludes the
paper, while Appendix A provides derivations of key formulas and Appendix B presents the
derivation of the shape derivative of the Lagrangian functional associated with the proposed
ADMM formulation.

2 The problem setting
Let us first fix notations for function spaces and norms. We use the standard Lebesgue and
Sobolev spaces: Wm,p(Ω) =

{
u ∈ Lp(Ω)

∣∣ Dαu ∈ Lp(Ω), ∀α ∈ Nd, |α| 6 m
}

. Accordingly,
we write W 0,p(Ω) = Lp(Ω) and Hm(Ω) = Wm,2(Ω), with the inner product 〈u, v〉m,Ω =∑

|α|6m

∫
Ω
DαuDαv dx and the norm ‖u‖2Hm(Ω) = 〈u, u〉m,Ω. For complex-valued functions,

we use Hm(Ω), with the inner product ((u, v))m,Ω =
∑

|α|6m

∫
Ω
DαuDαv dx and the norm

|||u|||2Hm(Ω) = ((u, u))m,Ω. We also introduce the subspaces V (Ω) :=
{
ϕ ∈ H1(Ω)

∣∣ ϕ = 0 on Γ
}

and V(Ω) :=
{
ϕ ∈ H1(Ω)

∣∣ ϕ = 0 on Γ
}

. Moreover, we define Q = L2(Ω) and Q = L2(Ω).
We equip the space V(Ω) with the norm |||ϕ|||V(Ω) =

√
|||∇ϕ|||Qd . Throughout the paper, c > 0

denotes a generic positive constant, whose value may change from line to line.

2.1 Key assumptions and the inverse geometry problem
Assumption 2.1. We consider Equation (1) under the following assumptions:

(i) σ ∈ W 1,∞(D)d×d and there is σ0 ∈ R+ such that
∑d

i,j=1 σijξiξj > σ0‖ξ‖2d, for any ξ ∈ Rd;

(ii) b ∈ W 1,∞(D)d;

(iii) f ∈ H3/2(Σ) with f 6≡ 0, and g ∈ H1/2(Σ) is the corresponding compatible boundary
measurement;

(iv) there exists a constant c > 0 such that |b|L∞(D)d < cσ0.
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To simplify the analysis and notation, we assume that σ ∈ W 1,∞(D)1×1, i.e., σ is scalar.
We denote b∞ := |b|L∞(D)d , and we work throughout the paper under Assumption 2.1, unless
stated otherwise.

We fix some notations used throughout this paper. Let D ⊂ Rd, d ∈ {2, 3}, be a bounded
open set and d◦ > 0. We define an open set Dd◦ b D with C∞ boundary satisfying {x ∈ D :
d(x, ∂D) > d◦/2} ⊂ Dd◦ ⊂ {x ∈ D : d(x, ∂D) > d◦/3}. The set of admissible obstacles is then

O :=
{
ω b Dd◦

∣∣ ω is C1,1 and D \ ω is connected
}
. (3)

A domain Ω ⊂ Rd is said to be admissible if Ω = D \ ω for some ω ∈ O, in which case
we write Ω ∈ Oad. We assume the existence of ω? ∈ O (equivalently Ω? ∈ Oad) such that
the overdetermined system (1) admits a solution. Hence, the inverse geometry problem (2)
becomes

Find ω ∈ O and u such that (1) holds. (4)

Unless stated otherwise, all annular domains Ω are assumed admissible under Assump-
tion 2.1.

2.2 The coupled complex boundary value problem
To address the inverse geometry problem (4), we adopt a non-conventional shape optimization
approach based on the coupled complex boundary method (CCBM) [16]. Unlike traditional least-
squares methods that fit boundary data directly and may suffer from numerical instabilities,
CCBM relocates the data fitting to the domain interior. This naturally leads to a cost functional
defined as a domain integral, which improves stability and robustness in the reconstruction
process, in a manner comparable to the Kohn–Vogelius method [38].

The main idea of CCBM is to encode the measured Dirichlet and Neumann data into a
complex-valued Robin boundary condition, with the real and imaginary parts representing
these measurements. This formulation regularizes the inverse problem, providing stable and
accurate reconstructions even in the presence of noise, while increasing the size of the resulting
system. CCBM has been successfully applied to various inverse problems, including conductiv-
ity reconstruction, parameter identification in elliptic equations, free boundary problems, and
tumor localization [2, 16, 30, 44, 45, 47, 51, 46, 56].

To implement CCBM, system (1) is reformulated as the following complex-valued boundary
value problem:

− div(σ∇u) + b · ∇u = 0 in Ω, u = 0 on Γ , σ∂nu+ iu = g + if on Σ, (5)

where u : Ω → C and i =
√
−1. Hereinafter, unless otherwise specified, u = u(Ω) will always

denote the solution of (5).
Let the sesquilinear form a : V(Ω)× V(Ω) → C and the linear form l : V(Ω) → C be

a(ϕ, ψ) =

∫
Ω

σ∇ϕ · ∇ψ + (b · ∇ϕ)ψ dx+ i

∫
Σ

ϕψ ds, (6)

l(ψ) =

∫
Σ

(g + if)ψ ds, ∀ϕ, ψ ∈ V(Ω). (7)

The weak formulation of (5) reads:

Find u ∈ V(Ω) such that a(u, ψ) = l(ψ) for all ψ ∈ V(Ω). (8)
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Existence and uniqueness of u follow from the complex Lax-Milgram lemma [21, p. 368],
using the coercivity condition < (a(ϕ, ϕ)) > (σ0 − cb∞) |||ϕ|||2V(Ω), where c > 0 depends on
the Poincaré–Friedrichs constant cP > 0. Moreover, if (f, g) ∈ H3/2(Σ) × H1/2(Σ), then
u ∈ H2(Ω) ∩ V(Ω).

Let us write u = u1 + iu2 := <{u} + i={u}, where u1, u2 : Ω → R. Then, we can split the
complex PDE (5) into the following coupled system of real PDEs

− div(σ∇u1) + b · ∇u1 = 0 in Ω,
u1 = 0 on Γ ,

σ∂nu1 − u2 = g on Σ,
(Re)


− div(σ∇u2) + b · ∇u2 = 0 in Ω,

u2 = 0 on Γ ,
σ∂nu2 + u1 = f on Σ.

(Im)

Observe from (Re) and (Im) that if u2 = 0 in Ω, then u2 = ∂nu2 = 0 on Σ, u1 = u = 0 on Γ ,
and u1 = u = f , ∂nu1 = ∂nu = g on Σ. Hence, (Ω, u1) solves the overdetermined system (1).
Conversely, any (Ω, u) satisfying (1) ensures that u1 and u2 satisfy (Re) and (Im).

Consequently, problem (2) can be reformulated as follows:

Problem 1. Find (Ω, u(Ω)) ∈ Oad × V(Ω) such that u2 = ={u} = 0 in Ω.

To solve Problem 1, we introduce the cost functional J(Ω), defined by

J(Ω) :=
1

2

∫
Ω

|u2|2 dx. (9)

For each fixed Ω ∈ Oad, there exists a unique weak solution u(Ω) to (5), so the mapping
Ω 7→ u(Ω) ∈ V(Ω) is well-defined. Hereinafter, (5) will be referred to as the state equation,
and its solution simply as the state.

We can now state the shape identification problem:

Problem 2. Find Ω? ∈ Oad such that J(Ω?) = minΩ∈Oad
J(Ω).

Proposition 1 (Problems 1 and 2 are equivalent). If Problem 1 has a solution (u, Ω̃), such
that u2 = 0 in Ω̃ ∈ Oad, then Problem 1 is equivalent to Problem 2.

Proof. Let (u, Ω̃) be the solution of Problem 1, such that u2 = 0 in Ω̃, where Ω̃ is an admissible
domain. We have J(Ω̃) =

∫
Ω̃
|u2|2 dx = 0 6 J(Ω), for all Ω ∈ Oad. Thus, (u, Ω̃) is a solution

to Problem 2. Conversely, let (u?, Ω?) be the solution of Problem 2. We have 0 = J(Ω?) =∫
Ω? |u2|2 dx 6 J(Ω), for all Ω ∈ Oad. For Ω = Ω̃, we obtain 0 = J(Ω?) =

∫
Ω? |u2|2 dx 6 J(Ω̃) =

0. Therefore,
∫
Ω? |u2|2 dx = 0, which implies that u2 = 0 in Ω?. We conclude that (u?, Ω?) is a

solution to Problem 1.

2.3 Existence of shape solution
In light of Proposition 1, we assert that Problem 2 admits a solution:

Proposition 2. Problem 2 admits a solution in Oad.
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To prove Proposition 2, we require certain properties of the admissible domains. A sufficient
condition is uniform regularity (see [15] or [23, Chap. 5.6.4]), known as the ε-property [6], which
holds since Ω ∈ Oad ⊂ C1,1 [37, Thm. 2.4.7, p. 56]. Equipping Oad with the Hausdorff distance
[37, Def. 2.2.7, p. 30], existence of an optimal solution follows if: (i) Oad is compact; (ii) Ωn → Ω
in the Hausdorff sense implies u(Ωn) → u(Ω) [37, Def. 2.2.8, p. 30]; and (iii) under (i) and (ii),
J(Ωn, u(Ωn)) → J(Ω, u(Ω)). The proof then proceeds based on these arguments.

On Γ , recall that u = 0. We define ũ ∈ H1
ω(D) := {ψ ∈ H1(D) | ψ|ω = 0} as the H1-smooth

extension of u ∈ V(Ω) by zero in D [1, 37]:

ũ := Eu : H1(Ω) → H1
ω(D), Eu(x) =

{
u(x), x ∈ Ω = D \ ω,
0, x ∈ ω.

(10)

The extension operator E is linear and bounded. Endowing H1
ω(D) with the norm |||·|||H1

ω(D) :=

|||∇·|||L2(D), it can be shown that this norm is equivalent to the usual H1-norm: |||ϕ|||H1
ω(D) ∼

|||ϕ|||H1(D) for all ϕ ∈ H1
ω(D).

Using the extension (10), the weak form (8) becomes

ã(ũ, ψ) =

∫
D

σ∇ũ · ∇ψ dx+
∫
D

(b · ∇ũ)ψ dx+ i

∫
Σ

ũψ ds =

∫
Σ

(g + if)ψ ds, (11)

valid for all ψ ∈ H1
ω(D), with ũ ∈ H1

ω(D). Under Assumption 2.1(iv), well-posedness follows
from the complex-valued Lax-Milgram Theorem.

Lemma 2.2 below establishes that ũ is bounded in H1(D). This is used in Proposition 3
to show that u(Ωn) → u(Ω) as Ωn

H−→ Ω in the Hausdorff sense. Proposition 4 then ensures
the continuity of the cost functional, i.e., limn→∞ J(Ωn, u(Ωn)) = J(Ω, u(Ω)). For notational
convenience, we set un := u(Ωn) and let ũn ∈ H1(D) denote its zero extension to D, for all
n ∈ N ∪ {0}.

Lemma 2.2. Under Assumption 2.1(iv), for any (Ω, u) ∈ Oad ×V(Ω), there exists a constant
c? > 0 such that |||ũ|||H1(D) 6 c?, where ũ is the zero extension of u satisfying (11).

Proof. Taking ψ = ũ ∈ H1
ω(D) in (11), and using the continuous dependence of the state on

the data, we obtain ã(ũ, ũ) 6
(
‖g‖H−1/2(Σ) + ‖f‖H1/2(Σ)

)
|||ũ|||H1/2(Σ). Since ũ ∈ H1

ω(D) (i.e.,
ũ = 0 in ω), the generalized Poincaré-Friedrichs inequality [12] gives |ã(ũ, ũ)| > <{ã(ũ, ũ)} >
(σ0−cP b∞) |||ũ|||2H1

ω(D), for some constant cP > 0. Then, choosing c = c−1
P in Assumption 2.1(iv),

applying the Sobolev embedding |||·|||Hs−1/2(Σ) 6 cs |||·|||Hs(D) for s > 1/2, and using the equiva-
lence |||ũ|||H1

ω(D) ∼ |||ũ|||H1(D), we obtain |||ũ|||H1(D) 6 c?, where

c? :=
cs

(
‖g‖H−1/2(Σ) + ‖f‖H1/2(Σ)

)
σ0 − cP b∞

.

This concludes the proof.

Proposition 3. Let {Ωn}n∈N ⊂ Oad and Ω ∈ Oad be such that Ωn
H−→ Ω. Then there exists a

subsequence {ũnk
} of {ũn}, where each ũn solves (11) in H1

ωn
(D), for all ψ ∈ H1

ωn
(D), and a

function u? ∈ H1
ω(D) such that:

• ũnk
⇀ u? in H1(D),

• u? ∈ H1
ω(D) satisfies (11), for all ψ ∈ H1

ω(D),
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• u?|Ω ∈ V(Ω) uniquely solves (8), and

• ũnk
→ u? in H1(D).

Proof. Let {Ωn}n∈N ⊂ Oad and Ω ∈ Oad be such that Ωn
H−→ Ω. Lemma 2.2 implies that

|||ũn|||H1(D) 6 c?, hence the existence of a sequence {ũn}n∈N uniformly bounded in H1(D).
Consequently, we can extract a subsequence denoted by {ũk}k∈N = {ũnk

}k∈N ⊂ {ũn}n∈N such
that ũnk

⇀ u? in H1(D). We let ψ ∈ V(Ω) and, by (10), denotes its zero extension in D by ψ̃.
We construct, based on (10), a sequence {ψk}k∈N ⊂ H1

ωk
(D), {ωk}k∈N = {ωnk

}k∈N ∈ O, such
that ψk

k→∞−−−→ ψ̃ in H1
ω(D).

Because Ωn
H−→ Ω, then there exists an index p ∈ N such that, and for all n > p, we have∫

Ωn

σ∇un · ∇ψk dx+

∫
Ωn

(b · ∇un)ψk dx+ i

∫
Σ

unψk ds =

∫
Σ

(g + if)ψk ds, ∀ψk|Ωn ∈ H1(Ωn).

For each n ∈ N, we can extend un ∈ H1(Ωn) to D using (10) to obtain ũn ∈ H1
ωn
(D) satisfying

ã(ũn, ψk) =

∫
Σ

(g + if)ψk ds, ∀ψk ∈ H1
ωn
(D).

Taking another subsequence if necessary, we know that un ⇀ u? in H1
ω(D), and so ∇un → ∇u?

in H1
ω(D). This allows us to get, because Ωn

H−→ Ω, the following variational equation:

ã(u?, ψk) =

∫
Σ

(g + if)ψk ds =: l̃(ψk), ∀ψk ∈ H1
ω(D).

Therefore, using the compactness of the trace operator from H1(D) to L2(Σ), the Sobolev
embedding |||·|||Hs−1/2(Σ) 6 cs |||·|||Hs(D) for s > 1/2, and Lemma 2.2, we obtain the following
convergences:

∣∣∣ã(u?, ψk)− ã(u?, ψ̃)
∣∣∣ 6 c?

(
sup
D

|σ|+ b∞ + c

) ∣∣∣∣∣∣∣∣∣ψk − ψ̃
∣∣∣∣∣∣∣∣∣

H1
ω(D)

k→∞−−−→ 0,∣∣∣l̃(ψk)− l̃(ψ̃)
∣∣∣ 6 ccs

(
‖g‖H−1/2(Σ) + ‖f‖H1/2(Σ)

) ∣∣∣∣∣∣∣∣∣ψk − ψ̃
∣∣∣∣∣∣∣∣∣

H1
ω(D)

k→∞−−−→ 0,

(12)

for some constant c > 0. This means that ã(u?, ψk)
k→∞−−−→ ã(u?, ψ̃) and l̃(ψk)

k→∞−−−→ l̃(ψ̃).
Thus, ã(u?, ψ̃) = l̃(ψ̃), for all ψ̃ ∈ H1

ω(D). The convergences in (12) and the equivalence
|||ϕ|||H1

ω(D) ∼ |||ϕ|||H1(D) for functions ϕ ∈ H1
ω(D) also tell us that u? ∈ H1(D) satisfies

ã(u?, ψ̃) = l̃(ψ̃), ∀ψ̃ ∈ H1(D). (13)

Observe that, by restricting the functions in Ω, we can verify that u?|Ω ∈ V(Ω). Indeed, let
us write ωc = D \ Ω and ωc

n = D \ Ωn. We observe that
∫
ωc
n
|ũn|2 dx = 0 and

∫
ωc
n
|ũn|2 dx −→∫

ωc |u?n|
2 dx. Hence,∣∣∣∣∫

ωc
n

|ũn|2 dx−
∫
ωc
|u?|2 dx

∣∣∣∣ 6 ∣∣∣∣∫
D

(χωc
n
− χωc) |u?|2 dx

∣∣∣∣+ ∣∣∣∣∫
D

χωc
n
(|ũn|2 − |u?|2) dx

∣∣∣∣ =: Ψn
1 +Ψn

2 .

Since |u?|2 ∈ L1(D) and χωc
n
−→ χωc in L∞(D)-weak-∗ (see [37, Prop. 2.2.28, p. 45] or [6,

Eq. (29)]), then Ψn
1

n→∞−−−→ 0. Because ũn ⇀ u? in H1(D) and H1(D) ↪→↪→ L2(D), we infer

7



that ũn → u? in L2(D). By Lemma 2.2, we also see that Ψn
2 6

∫
D

∣∣|ũn|2 − |u?|2
∣∣ dx n→∞−−−→ 0.

Therefore
∫
ωc |u?|2 dx = 0, and we conclude that u? ∈ V(Ω). Now, going back to (13), we see

that
a(u?|Ω, ψ) = l(ψ), ∀ψ = ψ̃|Ω ∈ V(Ω). (14)

Finally, we will show the strong convergence ũn → u? in H1(D). To do this, let us denote
wn = ũn − u?. On the one hand, from (13), with ψ = wn = ũn − u? ∈ H1(D), we have

ã(u?, wn) = l̃(wn). (15)

On the other hand, we also have that∫
Ωn

σ∇un · ∇(wn|Ωn) dx+

∫
Ωn

(b · ∇un)(wn|Ωn) dx+ i

∫
Σ

un(wn|Ωn) ds =

∫
Σ

(g + if)(wn|Ωn) ds.

Extending all functions to D via (10), we get

ã(ũn, wn) = l̃(wn). (16)

Subtracting (15) from (16), we get

Ψ(wn) :=

∫
D

σ∇wn · ∇wn dx+

∫
D

b · ∇wnwn dx = −i
∫
Σ

wnwn ds.

Clearly, because wn = ũn−u? ∈ H1(D) vanishes on a subdomain of D, we can apply Poincaré-
Friedrich’s inequality to obtain

0 6 c(σ0 − cP b∞)|||ũn − u?|||2H1(D) 6 (σ0 − cP b∞)|||∇wn|||2L2(D)d 6 |Ψ(wn)| 6 |||ũn − u?|||2L2(Σ),

for some constant c > 0.
Using the compactness of the trace operator from H1(D) into L2(Σ), we can extract a

subsequence, still denoted by {ũn}n∈N, such that ũn|Σ ⇀ u?|Σ in L2(Σ). Consequently, we get

0 6 |||ũn − u?|||2H1(D) 6
1

c(σ0 − cP b∞)
|||ũn − u?|||2L2(Σ)

n→∞−−−→ 0.

In conclusion, ũn converges strongly to u? in H1(D). This completes the proof of the proposition.

Proposition 4. Under the assumptions of Proposition 3, we have limn→+∞ J(Ωn) = J(Ω).

The proof follows similar arguments to those employed in Proposition 3 and is therefore
omitted.

3 Shape Sensitivity Analysis

3.1 Shape perturbations and material derivative
To numerically solve Problem 2, we use a shape-gradient method with the finite element method
(FEM), which requires the shape derivative of J . In this section, we derive this expression
using shape calculus [23, 37, 40, 52, 53], specifically via a chain-rule approach based on the
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material derivative of the solution to (5). For this purpose, we let Θ be the space of admissible
deformation fields θ:

Θ := {θ ∈ C1,1(D,Rd) | supp(θ) b Dδ}.
We let θn = 〈θ,n〉, where n is the outward unit normal vector to Ω. From this point forward,
we consider all deformation fields to be admissible unless indicated otherwise.

For t > 0 and θ ∈ Θ, we consider the operator Tt : D → D [23, p. 147] defined by

Tt = id + tθ, T0(Ω) = Ω ∈ Oad.

We assume that t0 > 0 is sufficiently small so that, for all t ∈ I := [0, t0), Tt is a C1,1 diffeomor-
phism of D onto itself with strictly positive Jacobian It := det(DTt) > 0. Thus, Tt preserves
the topology and regularity of Ω under the perturbation.

Let us denote At := It(DT
−1
t )(DTt)

−>, Bt := It|(DTt)−>n|, and Ct := It(DTt)
−>. We

assume that, for all t ∈ I, At and It are uniformly bounded and that At is coercive [23, p. 526].
It is straightforward to verify that the mappings t 7→ It, At, Bt, and Ct are continuously
differentiable, with derivatives given by [53, pp. 75–76, 79–85] (here Ż0 = (d/dt)Zt|t=0):

{
İ0 = div θ, Ḃ0 = divτθ = div θ

∣∣
Σ
− (Dθn) · n =: B,

Ȧ0 = (div θ)I−Dθ − (Dθ)> =: A, Ċ0 = (div θ)I− (Dθ)> =: C,
(17)

where divτ denotes the tangential divergence operator. Note that B vanishes on Σ for all
θ ∈ Θ.

The state u(Ω) ∈ V(Ω) has a material derivative u̇ = u̇(Ω)[θ] at Ω ∈ Oad in the direction
of θ ∈ Θ if the limit

u̇ = lim
t↘0

ut(Ω)− u(Ω)

t
, ut(x) := (u(Ωt) ◦ Tt)(x) = ((u1t + iu2t)(Ωt) ◦ Tt)(x), x ∈ Ω,

exists. Notice that ut is defined on the fixed domain Ω.
For Ω ∈ Oad, ϕ, ψ ∈ V(Ω), we introduce the bilinear form

M(ϕ, ψ) := −
{∫

Ω

[
(σA∇ϕ+ (∇σ · θ)∇ϕ) · ∇ψ +

(
C>b+Dbθ

)
· ∇ϕψ

]
dx

}
.

If Ω = Ω?, we write M?(ϕ, ψ).
For the state equation (5), the material derivative is given in the following lemma.

Lemma 3.1. The material derivative u̇ ∈ V(Ω) uniquely satisfies

a(u̇, ψ) = M(u, ψ), ∀ψ ∈ V(Ω). (18)

The proof follows standard arguments and is analogous to Proposition 3.1 in [45], so it is
omitted. Part of the proof requires showing that, for t ∈ I, the map (t, ϕ, ψ) 7→ Φ(t, ϕ, ψ) is
differentiable with respect to t, where the sesquilinear form Φ : I × V(Ω)× V(Ω) → R is

Φ(t, ϕ, ψ) =

∫
Ω

σtAt∇ϕ · ∇ψ dx+
∫
Ω

bt · Ct∇ϕψ dx+ i

∫
Σ

Btuψ ds,

which is continuous and coercive on V(Ω) × V(Ω). Coercivity is ensured by choosing c =
η1c

−1
P |Ct|−1

∞ > 0 in Assumption 2.1(iv). Finally, we note that since θ ∈ Θ vanishes on Σ, B
does as well, and hence the integrals over Σ involving B vanish.

9



3.2 Shape derivatives of the shape functional
The shape functional J : Ω → R admits a directional Eulerian derivative at Ω ∈ Oad in the
direction θ ∈ Θ if the limit

d

dt
J(Ωt)

∣∣
t=0

= lim
t↘0

J(Ωt)− J(Ω)

t
=: dJ(Ω)[θ]

exists (cf. [23, Eq. (3.6), p. 172]). If the mapping θ 7→ dJ(Ω)[θ] is linear and continuous for all
θ ∈ Θ, we say that J is shape differentiable at Ω, and this mapping is called the shape gradient
of J .

Similarly, the second-order Eulerian derivative of J at Ω ∈ Oad ∩ C2,1 along θ, θ̃ ∈ Θ ∩
C2,1(D;Rd) is defined by

lim
t→0

1

t

(
dJ(Ωt(θ̃))[θ]− dJ(Ω)[θ]

t

)
=: d2J(Ω)[θ, θ̃],

if the limit exists [22, Def. 2.3]. We say that J is twice shape differentiable if d2J(Ω)[θ, θ̃]
exists for all θ and θ̃ and is bilinear and continuous in both arguments; this is called the shape
Hessian of J .

It is straightforward to verify that J is shape differentiable at Ω ∈ Oad along θ ∈ Θ, since
Tt is a C1,1-diffeomorphism and the maps t 7→ It and t 7→ ut are differentiable. The following
result characterizes the shape derivative of J via the chain rule and Lemma 3.1.

Proposition 5 (Shape gradient of J). The first-order shape derivative of J is given as follows:

dJ(Ω)[θ] =

∫
Γ

Gn · θ ds =
∫
Γ

G(u, p)n · θ ds :=
∫
Γ

[σ (∂nu1∂np2 − ∂nu2∂np1)]n · θ ds, (19)

where p = p1 + ip2 ∈ H2(Ω) ∩ V(Ω) is the adjoint variable that uniquely solves the adjoint
system 

div(σ∇p) + b · ∇p+ (divb)p = u2 in Ω,
p = 0 on Γ ,

σ∂np+ pb · n− ip = 0 on Σ.
(20)

The weak formulation of the adjoint system (20) is given by:

Find p ∈ V(Ω) such that −
∫
Ω

{σ∇p · ∇ϕ+ (b · ∇ϕ)p} dx+ i

∫
Σ

pϕ ds =

∫
Ω

u2ϕdx, ∀ϕ ∈ V(Ω).

(21)
For later use, we write M = M(u, p); see Appendix A.

Proof of Proposition 5. Clearly, as a consequence of the assumptions, J is shape-differentiable
and we can apply Hadamard’s differentiation formula (see [23, 37, 53]) to obtain

dJ(Ω)[θ] =
1

2

∫
Ω

div θ |u2|2 dx+
∫
Ω

u2u̇2 dx.

For θ ∈ Θ and sufficiently smooth ψ, the divergence theorem tells us that

−
∫
Ω

div θψ dx =

∫
Ω

θ · ∇ψ dx−
∫
Γ

ψ(θ · n) ds, (22)
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Putting ψ = |={u}|2 = |u2|2 ∈ W 1,1(Ω) we deduce that

dJ(Ω)[θ] = −
∫
Ω

u2θ · ∇u2 dx+
∫
Ω

u2u̇2 dx. (23)

We rewrite the above expression with the goal of replacing u̇ with the adjoint variable p. To
start, let us take ϕ = u̇ ∈ V(Ω) in (21), to get

−
∫
Ω

{
σ∇p · ∇u̇+ (b · ∇u̇)p

}
dx+ i

∫
Σ

pu̇ ds =

∫
Ω

u2u̇ dx. (24)

Next, we choose ψ = p ∈ V(Ω) in (18) and note that B = divτθ = 0 on Σ, for any θ ∈ Θ, to
obtain a(u̇, p) = M(u, p). Comparing this equation with the sesquilinear form a given in (6),
with ϕ = u̇ and ψ = p, we arrive at the equation a(u̇, p) = M(u, p) = M.

Now, conjugating Equation (24) gives (after computations detailed in Appendix A):

−
∫
Ω

u2u̇ dx = M = −
∫
Ω

u2θ · ∇u dx+
∫
Γ

σ∂nu∂npθn ds. (25)

Finally, by comparing the imaginary parts on both sides of this equation and returning to
(23), we obtain the desired shape derivative:

dJ(Ω)[θ] = −
∫
Ω

u2 θ · ∇u2 dx+
∫
Ω

u2 u̇2 dx =

∫
Γ

{σ (∂nu1∂np2 − ∂nu2∂np1)}n · θ ds.

Remark 1 (Necessary condition). Assume Ω? ∈ Oad solves Problem 1, i.e., u2 = 0 in Ω?; then
Ω? is stationary for Problem 2, hence dJ(Ω?)[θ] = 0 for all θ ∈ Θ.

From now on, Ω? ∈ Oad is called a critical shape of J if it satisfies Remark 1.

3.3 Second-order shape derivative of the cost function at the critical
shape

In this section, we derive the second-order shape derivative of the cost function using the
material derivatives of u and p. Direct computation via the shape derivatives of u and p
requires u, p ∈ H3(Ω) ∩ V(Ω), which holds if Ω ∈ Oad ∩ C2,1 and (f, g) ∈ H5/2(Ω) ×H3/2(Ω)
[9]. By contrast, expressing the second-order derivative in terms of material derivatives relaxes
this requirement, allowing Ω ∈ C1,1.

Proposition 6 (Shape Hessian of J). Assume that Ω, θ, θ̃, and the Cauchy pair (f, g) possess
sufficient regularity and are admissible so that J is twice shape differentiable. Then, its shape
Hessian at a critical shape Ω? is given by

d2J(Ω?)[θ, θ̃] =

∫
Γ?

h[θ̃]n · θ ds =
∫
Γ?

σ∂nw2[θ̃]∂nu1n · θ ds,

where u2 = ={u}, u solves (5) with Ω = Ω?, and w = w1 + iw2 = <{w}+ i={w} ∈ H2(Ω?) ∩
V(Ω?). The adjoint variable w satisfies the following problem

div(σ∇w) + b · ∇w + (divb)w = u̇2,θ̃ in Ω?,

w = 0 on Γ ?,
σ∂nw + wb · n− iw = 0 on Σ.

(26)
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Remark 2. Notice that w is simply the derivative of p with respect to θ̃ ∈ Θ while u̇2,θ̃ is the
derivative of p with respect to θ̃ (cf. [48, 45]).

Proof. Our assumptions ensure the existence of ü2,θ,θ̃ ∈ H1(Ω). Then, differentiating J twice
with respect to Ω, first along θ and subsequently along θ̃, we obtain

d2J(Ω)[θ, θ̃] =
1

2

∫
Ω

(
div θ div θ̃ |u2|2 + 2div θu2u̇2,θ̃

)
dx+

∫
Ω

(
u̇2,θu̇2,θ̃ + u2ü2,θ,θ̃

)
dx.

At Ω = Ω?, we have u2 = 0, so we get d2J(Ω?)[θ, θ̃] =
∫
Ω? u̇2,θu̇2,θ̃ dx. Our objective is to

rewrite this expression in terms of an appropriate adjoint variable, eliminating u̇2,θ and u̇2,θ̃. To
this end, we multiply the first equation in (26) by u̇θ, integrate over Ω?, and take the complex
conjugate, yielding:

â(u̇θ, w) := −
∫
Ω?

σ∇w · ∇u̇θ dx−
∫
Ω?

(b · ∇u̇θ)w dx− i

∫
Σ

wu̇θ ds =

∫
Ω?

u̇2,θ̃u̇θ dx. (27)

Next, in (18), we set ψ = w and replace u̇ with u̇θ, yielding

a(u̇θ, w) = M?(uθ, w),

where a is the sesquilinear form defined in (6) with ϕ = u̇θ, ψ = w, and Ω = Ω?. That is,

a(u̇θ, w) = −â(u̇θ, w), (28)

with â given in (27). Equation (28) then implies

−
∫
Ω?

u̇2,θ̃u̇θ dx = M?(uθ, w) = −
∫
Ω?

u̇2,θ̃θ · ∇u1 dx+
∫
Γ?

σ∂nw∂nu1θn ds.

Taking the imaginary parts on both sides, we finally obtain the desired expression:

d2J(Ω?)[θ, θ̃] =

∫
Ω?

u̇2,θ̃u̇2,θ dx =

∫
Γ?

σ∂nw2[θ̃]∂nu1θn ds.

The preceding calculation shows that the shape Hessian at a critical shape can be obtained
without computing the state’s shape derivative, though an appropriate adjoint must be intro-
duced. Higher regularity of the domain, deformation fields, and data is required only initially;
in the final expression, H2-regularity ensures the kernel is well-defined, specifically to inter-
pret the traces of the normal derivatives of u and the adjoint w, for which it suffices that
u,w ∈ H2(Ω?) ∩ V(Ω?). Thus, the analysis can be restricted to Ω? ∈ Oad, with deformation
fields in Θ and the data regularity of Assumption 2.1.

3.4 Compactness of the Hessian at a critical shape
Having computed the shape Hessian at the stationary domain Ω?, we now analyze the stability
of the shape optimization problem. In particular, we show its ill-posedness by demonstrating
the lack of coercivity of the bilinear form associated with the Hessian in the energy space
H1/2(Γ ?). For further discussion on well-posedness and ill-posedness in shape optimization, see
[19, 20, 26, 28].

The main result of this subsection is:
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Proposition 7 (Compactness at a critical shape). The Riesz operator corresponding to the
shape Hessian d2J(Ω?) defined from H1/2(Γ ?) to H−1/2(Γ ?) is compact.

Proof. For Ω? ∈ Oad and θ, θ̃ ∈ Θ ⊂ C1,1(D;Rd), we have θn = θ · n, θ̃n = θ̃ · n ∈ H1/2(Γ ?),
∂nu1 ∈ H1/2(Γ ?), and ∂nw2[θ̃] ∈ H1/2(Γ ?).

We introduce the following function mappings associated with Γ ?:

S : H1/2(Γ ?)d −→ H−1/2(Γ ?), T : H1/2(Γ ?)d −→ H1/2(Γ ?),

θ̃ 7−→ σ ∂nw2[θ̃], θ 7−→ ∂nu1 θn.

Thus, we can write

d2J(Ω?)[θ, θ̃] = 〈S(θn), T (θ̃n)〉H−1/2(Γ ?), H1/2(Γ ?) =

∫
Γ?

σ ∂nw2[θ̃] ∂nu1 θn ds.

On the one hand, the operator T is continuous since multiplication of ∂nu1 ∈ H1/2(Γ ?) by
the C0,1 function θn is a continuous operation on H1/2(Γ ?). On the other hand, we claim that
S is a compact operator. To prove this claim, we decompose S as S = S3 ◦ S2 ◦ S1 ◦ S0, where

S0 : H
1/2(Γ ?)d −→ H1(Ω?), S1 : H

1(Ω?) −→ H2(Ω?),

θ̃ 7−→ u̇2,θ̃, ψ 7−→ w,

S2 : H
2(Ω?) −→ H1/2(Γ ?), S3 : H

1/2(Γ ?) −→ H−1/2(Γ ?),

w 7−→ ∂nw2, ψ 7−→ σψ,

with the following properties:

• S0 : H1/2(Γ ?)d → H1(Ω?) is given by S0(θ̃) = u̇2,θ̃, where u̇2,θ̃ = ={u̇θ̃} denotes the
material derivative of u2 = ={u} in direction θ̃. This operator is continuous.

• S1 : H
1(Ω?) → H2(Ω?) is defined by S1(ψ) = w, where w solves the adjoint problem (26).

Given ψ = u̇2,θ̃ ∈ H1(Ω?), σ ∈ W 1,∞(D)d×d, and b ∈ W 1,∞(D)d, elliptic regularity for
Ω? ∈ C1,1 ensures w ∈ H2(Ω?) and continuity of S1.

• S2 : H2(Ω?) → H1/2(Γ ?) is the trace operator S2(w) = ∂nw2, where w2 = ={w}. This
operator is also continuous.

• S3 : H1/2(Γ ?) → H−1/2(Γ ?) is defined by S3(ψ) = σψ, with σ ∈ W 1,∞(D)d×d. Since
σ|Γ ? is bounded, multiplication by σ|Γ ? is continuous from H1/2(Γ ?) to H−1/2(Γ ?). The
embedding H1/2(Γ ?) ↪→ H−1/2(Γ ?) is compact by the Rellich–Kondrachov theorem for
the C1,1 boundary Γ ? [1].

Therefore, the composition satisfies S(θ̃) = S3

(
S2

(
S1

(
S0(θ̃)

)))
= σ ∂nw2[θ̃]. Since S0, S1,

and S2 are continuous and S3 involves a compact embedding, it follows that S is compact, as
required.

Remark 3. Proposition 7 reveals the inherent instability of the optimization problem 2. Specif-
ically, near the critical shape Ω? = D \ ω? and for small perturbations t > 0, the functional J
behaves as its second-order expansion. Therefore, it is not possible to guarantee an estimate like
Ct
√
J(Ωt) with a constant C that is independent of the deformation vector field θ. This indi-

cates that the shape gradient’s sensitivity varies significantly with the direction of deformation,
becoming ineffective for highly oscillatory perturbations where J exhibits degeneracy.
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Perimeter or surface-area regularization can stabilize shape optimization under noisy data
[3, 17, 48]. However, its necessity depends on boundary conditions, noise level, and shape reg-
ularity. For example, certain second-order generalized impedance conditions allow acceptable
reconstructions without explicit regularization [3, 14, 13]. Alternatively, ADMM-based methods
achieve stable reconstructions without classical regularization. In subsection 4.4, we introduce
a tailored ADMM approach for shape identification with complex PDE constraints, enabling
improved reconstructions under noisy data and for geometries with pronounced concavities.

4 Numerical Algorithms and Examples
We implement the proposed method using a FEM-based descent algorithm driven by the shape
gradient, following [17, 18]. The first subsection summarizes the conventional numerical ap-
proach for clarity and self-containment.

4.1 Conventional numerical scheme for shape optimization
A natural descent direction for J is θ = −Gn with G ∈ L2(Γ ) and G 6≡ 0. However, this may
lead to unstable reconstructions and a deterioration of mesh quality due to the formation of
irregular or poorly shaped elements. To address this issue, we adopt an H1-Riesz representation
of the shape gradient [25, 8]; that is, we seek θ ∈ H1

Σ,0(Ω)d such that

cb

∫
Ω

∇θ : ∇ϕ dx+ (1− cb)

∫
Γ

∇Γθ : ∇Γϕ ds = −
∫
Γ

Gn ·ϕ ds, ∀ϕ ∈ H1
Σ,0(Ω)d, (29)

with cb ∈ (0, 1]. In this work, cb is chosen as 0.7
The resulting Sobolev gradient [42] smoothly extends −Gn into Ω, with the tangential term

improving regularity. For a discussion on (discrete) shape gradient flows, we refer readers to
[25].

To compute the kth domain approximation Ωk, we follow these steps:

1. Initialization Select an initial shape Ω0.

2. Iteration For k = 0, 1, 2, . . .:

2.1 Solve the state and adjoint state systems on the current domain Ωk.
2.2 Select a step size tk > 0 and compute the update vector θk in Ωk.
2.3 Update the domain via Ωk+1 = (id + tkθk)Ωk.

3. Stopping Test Repeat the iteration until a convergence criterion is satisfied.

In Step 2.2, we compute tk = µJ(Ωk)/|θk|2
H1(Ωk)d

following [49, p. 281], with µ > 0, reduced
if necessary to avoid mesh inversion. We set µ = 0.1 in 2D and 0.01 in 3D. The algorithm stops
after a fixed number of iterations or if tk < 10−8.

We test the method in 2D and 3D. Starting with a 2D reconstruction, we examine the
effects of constant and spatially varying σ alongside spatially varying b, and introduce an
ADMM modification to address observed limitations. The resulting CCBM–ADMM scheme
is then applied to 3D, demonstrating robustness against non-convex obstacles and noisy data.
All computations were performed on a MacBook Pro with an Apple M1 chip with 16GB RAM
main memory, via FreeFem++ [36].
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4.2 Numerical examples in 2D
For the 2D numerical examples, the specimen is taken as a unit circle centered at the origin,
with σ(x) = 1.1 + sin(πx1) sin(πx2) and b = (1.1 − sin t, 1.1 + cos t) for t ∈ [0, 2π]. Synthetic
data are generated from the Neumann boundary input g(t) = 2 + cos t, with the measurement
f = u taken on ∂Ω. To avoid “inverse crimes” [39, p. 154], we use different schemes for data
generation and inversion: p2 elements on a finer mesh with 300 boundary nodes for data, and
p1 elements on a coarser mesh with 150 nodes (h = 0.05) for inversion.

We consider four obstacle geometries: an ellipse, dumbbell, peanut, and L-block:

Γ ?
1 := {(0.1 + 0.7 cos t, 0.2 + 0.5 sin 2t) : t ∈ [0, 2π)},
Γ ?
2 := {(0.6 cos t, 0.5 sin t(1.8 + cos 2t)) : t ∈ [0, 2π)},

Γ ?
3 :=


−0.25 +

0.6 + 0.54 cos t+ 0.06 sin 2t

1 + 0.75 cos t
cos t

0.05 +
0.6 + 0.54 cos t+ 0.06 sin 2t

1 + 0.75 cos t
sin t

 , ∀t ∈ [0, 2π)

 ,

Γ ?
4 := ∂ωL, ωL = (−0.55, 0.55)2 \ [0, 0.55]2.

For all cases, the algorithm starts from Γ 0 = C(0, 0.6) and runs for 600 iterations, which
provides satisfactory results without further tuning.

To test robustness against noise, we define uδ = (1+δ g.n.)u?, where u? is the exact solution
for input g and “g.n.” is Gaussian noise with zero mean and standard deviation ‖u?‖L∞(Ω). The
corresponding noisy measurement is then f |Σ := uδ.

4.3 Numerical results and discussion in 2D
In this subsection, we present and discuss our numerical results for the 2D case. Figure 1 shows
reconstructed shapes for several test cases, with the left and right panels corresponding to
constant σ and spatially varying σ, respectively. For each case, the true inclusion, initial guess
(dashed), and reconstructions from exact and noisy data are displayed. The outer black curve
indicates the domain boundary, the inner black curve the true inclusion, and colored curves
correspond to noise levels δ = 0%, 2%, 5%, 7%.

Our method accurately reconstructs shapes in the noise-free case. Moderate noise reduces
reconstruction quality, especially for irregular or non-convex inclusions, due to both noise and
the variability of σ (and b); see Figure 1. Even though not shown here, similar tests indicate
that spatially varying b tends to yield slightly less accurate results than the constant case.

Figure 2 illustrates the L-block case, which violates the C1,1 regularity assumption on the
obstacle. Despite this, the cost functional stabilizes after several iterations, lower final values
are achieved with exact data, and gradient norms decrease with minor oscillations, confirm-
ing convergence. Thus, the reconstruction remains reasonable even for this Lipschitz-smooth
obstacle.

4.4 Alternating Direction Method of Multipliers in shape optimiza-
tion setting

In the previous discussion, we highlighted the difficulty of recovering concavities in non-convex
obstacles due to noise and spatially varying diffusion and drift. To address this, we introduce
an ADMM-based modification of the algorithm. This modification is applied to the 3D setting
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Figure 1: Results of the numerical experiments under exact and noisy measurements with
noise levels δ = 2%, 5%, 7%: left, constant σ ≡ 1; right, spatially varying σ(x) = 1.1 +
sin(πx1) sin(πx2).
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Figure 2: Cost and gradient norm histories for the L-block case: left, constant σ ≡ 1; right,
spatially varying σ(x) = 1.1 + sin(πx1) sin(πx2)
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in subsection 4.6 and discussed in subsection 4.7. Accordingly, we reformulate Problem 2 as
follows:

Problem 3. Given constants a and b with b > a, find the shape ω∗ in the admissible set

A =
{
ω ∈ A | a 6 u1 6 b a.e. in Ω

}
such that

ω∗ = argmin
ω∈A

J(Ω) := argmin
ω∈A

1

2

∫
Ω

|u2|2 dx. (30)

Note that identifying ω is equivalent to identifying Ω, since Ω = D \ ω, so defining one
automatically determines the other.

To directly incorporate the inequality constraint in the cost function, we introduce the
auxiliary variable v which satisfies v = u1 a.e. in Ω and consider the set G defined as follows:

G =
{
(ω, v) ∈ A× L2(Ω) | u1 = v a.e. in Ω

}
.

Then, we can rewrite (30) as

(ω∗, v∗) = argmin
(ω,v)∈G

{J(Ω) + UK(v)} , (31)

where the set K is the closed, convex, non-empty set of L2(Ω) defined by

K =
{
v ∈ L2(Ω) | a 6 v 6 b a.e. in Ω

}
,

and UK is the indicator functional of the set K; that is, UK(v) = 0 if v ∈ K, and UK(v) = ∞ if
v ∈ L2(Ω) \ K.

To apply ADMM to the control model (31), we first define the augmented Lagrangian
functional. This is possible since the minimum of problem (31) corresponds to the saddle point
of the following augmented Lagrangian functional

Lβ(ω, v;λ) = J(Ω) + UK(v) +
β

2

∫
Ω

|u1 − v|2 dx+
∫
Ω

λ(u1 − v) dx, (32)

where λ is the Lagrange multiplier and β > 0 is a penalty parameter. As in [17, 50], we fix the
penalty parameter β. Although it is possible to optimize β using a bilevel approach [24], we
keep it fixed to simplify the method. This choice yields consistently good results, as shown in
subsection 4.7.

To find a saddle point of Lβ, we employ an iterative approximation procedure based on
ADMM. Starting from initial values ω0 ∈ A and v0, λ0 ∈ L2(Ω), the algorithm generates a
sequence of iterates (ωk, vk, λk) for k = 1, 2, . . . by solving the following minimization problems
sequentially and alternately:

ωk+1 = argmin
ω∈A

Lβ(ω, v
k;λk); (SP1)

vk+1 = argmin
v∈L2(Ω)

Lβ(ω
k+1, v;λk); (SP2)

λk+1 = λk + β(uk+1
1 − vk+1), (SP3)

where uk+1
1 := u1(Ω

k+1).
A concise description of the ADMM scheme is provided in Algorithm 1.
The resolution of (SP1) and (SP2) is outlined in the subsequent two subsections.

17



Algorithm 1 ADMM algorithm for the solution of problem (30).

1. Input Fix β, a, and b, and define the Cauchy pair (f, g).

2. Initialization Choose an initial shape ω0 and set the initial values v0 and λ0.

3. Iteration For k = 1, 2, . . ., compute (ωk, vk, λk) using equations (SP1)–(SP3) through
sequential computations:

{vk, λk} (SP1)−→ ωk+1 (SP2)−→ vk+1 (SP3)−→ λk+1.

4. Stop Test Repeat Iteration until convergence.

4.4.1 Solution of ω-subproblem (SP1)

We first consider the ω-subproblem (SP1), which minimizes Lβ with respect to ω:

ωk+1 = argmin
ω∈A

{
J(Ω) + UK(v

k) +
β

2

∫
Ω

|u1 − vk|2 dx+
∫
Ω

λk(u1 − vk) dx

}
.

Consider the following shape functional:

Y k(Ω) := Lβ(ω, v
k;λk) =

1

2

∫
Ω

|u2|2 dx+
β

2

∫
Ω

|u1 − vk|2 dx+
∫
Ω

λk(u1 − vk) dx.

To solve the ω-subproblem (SP1), it is necessary to compute the shape derivative of the
functional Y k(Ω). It is given by the following proposition whose proof is given in Appendix B.

Proposition 8 (Shape gradient of Y k(Ω)). Let Ω ∈ Oad and θ ∈ Θ. Then, Y k(Ω) is shape
differentiable, and its shape derivative at Ω in the direction θ is

dY k(Ω)[θ] =

∫
Γ

(
σ(∂nq1∂nu2 − ∂nq2∂nu1) +

β

2
(vk)2 − λkvk

)
θn ds, (33)

where u = u1 + iu2 satisfies (5) and the adjoint variable q = q1 + iq2 ∈ H2(Ω) ∩V(Ω) uniquely
solves the adjoint system

div(σ∇q) + b · ∇q + (divb)q = i(β(u1 − vk) + λk)− u2 in Ω,
q = 0 on Γ,

σ∂nq + qb · n− iq = 0 on Σ.
(34)

Remark 4. By considering an adjoint that satisfies
div(σ∇q) + b · ∇q + (divb)q = (β(u1 − vk) + λk) + iu2 in Ω,

q = 0 on Γ,
σ∂nq + q b · n− iq = 0 on Σ,

(35)

we obtain the following equivalent expression for the shape derivative dY k(Ω)[θ]:

dY k(Ω)[θ] =

∫
Γ

(
−σ(∂nq1∂nu1 + ∂nq2∂nu2) +

β

2
(vk)2 − λkvk

)
θn ds. (36)
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The preceding formulation of the shape gradients and their adjoint systems yields an ex-
pression that avoids material derivatives and provides a natural choice. Here, we propose an
alternative formulation using a different set of adjoint variables: one for the derivative of u2
and one for u1. The resulting shape gradient of Y k is given in the following proposition:

Proposition 9 (Another shape gradient structure of Y k(Ω)). Let Ω ∈ Oad and θ ∈ Θ. Then,
Y k(Ω) is shape differentiable, and its shape derivative at Ω in the direction θ is

dY k(Ω)[θ] =

∫
Γ

G(u, p)θn ds−
∫
Γ

σ(∂nΛ1∂nu1 + ∂nΛ2∂nu2)θn ds+

∫
Γ

(
β

2
(vk)2 − λkvk

)
θn ds,

(37)
where G(u, p) is given in (19) while the adjoint variable Λ = Λ1+ iΛ2 ∈ H2(Ω)∩V(Ω) uniquely
solves the adjoint system

div(σ∇Λ) + b · ∇Λ + (divb)Λ = β(u1 − vk) + λk in Ω,
Λ = 0 on Γ,

σ∂nΛ + Λb · n− iΛ = 0 on Σ.
(38)

The proof of this proposition is similar to that of Proposition 8 in Appendix B and is
therefore omitted.

From (37), we observe that the first integral is independent of the adjoint Λ, while the
second is independent of p. This motivates the use of “partial” shape gradients, as in [35],
which addresses the exterior Bernoulli free boundary problem. Accordingly, we define four shape
gradients (Table 1) for computing the deformation in our numerical scheme (Algorithm 3). The
merit and benefit of these choices are demonstrated numerically in subsection 4.5, showing the
advantage of selectively applying the adjoint method and using only part of the exact gradient.

4.4.2 Extension and regularization of the deformation field

The shape gradient of Y , as for J , is supported only on the boundary Γ and may be insufficiently
smooth for finite element implementation. To regularize the descent vector over Ω, we employ
the same extension–regularization technique introduced in Section 4.1 and apply the Sobolev
gradient-based descent (SGBD) algorithm (Algorithm 2) to solve (SP1).

Algorithm 2 SGBD algorithm for the ω-subproblem (SP1)

1. Input: Fix cb, µ, β, a, b, and ε. Set λk, and initialize Ωk
0 = Ωk, uk0 = uk, vk0 = vk.

2. Iteration: For m = 0, 1, 2, . . .:

2.1 Solve (8) and the adjoint problem (34) on the current domain Ωk
m.

2.2 Compute θk
m = θ, where θ ∈ H1

Σ,0(Ω
k
m)

d solves (29) with G replaced by the chosen
shape gradient (Gk

q , Gk
] , Gk

p, or Gk
Λ).

2.3 Set tk = µJk(Ωk
m)/‖θk

m‖H1(Ωk
m)d and update Ωk

m+1 = {x+ tkθk
m(x) | x ∈ Ωk

m}.

3. Stopping criterion: Repeat the iteration while ‖dY k(Ωk
m)[θ

k
m]‖ > ε.

4. Output: Ωk+1 = Ωk
m+1.

In Step 2.3 of Algorithm 2, the step size tk is computed using the same strategy in Section 4.1.
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4.4.3 Solution of the v-subproblem (SP2)

We now consider the v-subproblem (SP2), solved by minimizing Lβ with respect to v:

vk+1 = argmin
v∈L2(Ω)

{
J(Ωk+1) + UK(v) +

β

2

∫
Ω

|uk+1
1 − v|2 dx+

∫
Ω

λk(uk+1
1 − v) dx

}
.

Applying the projection method, we obtain vk+1 = PK(u
k+1
1 +λk/β), where PK(ϕ) = max(a,min(b, ϕ))

for all ϕ ∈ L2(Ω) denotes the projection onto the admissible set K.

4.4.4 CCBM–ADMM–SGBD algorithm

Finally, building upon the preceding discussion, we propose a modification of Algorithm 1 for
the numerical solution of Problem 3, which accounts for an inequality constraint imposed on
the real component of the state. More specifically, Algorithm 1 is refined into a nested, iterative
CCBM–ADMM–SGBD scheme tailored to the optimal control problem (31), as described in
Algorithm 3:

Algorithm 3 CCBM–ADMM–SGBD

1. Initialization: Specify (f, g), fix N ∈ N, β, a, b, µ, cb, and ε, and choose ω0, v0, and λ0.

2. Iteration: For k = 0, . . . , N :

2.1 Compute the state solution uk of (8) on the current domain and set uk1 = <{uk},
the solution of (Re) associated with ωk.

2.2 Solve the adjoint state equation(s) corresponding to the chosen shape gradient.
2.3 Update ωk+1 using the gradient-descent method in Algorithm 2.
2.4 Update vk+1 as vk+1 = max

(
a,min(uk+1

1 + λk/β, b)
)
.

2.5 Update λk+1 = λk + β(uk+1
1 − vk+1).

3. Stopping criterion: Repeat the iteration until convergence.

Remark 5. The above approach naturally extends to handle noisy data. In the experiments that
follow, we employ the CCBM–ADMM–SGBD scheme together with the extension-regularization
method from subsection 4.1, which proves sufficient to achieve accurate reconstructions under
moderate noise. Although regularization terms—such as perimeter/surface area or volume—can
be incorporated into the Lagrangian with their corresponding shape derivatives in (43), they do
not appear necessary in our case.

4.5 Effect of adjoint formulation and partial gradient selection
Our ultimate goal is to test the proposed CCBM–ADMM–SGBD (or simply CCBM–ADMM)
scheme against the conventional shape optimization approach, which applies only CCBM, using
three exact obstacle geometries. Figure 3 shows the exact geometries and the initial guess, along
with their corresponding mesh profiles. As before, we avoid inverse crimes by using a finer mesh
and higher-order finite element space for the forward problem, while using a coarser mesh and
lower-order elements for the inverse reconstruction.
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Figure 3: Geometry and mesh of the exact cavities (first three columns from the left), along
with an example of an initial guess with radius r = 0.5.
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Before presenting the advantages of the proposed CCBM–ADMM scheme over the conven-
tional CCBM, we first examine the effect of the chosen shape gradient within the scheme. The
motivation for this analysis stems from the particular application of the adjoint method and
the use of partial, rather than exact, shape gradients.

We consider the unit ball D = B1(0) ⊂ R3 and write x = (x1, x2, x3). The coefficients are
defined as σ(x) = 1.1+

∏3
i=1 sin(πxi) and b(x) = (1, 1, 1)+0.5x, with boundary data g(x) = e|x|

2

prescribed on ∂D. For the preliminary tests, we use an L-block-shaped obstacle and set the
parameters as follows: N = 2400, λ0 = 0.001, a = 0.5min u(Ω \ ω?), b = 1.5max u(Ω \ ω?),
v0 = 1, ε = 10−6, and ω0 = Br(0) with r ∈ {0.55, 0.575, 0.6}. For each method, the selected
radii, chosen from the tested range, yield the most accurate reconstructions.

We use exact measurements to clearly observe the impact of the method employed in the
CCBM–ADMM scheme, whose other specifics are summarized in Table 1.

Kernel r β

Method 1 Gk
q := σ(∂nq1∂nu2 − ∂nq2∂nu1) +

β
2
(vk)2 − λkvk 0.600 0.010

Method 2 Gk
] := G(u, p)− σ(∂nΛ1∂nu1 + ∂nΛ2∂nu2) +

β
2
(vk)2 − λkvk 0.575 0.010

Method 3 Gk
p := G(u, p) + β

2
(vk)2 − λkvk 0.550 0.005

Method 4 Gk
Λ := −σ(∂nΛ1∂nu1 + ∂nΛ2∂nu2) +

β
2
(vk)2 − λkvk 0.550 0.001

Table 1: Radii and choices of β for each of the methods used.

The computational results for the methods listed in Table 1 are shown in Figures 4 and
5. Method 3, which employs the kernel Gk

p, delivers the most accurate obstacle reconstruction
and the lowest cost functional value. While Methods 2 and 3 both capture concave regions
effectively, Method 3 outperforms all others overall. In contrast, Method 1 is less sensitive to
geometric features, leading to less precise reconstructions.

Method 3 also combines superior accuracy with favorable computational efficiency. For
2400 optimization iterations on a mesh with 1377 vertices, 4524 triangular elements, and 2358
boundary elements (degrees of freedom equal to the number of vertices), the CPU times for
Methods 1–4 are 4267s, 4446s, 3041s, and 4187s, respectively. Thus, Method 3 is faster than
Methods 1 and 4, while Method 2 is the most time-consuming.

Based on these results, we select Method 3 for further numerical experiments to bench-
mark the CCBM–ADMM scheme against the conventional approach using kernel G in the next
subsection.

4.6 Numerical examples in 3D
We now consider three-dimensional examples with slightly modified space-dependent coeffi-
cients to illustrate the advantages of the ADMM framework and the influence of boundary
data on the reconstruction.

The specimen is again the unit ball D = B1(0) ⊂ R3; however, we now prescribe σ(x) =
1.1 + sin(πx) sin(πy) and define

b(x) =

(
1.0 + 0.5 sin

(
arctan

(
x2
x1

))
, 1.0 + 0.5 cos

(
arctan

(
x2
x1

))
, 1.5

)>

,

where x = (x1, x2, x3) ∈ D ⊂ R3. The boundary data are synthetically generated as g(x) =
exp(x21 + x22) for x ∈ ∂D.
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Figure 4: Effect of the adjoint formulation and partial gradient selection on the reconstructed
shape
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Figure 5: Cost and gradient norm histories for the reconstructed shapes in Figure 4
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We compare the proposed CCBM–ADMM scheme with the conventional CCBM-based
shape optimization using the three exact obstacle geometries in Figure 3. As before, in-
verse crimes are avoided by solving the forward problem on a finer mesh with higher-order
finite elements, while using a coarser mesh and lower-order elements for reconstruction. All
other computational parameters are the same as in the previous section, except N = 1200 and
ω0 = Br(0) with r ∈ {0.5, 0.575}, chosen through preliminary testing to yield the most accurate
reconstructions.

4.7 Numerical results and discussion in 3D
We present the results of our three-dimensional numerical experiments to demonstrate the
effectiveness of the proposed CCBM–ADMM scheme.

Figures 6–8 show reconstructed shapes obtained using both the conventional CCBM and
the proposed CCBM–ADMM scheme. These results highlight the difficulties of accurately re-
covering the underlying geometry with the naive CCBM scheme, even under exact data, and
increasingly so under moderate noise. In contrast, the CCBM–ADMM scheme achieves accu-
rate reconstructions even with moderate noise, particularly in capturing non-convex features
and the depth of concavities. Notably, at high noise levels, the proposed scheme correctly iden-
tifies regions with pronounced concavities that the conventional method fails to recover (see
Figures 6 and 7). The advantage of CCBM–ADMM is also evident for a Lipschitz-smooth ob-
stacle (Figure 8), where it yields a reasonable reconstruction despite violating the smoothness
assumptions of our main results.

Figure 9 illustrates the evolution of the cost functional and gradient norm for the L-block
case. As expected, the cost functional converges even under moderate noise, with lower final
values at reduced noise levels. The gradient norm initially decreases but later exhibits an
oscillatory increase, likely due to the last two integrals in the shape gradient of Y k (see (33)).
Although not shown, the gradient norms eventually converge after further iterations.

Overall, these results underscore the robustness and effectiveness of incorporating ADMM
into shape optimization, supporting previous findings [17, 50] on the potential of ADMM-based
methods for challenging geometric inverse problems.

5 Conclusion
We have introduced a novel shape optimization method for inverse advection–diffusion prob-
lems. It embeds the coupled complex boundary method (CCBM) within an ADMM-inspired
augmented Lagrangian framework. The scheme uses a Sobolev gradient method that natu-
rally achieves mesh smoothing. As a result, it eliminates the need for explicit perimeter or
surface-area regularization, which is typically required to stabilize reconstructions from noisy
measurements.

Numerical experiments in two and three dimensions demonstrate accurate recovery of com-
plex inclusion shapes, with marked improvement for concave or complex features where con-
ventional methods struggle. By employing a carefully designed adjoint formulation alongside
partial gradients, the CCBM–ADMM strategy further enhances reconstruction and consistently
attains lower cost values, even when the smoothness assumptions required in the analysis are
not fully satisfied.

Overall, these results highlight the effectiveness of the CCBM–ADMM framework, support-
ing recent evidence [17, 50] that ADMM-based methods effectively handle noisy and geometri-
cally complex inverse shape problems.
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Figure 6: Reconstructed shapes using CCBM (left) and Algorithm 3 (right) under noise levels
δ = 0%, 5%, 7%, with initial boundary Γ 0 = ∂B0.575(0)

Figure 7: Reconstructed shapes using CCBM (left) and Algorithm 3 (right) under noise levels
δ = 0%, 5%, 7%, with initial boundary Γ 0 = ∂B0.5(0)
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Figure 8: Reconstructed shapes using CCBM (left) and Algorithm 3 (right) under noise levels
δ = 0%, 5%, 7%, with initial boundary Γ 0 = ∂B0.5(0)
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Figure 9: Histories of costs and gradient norms for the L-block case; left, conventional CCBM;
right, proposed CCBM–ADMM scheme
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A Some useful identities
Let us write

M = M1+M2 := −
∫
Ω

[σA∇u · ∇p+ (∇σ · θ)(∇u · ∇p)] dx−
∫
Ω

[
C>b · ∇up+Dbθ · ∇up

]
dx.

Our main goal is to prove the last equation in (25). To do this, we first show that

M1 = −
∫
Ω

div(σ∇u)(θ · ∇p) dx−
∫
Ω

div(σ∇p)(θ · ∇u) dx+
∫
Γ

σ∂np∂nuθn ds, (39)

M2 =

∫
Ω

(b · ∇u)(θ · ∇p) dx−
∫
Ω

(b · ∇p)(θ · ∇u) dx−
∫
Ω

divb(θ · ∇u)p dx, (40)

and then using the state and adjoint equations (5) and (20), we establish the last equation in
(25).

We verify only (39), as (40) can be established by a similar argument. Using expression A
in (17), we note that M1 can be written as follows:

M1 = −
∫
Ω

σ
(
(div θ)I−Dθ − (Dθ)>

)
∇u · ∇p dx−

∫
Ω

(∇σ · θ)(∇u · ∇p) dx.

Let J = (θ · ∇u)(σ∇p) + (θ · ∇p)(σ∇u)− σ(∇u · ∇p)θ. Then,

div J = (θ · ∇u) div(σ∇p) + (θ · ∇p) div(σ∇u)− (∇σ · θ)(∇u · ∇p)
− div θ(σ∇u · ∇p) + σ∇p · ∇(θ · ∇u) + σ∇u · ∇(θ · ∇p)− σ∇(∇u · ∇p) · θ.

(41)

The last three summands can be expressed as follows:
J1 := σ∇p · ∇(θ · ∇u) = ∇2uθ · σ∇p+ σDθ>∇u · ∇p,
J2 := σ∇u · ∇(θ · ∇p) = ∇2pθ · σ∇u+ σDθ∇u · ∇p,

−J3 := σ∇(∇u · ∇p) · θ = ∇2uθ · σ∇p+∇2pθ · σ∇u.
(42)

Hence, J1 + J2 + J3 = σDθ>∇u · ∇p+ σDθ∇u · ∇p. Substituting this into (41), rearranging,
and integrating over Ω yields

M1 = −
∫
Ω

div(σ∇p)θ · ∇u dx−
∫
Ω

div(σ∇u)θ · ∇p dx+
∫
Ω

div J dx.

Applying the divergence theorem with θ = 0 on Σ, and noting that for any function ϕ van-
ishing on Γ one has ∇ϕ = ∂nϕn on Γ, the last integral becomes

∫
Ω
div J dx =

∫
Γ
J · n ds =∫

Γ
σ∂np∂nuθn ds, which, after substituting back into the previous expression for M1, yields the

desired form of M1.
From the previous computations, M can be equivalently written as

M =

∫
Ω

[− div(σ∇u) + (b · ∇u)]θ · ∇p dx+
∫
Γ

σ∂np∂nuθn ds

−
∫
Ω

[div(σ∇p) + b · ∇p+ divbp]θ · ∇u dx =: R1 +R2 +R3.

By applying the state and adjoint equations (5) and (20), the volume integrals R1 and R3

reduce to R1 = 0 and R3 = −
∫
Ω
u2(θ · ∇u) dx. Hence, we obtain M =

∫
Γ
σ∂np∂nuθn ds −∫

Ω
u2(θ · ∇u) dx, which proves the last equation in (25).
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B Proof of Proposition 8
Proof of Proposition 8. Applying the chain rule together with the material derivative approach
and the identity (22), we obtain the following expression for the shape derivative of Y k(Ω):

dY k(Ω)[θ] =

∫
Ω

[
u2u̇2 +

(
β(u1 − vk) + λk

)
u̇1
]
dx

−
∫
Ω

[
u2(θ · ∇u2) +

(
β(u1 − vk) + λk

)
(θ · ∇u1)

]
dx

+

∫
Γ

(
β

2
(vk)2 − λkvk

)
θn ds

=: Υ1 −Υ2 +Υ3.

(43)

To eliminate u̇1, u̇2, we use the adjoint system (34). Its variational formulation, upon taking
complex conjugates of the equation, reads

−
∫
Ω

(σ∇q · ∇ϕ+ (b · ∇ϕ) q) dx−i
∫
Σ

q ϕ ds =

∫
Ω

(
−i
(
β(u1 − vk) + λk

)
− u2

)
ϕdx, ∀ϕ ∈ V(Ω).

Setting ϕ = u̇ yields
a(u̇, q) =

∫
Ω

(
i(β(u1 − vk) + λk) + u2

)
u̇ dx. (44)

On the other hand, from (18) with ψ = q and B = divτ θ = 0 on Σ, and using computations
similar to Appendix A, we obtain

a(u̇, q) = M(u, q) =

∫
Ω

(
i(β(u1 − vk) + λk) + u2

)
(θ · ∇u) dx+

∫
Γ

σ∂nu ∂nqθn ds. (45)

Comparing (44) and (45) gives∫
Ω

(
i(β(u1 − vk) + λk) + u2

)
u̇ dx =

∫
Ω

(
i(β(u1 − vk) + λk) + u2

)
(θ · ∇u) dx+

∫
Γ

σ∂nu ∂nqθn ds.

Taking imaginary parts and rearranging yields: Υ1 − Υ2 =
∫
Γ
σ (∂nq1∂nu2 − ∂nq2∂nu1) θn ds.

Substituting this into (43) gives the final expression (8), which completes the proof.
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