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Abstract

This work focuses on numerically solving a shape identi昀椀cation problem related to
advection-di昀昀usion processes with space-dependent coe昀케cients using shape optimization
techniques. Two boundary-type cost functionals are considered, and their corresponding
variations with respect to shapes are derived using the adjoint method, employing the chain
rule approach. This involves 昀椀rstly utilizing the material derivative of the state system and
secondly using its shape derivative. Subsequently, an alternating direction method of
multipliers (ADMM) combined with the Sobolev-gradient-descent algorithm is applied to
stably solve the shape reconstruction problem. Numerical experiments in two and three
dimensions are conducted to demonstrate the feasibility of the methods.

Keywords: geometric inverse problem, advection-di昀昀usion problem, shape optimization,
shape gradient method, alternating direction of method of multipliers.

1 Introduction

Understanding the transport of quantities like heat, mass, or momentum is crucial for predict-
ing and controlling various natural and engineered systems. In advection-di昀昀usion problems,
transport primarily occurs through two mechanisms: advection, driven by 昀氀uid 昀氀ow, and dif-
fusion, caused by random molecular motion. For instance, pollutants in rivers are carried
downstream by water 昀氀ow (advection) but also spread out due to di昀昀usion. The behavior
of advection-di昀昀usion systems varies depending on whether advection or di昀昀usion dominates.
In advection-dominated regimes, rapid transport occurs with sharp gradients, while di昀昀usion-
dominated regimes lead to slower, smoother dispersion. This paper examines a shape identi-
昀椀cation problem for advection-di昀昀usion problems with space-dependent advection coe昀케cient
through shape optimization methods.
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Various shape identi昀椀cation problems have been previously investigated in several domains,
including inverse obstacle scattering problems [Het98, HR98], inverse conduction scattering
problems [KR01], static and time-dependent inverse boundary problems involving perfectly
conducting or insulating inclusions [ADK07, CKY98, CKY99, HT11, HT13, YM06], shape
detection in convection-di昀昀usion problems [YHG17] and unsteady advection-di昀昀usion problems
[YSJ14], inverse geometric source problems [AMN22], boundary shape reconstructions with
Robin conditions [AR25, Fan22, FZ09, RA19], obstacle reconstruction in Stokes 昀氀uid 昀氀ow
[CDK13, CDKT13, RAN25, YM08], and more.

In this paper, we aim to identify the shape and location of an object ω ⊂ R
d, where

d ∈ {2, 3}, within a larger domain D ⊂ R
d using a pair of known datasets (f, g) observed at

the accessible boundary of D. Denoting by Ω the connected domain D \ω, we investigate here
a multi-dimensional advection-di昀昀usion equation within the context of shape inverse problems.
The equation describes, for example, the transport of contaminants in surface water.

Mathematically, given a simply connected domain D ⊂ R
d and assuming the existence

of an unknown simply connected inclusion ω, as well as functions f and g de昀椀ned over the
boundary ∂D, we are primarily interested in the shape optimization reformulation of the
following overdetermined advection-di昀昀usion problem:















− div (σ∇u) + b · ∇u = 0 in Ω,
u = f on Σ,

σ∂nu = g on Σ,
u = 0 on Γ,

(1)

where Σ := ∂D, Γ := ∂ω, σ := σ(x), x ∈ D, denotes the di昀昀usion coe昀케cient, u := u(x), x ∈ Ω,
is the concentration of the contaminant, b := b(x), x ∈ D, the velocity of the 昀氀uid 昀氀ow, and
∂nu is the outward normal derivative of u on Σ. We assume, in the general setup, that the
coe昀케cients σ and b = (b1, . . . , bd)

> satisfy the following conditions:


























σ ∈W 1,∞(D)d×d and there exists σ0 > 0 (ellipticity constant) such that for all ξ ∈ R
d,

2
∑

i,j=1

σijξiξj > σ0‖ξ‖
2
d, almost everywhere in D;

and there is a constant b0 > 0 such that, for i ∈ {1, . . . , d}, b0 < bi ∈W 1,∞(D).
(A)

To simplify the analysis and avoid cumbersome notation, we assume, unless otherwise speci昀椀ed,
that σ is a space-dependent scalar function (i.e., σ ∈W 1,∞(D)1×1).

We assume, unless otherwise stated, that f ∈ H3/2(Σ), f 6≡ 0. Also, we let g ∈ H1/2(Σ)
be an admissible boundary measurement corresponding to f . This means that g belongs to
the image of the Dirichlet-to-Neumann map ΛΣ : f ∈ H3/2(Σ) 7→ ∂nuD ∈ H1/2(Σ), where uD
solves boundary value problem







− div (σ∇uD) + b · ∇uD = 0 in Ω,
uD = 0 on Γ,
uD = f on Σ.

(2)

If g ∈ H1/2(Σ) is given instead, then we let f ∈ H3/2(Σ) be an admissible boundary
measurement by taking f as the image of the Neumann-to-Dirichlet map Λ−1

Σ : g ∈ H1/2(Σ) 7→
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uN =: f ∈ H3/2(Σ), where uN solves the partial di昀昀erential equation (PDE) system






− div (σ∇uN ) + b · ∇uN = 0 in Ω,
uN = 0 on Γ,

σ∂nuN = g on Σ.
(3)

Our main objective then is to examine the inverse geometry problem that reads as follows:

Given D, f , and g, 昀椀nd ω such that u(D \ ω) satis昀椀es (1).

This problem has been studied extensively in the literature. Yan et al. [YHG17] addressed
shape identi昀椀cation in convection-di昀昀usion problems using the adjoint method, while Yan et
al. [YSJ14] applied the domain derivative method to unsteady advection-di昀昀usion problems.
Fernandez et al. [FNPS21] used the topological derivative method for pollution source recon-
struction governed by a steady-state convection-di昀昀usion equation.

In this work, we reformulate the inverse problem as an optimal control problem where
the shape is the unknown. We propose two least-squares mis昀椀t functionals: the tracking-the-
Dirichlet-data (6) and tracking-the-Neumann-data (7). We rigorously analyze the optimization
problem, derive the material derivative of the state, and use it to compute the shape gradient
of these functionals. By introducing adjoint systems, we express the shape gradient without
requiring state derivatives. For numerical experiments, we apply the Alternating Direction
Method of Multipliers (ADMM), following the approach in [RHA+24]. This method e昀昀ectively
handles challenges such as noise and concave regions on unknown interior boundaries. Our goal
is to enhance shape optimization techniques by incorporating an auxiliary variable into the
cost functionals (6) and (7), which are iteratively minimized using ADMM.

The rest of the paper is organized as follows. In Section 2, we delve deeper into the problem
con昀椀guration and discuss the reformulation of the associated shape optimization. Section 3
provides a rigorous demonstration of the existence of the material derivative of the state vari-
ables, along with detailing the equation veri昀椀ed by the shape derivative of the state variables.
Following this, the latter part of the section characterizes the shape gradients of the considered
functionals, 昀椀rst through the material derivative and then using the shape derivative of the
state. Subsequently, in Section 4, we present an algorithm based on gradient methods, solving
an elliptic problem to determine the steepest descent direction in the H1 space. This section
presents a comprehensive series of numerical experiments aimed at exploring various shapes
across two and three spatial dimensions. It includes both the results from conventional shape
optimization methods and ADMM, and o昀昀ers a comparative analysis of these methods with a
particular focus on their accuracy in three-dimensional cases. Finally, Section 5 concludes the
paper brie昀氀y, summarizing key 昀椀ndings and highlighting the major implications of this study.

2 The problem setting

2.1 The main problem

Let us now be more precise with the important assumptions of the study. We let D be an open,
non-empty simply connected bounded set in R

d, d ∈ {2, 3}, of class C1,1. We 昀椀x a real number
δ > 0 and de昀椀ne A as the collection of all C1,1 open, non-empty sets ω strictly contained in D
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and that are of distance δ from Σ = ∂D such that Ω = D \ ω is connected; i.e., we de昀椀ne the
following set

A := {ω b D | ω ∈ C1,1 is an open set, d(x, ∂D) > δ, ∀x ∈ ω, and D \ ω is connected}. (4)

Hereinafter, we say Ω is an admissible domain if Ω = D \ ω, for some ω ∈ A. In this case, for
the sake of notation, we write Ω ∈ A◦.

We tacitly assume here that we can 昀椀nd ω∗ in A such that (1) has a solution. In other
words, we assume that there is ω∗ ∈ A such that the surface measurement g (or f , if g is
given instead) is obtained without error. Therefore, we propose the following more precise
formulation of the inverse geometry problem:

Given D, f , and g, 昀椀nd ω ∈ A such that u(D \ ω) solves (1). (5)

The regularity assumptions imposed on the data f and g are more than we can actually expect.
In reality, we can only assume that Σ is Lipschitz, with f ∈ H1/2(Σ) and g ∈ H−1/2(Σ), in
order to obtain H1 regular state solutions. Higher regularity of the states can be achieved by
imposing additional smoothness on the boundaries and the data (see, e.g., [Gri85, Thm. 2.4.2.5,
p. 124, Sec. 2, p. 84, and p. 128]). Such a result can be derived through a local regularity
argument similar to the proof in [BP13, Thm. 29] (see also [BCD11, Cau13] for similar results
in the context of 昀氀uids). In this work, we adopt the stated regularity assumptions to streamline
many of the proofs.

Before we 昀椀nish this subsection, we comment that a key theoretical aspect in inverse prob-
lems is identi昀椀ability, which refers to the uniqueness of the solution given the observed data.
In the context of the present study, which focuses on the recovery of an unknown inclusion in a
domain governed by an advection-di昀昀usion equation, an explicit identi昀椀ability result is not yet
available in the literature. However, such a result is crucial to justify the well-posedness of the
inverse formulation. While classical methods, such as unique continuation and Carleman esti-
mates, establish identi昀椀ability in simpler elliptic settings, their extension to advection-di昀昀usion
systems with geometric complexity presents signi昀椀cant challenges. Recent advances by Cao
et al. [CDLZ22] have shown that, under precise geometric conditions, a single far-昀椀eld mea-
surement is su昀케cient to uniquely determine both the shape and the boundary impedance of
polyhedral obstacles in inverse scattering problems. These 昀椀ndings suggest that, with appro-
priate geometric and analytical assumptions, a similar identi昀椀ability result could be derived for
the inverse advection-di昀昀usion problem considered here. This opens up an important avenue
for future theoretical work, potentially providing a solid foundation for the proposed numerical
identi昀椀cation framework.

2.2 Shape optimization reformulations

To solve (5), we reformulate it into shape optimization setting and apply the concept of shape
calculus to solve the resulting optimization problem numerically. To this end, we consider
two such reformulations of (5) by choosing one of the boundary conditions on the unknown
boundary to obtain a well-posed state equation, and then track the remaining boundary data
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in L2 sense over Σ. More precisely, we consider the following minimization problems

ω∗ ∈ argminω∈A JD(D \ ω), where JD(D \ ω) = JD(Ω) :=
1

2

∫

Σ
(uN − f)2 ds, (6)

ω∗ ∈ argminω∈A JN (D \ ω), where JN (D \ ω) := JN (Ω) =
1

2

∫

Σ
(σ∂nuD − g)2 ds (7)

where uD := uD(Ω) and uN := uN (Ω) are the solutions to the PDE systems (2) and (3),
respectively. In (6) and (7), the in昀椀mum is always taken over the set of admissible domains A.
We refer to uN and uD as state variables or the simply states.

To ensure JN is well-de昀椀ned, the state variable uD needs to be at least H2 regular. In
this case, assuming (A) holds, and that f ∈ H3/2(Σ) and Ω ∈ C1,1 are su昀케cient. Such
claim can be proved by arguing as in the proof of [BP13, Thm. 29]. This means that in
numerical experiments where the state variables might lack high regularity, using JN might
not be practical.

Remark 2.1. The optimization problems (6) and (7) are only equivalent to (1) if we have
a perfect match of boundary data on the known boundary, namely, u = f and ∂nu = g on
Σ = ∂ω. Indeed, if ω∗ ∈ A solves (5), then Ji(Ω

∗) = Ji(D \ ω∗) = 0, for i ∈ {D,N}, and it
holds that

ω∗ ∈ argminω∈A Ji(Ω), for i ∈ {D,N}. (8)
Conversely, if ω∗ ∈ A solves (8) with Ji(Ω∗) = 0, for i ∈ {D,N}, then it is a solution of (5).

In the rest of the paper, the subscript i of Ji is always understood to be either D or N .

2.3 Weak forms of the state systems

Throughout the paper, we let c > 0 be a generic constant; that is, it may take di昀昀erent values
at di昀昀erent places. Let us brie昀氀y discuss the respective variational formulation of (3) and (2).
To this end, we denote:

VΓ(Ω) := {ϕ ∈ H1(Ω) | ϕ = 0 on Γ},

which is equipped with the norm

‖ϕ‖2VΓ(Ω) = |ϕ|H1(Ω) = ‖∇ϕ‖L2(Ω) =

∫

Ω
|∇ϕ|2 dx,

and we introduce the following bilinear form:

a(ϕ,ψ) =

∫

Ω
σ∇ϕ · ∇ψ dx+

∫

Ω
(b · ∇ϕ)ψ dx, where ϕ,ψ ∈ VΓ(Ω). (9)

The weak form of (3) reads as follows:

Find uN ∈ VΓ(Ω) such that a(uN , ψ) =

∫

Σ
gψ ds, for all ψ ∈ VΓ(Ω). (10)

In a Lipschitz domain Ω and with g ∈ H−1/2(Σ), given the conditions in (A) regarding
the coe昀케cients, the Lax-Milgram lemma establishes the existence of a unique weak solution
uN ∈ VΓ(Ω) for (10). To ensure the coercivity of a in VΓ(Ω), it su昀케ces to assume

|b|∞ < cσ0, where |b|∞ = sup {|bi| | 1 6 i 6 d},
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for some constant c > 0.1 This condition guarantees a(ϕ,ϕ) > (σ0 − c|b|∞) ‖ϕ‖2VΓ(Ω) =

c‖ϕ‖2VΓ(Ω), for some real number c > 0 [CAR25].

Similarly, we may write the weak form of (2) as follows:

Find uD ∈ VΓ(Ω), uD = f on Σ, such that a(uD, ψ) = 0, for all ψ ∈ VΓ(Ω). (11)

For a Lipschitz domain Ω and f ∈ H1/2(Σ), assuming the conditions in (A) on the coe昀케-
cients, the Lax-Milgram lemma again guarantees a unique weak solution uN ∈ VΓ(Ω) for (10),
contingent upon the condition |b|∞ < cσ0 (for some constant c > 0) for the well-posedness of
(11).

3 Shape Derivatives

To numerically solve (6) and (7), we require the structure of Ji, i ∈ {D,N}, to devise a gradient-
based iterative scheme for concrete problem-solving. These expressions will be derived in this
section using the concept of shape calculus, speci昀椀cally through the notion of the velocity or
speed method; refer to [DZ11, HP18, MS76, Sim80, SZ92] for more details.

3.1 Some elements of shape calculus

In this section, we brie昀氀y introduce key concepts from shape calculus, focusing on material
and shape derivatives of functions and functionals, and 昀椀x some notations.

Let t > 0. We de昀椀ne Tt : D 7−→ D as the map given by

Tt = Tt[θ] = id+ tθ, (12)

where θ is a t-independent deformation 昀椀eld belonging to the admissible space

Θ := {θ = (θ1, . . . , θd)
> ∈ C1,1(D)d | suppθ ⊂ Dδ}, (13)

where {x ∈ D | d(x, ∂D) > δ/2} ⊂ Dδ ⊂ {x ∈ D | d(x, ∂D) > δ/3}. Clearly, T0 = id, and
it can be shown that, for su昀케ciently small ε > 0, t ∈ [0, ε], Tt is a di昀昀eomorphism of R

d.
Throughout the paper, the subscript ‘t’ indicates that the associated object is de昀椀ned on a
domain dependent on time t. For example, ut represents the solution of (2) with Ω replaced
by Ωt = Tt(Ω)[θ].

We set

At := δt(DT
−1
t )(DTt)

−>, Bt := δt|(DTt)
−>

n|, and Ct := δt(DTt)
−>,

and assume that ε > 0 is su昀케ciently small such that for all t ∈ I := [0, ε], δt := det DTt > 0,
and we can 昀椀nd pair of constants c1, c2 (0 < c1 < c2) and c3, c4 (0 < c3 < c4) such that (cf.
[DZ11, Chap. 10, Sec. 2.4, Eq. (2.32) and Eq. (2.33), p. 526])

c1|ξ|
2
6 Atξ · ξ 6 c2|ξ|

2, for all ξ ∈ R
d, and c3 6 δt 6 c4. (14)

1The constant c > 0 is, in fact, the Poincaré constant, which enables us to control the full H1 norm by the
H

1 seminorm. It appears that this point was inadvertently overlooked in [CAR25].
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Note that we can choose m1 = min{c1, c3} and m2 = max{c2, c4} as the respective lower and
upper bounds, ensuring that all the inequality conditions in (14) are satis昀椀ed.

For t ∈ I and θ ∈ Θ, we see that the following regularities hold:2
{

[t 7→ δt] ∈ C1(I, C0,1(D)), [t 7→ At] ∈ C1(I, C0,1(D)d×d),

[t 7→ Bt] ∈ C(I, C(∂Ω)), [t 7→ Ct] ∈ C1(I, C0,1(D)d×d).
(15)

Lastly, mention that we have the following derivatives for the maps given previously:


















































d

dt
δt
∣

∣

t=0
= lim

t↘0

δt − 1

t
= div (θ) =: δ,

d

dt
At

∣

∣

t=0
= lim

t↘0

At − I

t
= δI−Dθ − (Dθ)> =: A,

d

dt
Bt

∣

∣

t=0
= lim

t↘0

Bt − 1

t
= divτθ = δ

∣

∣

Γ
− (Dθn) · n,

d

dt
Ct

∣

∣

t=0
= lim

t↘0

Ct − 1

t
= δI− (Dθ)> =: C,

(16)

where divτθ denotes the tangential divergence of the vector θ. The proofs of the above results
(15) and (16) are provided in [SZ92, Chap. 2.15, pp. 75–76, Chap. 2.18–2.19, pp. 79–85].

Without further notice, the pseudo-time parameter t is always assume su昀케cient small so
that the required regularities for the (perturbed) domain is preserved and the regularity of the
mappings in (15) hold true.

We say that the function u(Ω) has a material derivative u̇ = u̇(Ω)[θ] and a shape derivative
u′ = u′(Ω)[θ] at 0 in the direction of the vector 昀椀eld θ if the limits

u̇ = lim
t↘0

ut(Ω)− u(Ω)

t
and u′ = lim

t↘0

u(Ωt)− u(Ω)

t

exist, respectively, where ut(x) := (u(Ωt)◦Tt)(x) = u(Ωt)(Tt(x)). Notice here that ut is de昀椀ned
on the 昀椀xed domain Ω. For su昀케ciently smooth Ω, u, and θ, these derivatives are related by
u′ = u̇− (∇u · θ) [DZ11, SZ92]. Meanwhile, we say that a shape functional j : A◦ → R has a
directional Eulerian derivative at Ω ∈ A◦ in the direction of θ ∈ Θ if the limit

lim
t↘0

j(Ωt)− j(Ω)

t
=: dj(Ω)[θ]

exists [DZ11, Eq. (3.6), p. 172]. If the map θ 7→ dj(Ω)[θ] is linear and continuous for all
θ ∈ Θ, then j is shape di昀昀erentiable at Ω, and the map is referred to as the shape gradient of
j.

3.2 Material and shape derivatives of the state variables

The main objective of this section is to present a variational equation satis昀椀ed by the material
derivatives of the states uN and uD. Subsequently, we deduce the shape derivative of the
state corresponding to uN and provide a demonstration solely for the case of uN , applying the
same approach for the case of uD. Throughout the rest of the paper, θ ∈ Θ, unless otherwise
speci昀椀ed.

2Here, ε > 0 is made smaller if necessary.
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Theorem 3.1. The Neumann solution uN ∈ VΓ(Ω) of (3) has a derivative u̇N ∈ VΓ(Ω) that
satis昀椀es

a(u̇N , ψ) = l(uN ;ψ), ∀ψ ∈ VΓ(Ω), (17)
where

l(uN ;ψ) = −

∫

Ω

(

σA∇uN · ∇ψ + C>
b · ∇uNψ

)

dx

−

∫

Ω
[(∇σ · θ)∇uN · ∇ψ +Dbθ · ∇uNψ] dx

=: l0(uN ;ψ) + l1(uN ;ψ).

(18)

We comment here that, because of the regularity assumptions σ ∈ W 1,∞(D), b ∈
W 1,∞(D)d, θ ∈ Θ, and uN ∈ VΓ(Ω), the bounds for A and C given in (14), and under
the condition that |b|∞ < σ0, the existence of unique weak solution u̇N ∈ VΓ(Ω) of (17) is a
consequence of the Lax-Milgram theorem. We omit the proof detail for economy of space.

Meanwhile, to support our assertion in Theorem 3.1, we have formulated several lemmas
whose proofs are outlined in Appendix A along with their respective proofs.

The next theorem presents the shape derivative of the state using the expression for the
material derivative described in the previous Theorem 3.1.

Theorem 3.2. Let Ω ∈ C2,1 be an admissible domain, θ ∈ Θ ∩ C2,1(D)d, and the state
uN ∈ H3(Ω) ∩ VΓ(Ω) be su昀케ciently smooth. Then, uN is shape di昀昀erentiable, and its shape
derivative satis昀椀es the system:







− div (σ∇u′N ) + b · ∇u′N = 0 in Ω,
u′N = −∂nuNθn on Γ,

σ∂nu
′
N = 0 on Σ.

(19)

To provide evidence for this Theorem 3.2, we will need to prove the result of Lemma 3.3
below using the form of the curl operator ∇× on R

d. We have the curl of the cross product
identity

∇× (ϕ×ψ) = ϕ div (ψ)−ψ div (ϕ) + (ψ · ∇)ϕ− (ϕ · ∇)ψ, (20)
for any di昀昀erentiable R

d-valued functions ϕ and ψ.
For this purpose, we embed ϕ and ψ into R

d by appending zero as the third coordinate
when d = 2. However, when d = 3, no adjustment is needed and the curl of ϕ in R

3 is given
by:

∇× ϕ =

(

∂ϕ3

∂x2
−
∂ϕ2

∂x3
,
∂ϕ1

∂x3
−
∂ϕ3

∂x1
,
∂ϕ2

∂x1
−
∂ϕ1

∂x2

)

. (21)

Lemma 3.3. For (u, v) ∈
[

H2(Ω) ∩ VΓ(Ω)
]2 and θ ∈ Θ, we have

∫

Ω
∇× (σ∇u× θ) · ∇v dx = 0, (22)

and it holds that

−

∫

Ω
δσ∇u · ∇v dx+

∫

Ω
σDθ∇u · ∇v dx

= −

∫

Ω
div (σ∇u)θ · ∇v dx+

∫

Ω
σ∇2uθ · ∇v dx+

∫

Ω
(∇σ · θ)(∇u · ∇v) dx,

(23)
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where ∇2u denotes the Hessian (matrix) of u.

Proof. Since div (∇× ϕ) = 0 for all ϕ ∈ VΓ(Ω), then by using integration by parts, we obtain
∫

Ω
∇× (σ∇u× θ) · ∇v dx = −

∫

Ω
div (∇× (σ∇u× θ)) v dx+

∫

∂Ω
[∇× (σ∇u× θ)] · vn ds

=

∫

Γ
[∇× (σ∇u× θ)] · vn ds+

∫

Σ
[∇× (σ∇u× θ)] · vn ds

= 0,

because v = 0 on Σ and θ = 0 on Γ, applying (20), we obtain the following result:

∇× (σ∇u× θ) · ∇v = δσ∇u · ∇v − div (σ∇u)θ · ∇v +∇(σ∇u)θ · ∇v − σDθ∇u · ∇v.

By integrating over Ω and knowing that
∫

Ω
∇× (σ∇u× θ) · ∇v dx = 0, we obtain

∫

Ω
(δσ∇u · ∇v − div (σ∇u)θ · ∇v +∇(σ∇u)θ · ∇v − σDθ∇u · ∇v) dx = 0.

Using the formula (see Appendix B for a justi昀椀cation)

∇(σ∇u)θ · ∇v = σ∇2uθ · ∇v + (∇σ · θ)(∇u · ∇v), (24)

we deduce (23).

We now provide the proof of Theorem 3.2.

Proof of Theorem 3.2. We drop the subscript ·N for convenience. Using (9) and taking ϕ =
u̇− θ · ∇u = u′ and ψ = v, we obtain

a(u′, v) = a(u̇− θ · ∇u, v) = a(u̇, v)−

∫

Ω
σ∇(θ · ∇u) · ∇v dx−

∫

Ω
b · ∇(θ · ∇u)v dx

=: I1 + I2 + I3.

We treat each term Ii, i = 1, 2, 3, separately. For the 昀椀rst term I1, using (17), we get

I1 = l(u; v),

where l(u; v) = l0(u; v)+l1(u; v) is given by (18) with u = uN and ψ = v . Using the expressions
for A and C given in (16) and l0 in (18), we can write

l0(u; v) = −

∫

Ω
δσ∇u · ∇v dx+

∫

Ω
σDθ∇u · ∇v dx

+

∫

Ω
σDθ>∇u · ∇v dx−

∫

Ω
δ(b · ∇u)v dx+

∫

Ω
Dθb · ∇uv dx.

In view of (23), we deduce that

l0(u; v) = −

∫

Ω
div (σ∇u)θ · ∇v dx+

∫

Ω
σ∇2uθ · ∇v dx+

∫

Ω
(∇σ · θ)(∇u · ∇v) dx

+

∫

Ω
σDθ>∇u · ∇v dx−

∫

Ω
δ(b · ∇u)v dx+

∫

Ω
Dθb · ∇uv dx.

9



Moreover, recalling that

l1(u; v) = −

∫

Ω
[(∇σ · θ)∇uN · ∇v +Dbθ · ∇uNv] dx,

and replacing both l1(u; v) and l0(u; v) in I1, we obtain:

I1 = −

∫

Ω
div (σ∇u)θ · ∇v dx+

∫

Ω
σ∇2uθ · ∇v dx+

∫

Ω
σDθ>∇u · ∇v dx

−

∫

Ω
δ(b · ∇u)v dx+

∫

Ω
Dθb · ∇uv dx−

∫

Ω
(Dbθ · ∇u) v dx.

For the second term I2, we have

I2 = −

∫

Ω
σ∇(θ · ∇u) · ∇v dx = −

∫

Ω
σDθ>∇u · ∇v dx−

∫

Ω
σ∇2uθ · ∇v dx,

while for the third term I3, we get

I3 = −

∫

Ω
b · ∇(θ · ∇u)v dx = −

∫

Ω
b ·Dθ>∇uv dx−

∫

Ω
b · ∇2uθv dx

= −

∫

Ω
Dθb · ∇uv dx−

∫

Ω
b · ∇2uθv dx.

Adding the computed expressions for I1, I2, and I3, we obtain

a(u′, v) = −

∫

Ω
div (σ∇u)θ · ∇v dx−

∫

Ω

[

(Dbθ · ∇u) v + b · ∇2uθv
]

dx−

∫

Ω
δ(b · ∇u)v dx

= −

[∫

Ω
θ · (b · ∇u)∇v dx+

∫

Ω
θ · ∇(b · ∇u)v dx

]

−

∫

Ω
δ(b · ∇u)v dx

= −

∫

Ω
{θ · ∇ [(b · ∇u)v] + δ(b · ∇u)v} dx

= −

∫

Ω
div (θ(b · ∇u)v) dx, (δ = div (θ)),

where the second equation line follows from (3) and the identity

θ · ∇(b · ∇u)v = (Dbθ · ∇u) v + b · ∇2uθv,

which hold in Ω. Meanwhile, the last line is a consequence of the fact that for a scalar function
ϕ and vector 昀椀eld F, it holds that

∫

Ω
(ϕ div (F) + F · ∇ϕ) dx =

∫

Ω
div (ϕF) dx. (25)

Now, employing the divergence formula, noting that v ∈ VΓ(Ω) and θ = 0 on Σ, leads to

a(u′, v) = −

∫

Ω
div (θ(b · ∇u)v) dx = −

∫

Σ
(b · ∇u)vθ · n ds−

∫

Γ
(b · ∇u)vθ · n ds = 0.

Using Green’s 昀椀rst identity, we rewrite the bilinear form a(u′, v) as follows:

−

∫

Ω
div

(

σ∇u′
)

v dx+

∫

Ω
b · ∇u′v dx−

∫

Σ
σv∂nu

′ ds = 0.

We deduce from this equation that u′ satis昀椀es the equation − div (σ∇u′) + b · ∇u′ = 0 in Ω,
with the boundary condition σ∂nu

′ = 0 on Σ. Lastly, since u, u̇ ∈ VΓ(Ω), i.e., u = u̇ = 0 on Γ,
we obtain u′ = u̇−∇u · θ = −∂nuθn on Γ, completing the proof of the theorem.
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Remark 3.4. Using similar line of proof, it can be shown that when the state uD is su昀케ciently
smooth, it is shape di昀昀erentiable and its the shape derivative u′D satis昀椀es







− div (σ∇u′D) + b · ∇u′D = 0 in Ω,
u′D = −∂nuDθn on Γ,

σ∂nu
′
D = 0 on Σ.

(26)

Remark 3.5. The regularity assumptions Ω ∈ C1,1, f ∈ H3/2(Σ) (f 6≡ 0), and g ∈ H1/2(Σ)
only allow us to obtain an H2(Ω)∩VΓ(Ω) regularity for the states. However, this regularity of the
states is not su昀케cient to justify the existence of their shape derivatives satisfying (19) and (26).
We require higher regularity of the solutions. Therefore, we need θ ∈ Θ ∩ C2,1(Rd) bounded
domains, f ∈ H5/2(Σ) (f 6≡ 0), and g ∈ H3/2(Σ) which allows us to have H3(Ω) ∩ VΓ(Ω)
regularity for the states.

3.3 Shape derivatives of the shape functionals

We will now calculate the shape derivative of the proposed cost functions using two techniques.
The 昀椀rst is based only on the variational formulation of the equation veri昀椀ed by the material
derivative of the state variables, while the second technique uses the shape derivative of the
state. In both cases, we introduce an adjoint state appropriate to our problem.

Let us now characterize the shape gradient of the shape functions Ji, i ∈ {D,N}.
Proposition 1 (Shape gradient of J). Let Ω be an admissible domain and θ ∈ Θ. The map
t 7→ Ji(Ωt), i ∈ {D,N}, is C1 in a neighborhood of 0. Its shape derivative at 0 is given by
dJi(Ω)[θ] =

∫

Γ
Gin · θ ds, where the shape gradient Gi, i.e., the kernel of dJi, i ∈ {D,N}, are

respectively given by

GD = F (uN , pN ), (27)
GN = −F (uD, pD), (28)

where F (ϕ,ψ) = σ∂nϕ∂nψ, for ϕ,ψ ∈ H2(Ω)∩VΓ(Ω), and the adjoint variables pN , pD ∈ VΓ(Ω)
respectively satisfy the following adjoint problems:







div (σ∇pN ) + b · ∇pN + pN divb = 0 in Ω,
pN = 0 on Γ,

σ∂npN + pNb · n = uN − f on Σ;
(29)







div (σ∇pD) + b · ∇pD + pD divb = 0 in Ω,
pD = 0 on Γ,
pD = ∂nuD − g on Σ.

(30)

Before we prove the above proposition, let us shortly discuss the variational formulation of
the adjoint systems (29) and (30) in the following remark.
Remark 3.6. For ϕ,ψ ∈ VΓ(Ω), we let ap be a bilinear form on VΓ(Ω) × VΓ(Ω) de昀椀ned as
follows:

ap(ϕ,ψ) =

∫

Ω
σ∇ϕ · ∇ψ dx−

∫

Ω
(b · ∇ϕ)ψ dx−

∫

Ω
ϕ divbψ dx+

∫

Σ
ϕ(b · n)ψ ds

=

∫

Ω
σ∇ϕ · ∇ψ dx+

∫

Ω
(b · ∇ψ)ϕdx = a(ψ, ϕ),
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where the bilinear form a is given by (9). The equivalence is a consequence of the following
identity which holds for b ∈W 1,∞(D)d and ϕ,ψ ∈ H1(Ω):

∫

∂Ω
ϕψb · n ds =

∫

Ω
div (ϕψb) dx =

∫

Ω
[ϕψ divb+ b · ∇(ϕψ)] dx

=

∫

Ω
[ϕψ divb+ (b · ∇ϕ)ψ + (b · ∇ψ)ϕ] dx.

(31)

The variational formulation of (29) can be expressed as follows:

Find pN ∈ VΓ(Ω) such that ap(pN , ψ) =
∫

Σ
(uN − f)ψ ds, for all ψ ∈ VΓ(Ω). (32)

Meanwhile, the variational formulation of (30) can be stated as follows:

Find pD ∈ VΓ(Ω), pD = ∂nuD − g on Σ, such that ap(pD, ψ) = 0, for all ψ ∈ VΣ(Ω), (33)

where VΣ(Ω) := {ϕ ∈ H1(Ω) | ϕ = 0 on Σ}.

The conditions of Ω being C1,1 and f ∈ H3/2(Σ) are su昀케cient to ensure that problem
(29) has a unique weak solution within VΓ(Ω). Similarly, when these conditions are met,
∂nuD − g ∈ H1/2(Σ), thereby guaranteeing the existence of a weak solution for (30) in VΓ(Ω).
However, it is important to mention that their validity depends on speci昀椀c constraints imposed
on b and σ. In this case, the existence of unique weak solutions for (32) and (33) can be
inferred from the Lax-Milgram lemma. It could be shown that pN ∈ H2(Ω)∩VΓ(Ω) given that
Ω ∈ C1,1 and (f, g) ∈ H3/2(Σ)×H1/2(Σ). However, pD 6∈ H2(Ω)∩VΓ(Ω), unless Ω ∈ C2,1 and
(f, g) ∈ H5/2(Σ)×H3/2(Σ).

3.3.1 Proof of Proposition 1 via material derivative

Let Ω be an admissible domain and θ ∈ Θ. By these regularity assumptions, it can easily
veri昀椀ed that the map t 7→ Ji(Ωt), i ∈ {D,N}, is di昀昀erentiable around a neighborhood of 0.
In fact, this follows from the fact that [t 7→ δt] ∈ C1(I, C(Ω)) and [t 7→ uDt], [t 7→ uNt] ∈
C1(I,H1(Ω) ∩ VΓ(Ω)). So, Ji is shape di昀昀erentiable for i ∈ {D,N}. On the one hand, this
implies that we can apply Hadamard’s boundary di昀昀erentiation formula (cf. [DZ11, Thm. 4.3,
p. 486] or [HP18, SZ92]) to JD(Ωt) and JN (Ωt) and obtain

dJD(Ω)[θ] =

∫

Σ
(uN − f)u̇N ds and dJN (Ω)[θ] =

∫

Σ
(σ∂nuD − g)∂nu̇D ds,

respectively. Here, u̇N := u̇N (Ω)[θ] and u̇D := u̇D(Ω)[θ] denote the material derivatives of the
states.

To demonstrate the desired results, we will utilize the variational problem associated with
(29) and (30), as well as (3) and (2), employing an appropriate selection of test functions.
Initially, this approach will be applied to the Neumann case; subsequently, we will deduce the
solution for the Dirichlet problem. We mention that we will omit ·N in uN and pN and simply
refer to these variables as u and p, respectively, for easier notation.

To start, let us put ψ = p ∈ VΓ(Ω) into the variational formulation of ˙uN (17), giving us:
∫

Ω
σ∇u̇ · ∇p dx+

∫

Ω
(b · ∇u̇)p dx = a(u̇, p) = l(u; p),
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where l(u; p) is given by (18). Meanwhile, if we set ψ = u̇ ∈ VΓ(Ω) in (32), we get
∫

Ω
σ∇p · ∇u̇ dx+

∫

Ω
(b · ∇u̇)p dx = ap(p, u̇) =

∫

Σ
(uN − f)u̇ ds. (34)

We deduce that,
dJD(Ω)[θ] = J1 + J2,

where

J1 = −

∫

Ω
(σA+∇σ · θ)∇uN · ∇pN dx and J2 = −

∫

Ω

[

(C>
b+Dbθ) · ∇uN

]

pN dx.

To further simplify the sum of J1 and J2, it will be bene昀椀cial to establish certain formulas
utilizing the curl operator ∇× in R

d, as de昀椀ned in (20). We will start by presenting alternative
expressions for J1 and J2 in the following lemma. By combining these two newly derived
expressions, we can arrive at an expression for dJD(Ω)[θ] on the unknown boundary Γ.

Lemma 3.7. For b ∈W 1,∞(D)d, θ ∈ Θ, and (u, p) ∈ [VΓ(Ω) ∩H
2(Ω)]2, we have

•
∫

Ω
∇× (σ∇u× θ) · ∇p dx = 0 and

∫

Ω
∇× (σ∇p× θ) · ∇u dx = 0;

•
∫

Ω
∇(σ∇p)θ · ∇u dx+

∫

Ω
σ∇2uθ · ∇p dx+

∫

Ω
δ(σ∇p · ∇u) dx =

∫

Γ
σ∂np∂nuθn ds;

• J1 = −

∫

Ω
div (σ∇u)θ · ∇p dx−

∫

Ω
div (σ∇p)θ · ∇u dx+

∫

Γ
σ∂np∂nuθn ds.

• J2 = −

∫

Ω
∇× (b× θ) · ∇up dx−

∫

Ω
divb(θ · ∇u)p dx.

Proof. The 昀椀rst and second formulas are consequence of Lemma 3.3 (cf. (24) and see Ap-
pendix B). We will use these formulas to simplify J1. Knowing that A = δI−Dθ− (Dθ)>, we
昀椀rst expand J1 as follows:

J1 = −

∫

Ω
δ(σ∇u · ∇p) dx+

∫

Ω
Dθ(σ∇u · ∇p) dx+

∫

Ω
Dθ>(σ∇u · ∇p) dx

−

∫

Ω
(∇σ · θ)(∇u · ∇p) dx.

Now, using (20) with ϕ = σ∇u and ψ = V for the 昀椀rst identity and ϕ = σ∇p and ψ = V for
the second one, we obtain

{

∇× (σ∇u× θ) = δσ∇u− div (σ∇u)θ +∇(σ∇u)θ −Dθ(σ∇u),

∇× (σ∇p× θ) = δσ∇p− div (σ∇p)θ +∇(σ∇p)θ −Dθ(σ∇p).

Therefore, by taking the scalar product with ∇p in the 昀椀rst equation and with ∇u in the
second one, we get
{

∇× (σ∇u× θ) · ∇p = δσ∇u · ∇p− div (σ∇u)θ · ∇p+∇(σ∇u)θ · ∇p−Dθ(σ∇u) · ∇p,

∇× (σ∇p× θ) · ∇u = δσ∇p · ∇u− div (σ∇p)θ · ∇u+∇(σ∇p)θ · ∇u−Dθ(σ∇p) · ∇u.
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By integrating over Ω and applying the 昀椀rst formula in Lemma 3.7 and (24) for v = p, we
obtain

0 =

∫

Ω
δσ∇u · ∇p dx−

∫

Ω
div (σ∇u)θ · ∇p dx+

∫

Ω
σ∇2uθ · ∇p dx

−

∫

Ω
Dθ(σ∇u) · ∇p dx+

∫

Ω
(∇σ · θ)(∇u · ∇p) dx,

(35)

while the second equation becomes

0 =

∫

Ω
δσ∇p · ∇u dx−

∫

Ω
div (σ∇p)θ · ∇u dx+

∫

Ω
∇(σ∇p)θ · ∇u dx

−

∫

Ω
Dθ>(σ∇u · ∇p) dx.

(36)

By summing (35) and (36), and then using the second formula of the lemma, we obtain a new
expression for J1:

J1 = −

∫

Ω
div (σ∇u)θ · ∇p dx−

∫

Ω
div (σ∇p)θ · ∇u dx+

∫

Γ
σ∂np∂nuθn ds.

Finally, let us obtain an equivalent expression for the integral J2. Knowing that C =
δI− (Dθ)>, we have

J2 = −

∫

Ω

(

C>
b · ∇u+Dbθ · ∇u

)

p dx

= −

∫

Ω
δ(b · ∇u)p dx+

∫

Ω
Dθ(b · ∇u)p dx−

∫

Ω
Db(θ · ∇u)p dx.

Now, utilizing (24) with ϕ = b and ψ = θ, we obtain

∇× (b× θ) = δb− divbθ +Dbθ −Dθb,

from which it easily follows that

∇× (b× θ) · ∇up = δ(b · ∇u)p− divb(θ · ∇u)p+Db(θ · ∇u)p−Dθ(b · ∇u)p.

By integrating over Ω, we deduce the desired expression. This completes the proof of the
lemma.

Now, to 昀椀nish the proof of Proposition 1, we simply need to utilize the identities established
in the previous lemma. Indeed, by Lemma 3.7 together with the fact that div (σ∇u) = b · ∇u
in Ω, dJD(Ω)[θ] equates to

J1 + J2 = −

∫

Ω
div (σ∇u)θ · ∇p dx−

∫

Ω
div (σ∇p)θ · ∇u dx+

∫

Γ
σ∂np∂nuθn ds

−

∫

Ω
∇× (b× θ) · ∇up dx−

∫

Ω
divb(θ · ∇u)p dx.

At this point, we reconsider the variational formulation of the adjoint system (29) with ψ =
θ · ∇u, to get

−

∫

Ω
div (σ∇p)θ · ∇u dx−

∫

Ω
divb(θ · ∇u)p dx =

∫

Ω
(b · ∇p)(θ · ∇u) dx.
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Then, evidently, after a rearrangement of the integrals

J1 + J2 =

∫

Ω
[(b · ∇p)(θ · ∇u)− (b · ∇u)(θ · ∇p)−∇× (b× θ) · ∇up] dx+

∫

Γ
σ∂np∂nuθn ds.

However, it can be demonstrated that the 昀椀rst integral actually vanishes, i.e.,
∫

Ω
[(b · ∇p)(θ · ∇u)− (b · ∇u)(θ · ∇p)−∇× (b× θ) · ∇up] dx = 0, (37)

(see Appendix B), leading us to the desired result dJD(Ω)[θ] = J1+J2 =
∫

Γ σ∂nuN∂npNθn ds.

3.3.2 Proof of Proposition 1 via shape derivative of state

Let Ω ∈ C2,1 be an admissible domain and θ ∈ Θ∩C2,1(D)d. Clearly, Ji is shape di昀昀erentiable
for all i ∈ {D,N}. By Hadamard’s boundary di昀昀erentiation formula, one obtains

dJD(Ω)[θ] =

∫

Σ
(uN − f)u′N ds,

where u′N = u̇N (Ω)[θ] − θ · ∇uN satisfy equation (19). Multiplying (19) by p = pN and then
integrating over Ω, we get

−

∫

Ω
div

(

σ∇u′
)

p dx+

∫

Ω
b · ∇u′p dx = 0

Applying Green’s formula while noting that ∂nu′ = 0 on Σ and p = 0 on Γ, we obtain

−

∫

Ω
σ∇u′ · ∇p dx =

∫

Ω
(b · ∇u′)p dx. (38)

Let us now multiply (29) by u′ = u′N and then integrate over Ω to obtain
∫

Ω
div (σ∇p)u′ dx+

∫

Ω

[

(b · ∇p)u′ + p divbu′
]

dx = 0.

Employing Green’s formula and then utilizing identity (38) after, we get the following equation
after some rearrangements

∫

Ω

[

pu′ divb+ (b · ∇p)u′ + (b · ∇u′)p
]

dx+

∫

∂Ω
σ∂npu

′ ds = 0. (39)

Hence, with p = pN = 0 on Γ, we obtain from (39) and (31) (putting ϕ = u′ and ψ = p) the
equation

∫

Σ
(pb · n+ σ∂np)u

′ ds = −

∫

Γ
σ∂npu

′ ds.

However, we know that pb · n + σ∂np = u − f on Σ form (29) and u′ = −∂nuθn on Γ from
(19). Thus, we deduce that

dJD(Ω)[θ] =

∫

Σ
(u− f)u′ ds =

∫

Γ
σ∂np∂nuθn ds,

as desired.
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4 Numerical Experiments

To implement the proposed shape methods numerically, we will utilize a conventional shape-
gradient-based descent technique combined with a 昀椀nite element method (FEM) based on our
previous work [CAR25]. Before moving forward, we emphasize that identifying ω is the same
as identifying Ω since Ω = D \ ω. Therefore, de昀椀ning ω also means de昀椀ning Ω, and vice versa.

4.1 Conventional numerical algorithm

To compute the kth approximation Ωk, we carry out the following procedures:

1. Initilization Fix a number µ > 0 and choose an initial shape Ω0.
2. Iteration For k = 0, 1, 2, . . ., do the following:

2.1 Solve the state and adjoint state systems on the current domain Ωk.
2.2 Compute the vector θk in Ωk according to the following problem: Find a vector

θ ∈ VΣ(Ω)
d which solves the variational equation
∫

Ω
(∇θ : ∇ϕ+ θ ·ϕ) dx = −

∫

Γ
Gn ·ϕ ds, ∀ϕ ∈ VΣ(Ω)

d,

where G denotes the kernel of the shape gradient.
2.3 Compute the step size using the formula tk = µJ(Ωk)/|θk|2

H1(Ωk)d
.

2.4 Update the current domain by setting Ωk+1 = (id+tkθk)Ωk.

3. Stop Test Repeat the Iteration until convergence.

The algorithm above generates a sequence of approximations to the exact inclusion ω∗, start-
ing from an initial guess and employing domain variation techniques in shape optimization
[DMNV07]. In Step 2.2, a Riesz representation of the shape gradient G is computed as part
of an extension-regularization strategy aimed at suppressing rapid oscillations along the free
boundary. This stabilizes the approximation process and prevents premature termination. As
a result, we obtain a Sobolev gradient representation θ ∈ VΣ(Ω) of the deformation vector in the
normal direction −Gn, yielding a smoothed and preconditioned extension of −Gn throughout
the entire domain Ω. This, in turn, allows for the deformation of the discretized computational
domain by adjusting the positions of movable mesh nodes–modifying not only the boundary
interface but also the interior nodes of the domain. Further details on discrete gradient 昀氀ows
for shape optimization problems can be found in [DMNV07].

We emphasize that the domains are discretized using Delaunay triangulation. In our ap-
proach, the mesh nodal points serve as the design variables to approximate the exact inclusion
solution. Alternatively, a parametrization method coupled with an adaptive technique can also
be applied. Interested readers are referred to [CDKT13] for an application of this approach to
related work, speci昀椀cally in the context of obstacle detection in 昀氀uid 昀氀ow.

In Step 2.3, µ > 0 serves as a scaling factor, adjusted downwards to prevent the formation
of inverted triangles in the mesh after the update. The determination of this step size follows
an Armijo-Goldstein-like criterion for the shape optimization approach, as detailed in [RA20,
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p. 281] where the step size is further reduced to avoid reversed triangles after the mesh update.
Essentially, the step size is dependent on the mesh size of the triangulation. Additionally,
convergence is reached when a 昀椀nite number of iterations is completed.

In the subsequent numerical experiments, we will 昀椀rst analyze the case where σ =
constant > 0, followed by the case σ(x) = σ0(x)I for x ∈ D (see subsections 4.2, 4.4, and
4.5). Here, σ0 is a scalar function and I is the identity matrix. Afterwards, we will examine a
case where σ is a more general matrix; see subsection 4.6.

4.2 Numerical examples in 2D

For the 昀椀rst set of numerical examples in two spatial dimensions, we make the following broad
assumptions: the domain D is the unit circle centered at the origin, σ(x) = 1.1 and b(x) =
(1.0 + 0.5 sin (arctan(x2/x1)), 1.0 + 0.5 cos (arctan(x2/x1)))

>, where x = (x1, x2) ∈ D ⊂ R
2.

Additionally, the data is synthetically constructed. Speci昀椀cally, we consider the Neumann
boundary condition g(x) = ex1 . We then compute the trace of the state solution u of (3)
to extract the measurement f = u on the accessible boundary ∂Ω. To avoid inverse crimes
(see [KC98, p. 154]) in generating the measurements, we construct the synthetic data using a
di昀昀erent numerical scheme. This involves employing a larger number of discretization points
and applying P2 昀椀nite element basis functions in the FreeFem++ code [Hec12], compared
to the inversion process. In the inversion procedure, all variational problems are solved using
P1 昀椀nite elements, and we discretize the domain with a uniform mesh size of h = 0.03.

We shall test our proposed identi昀椀cation procedure by considering the following exact
geometries for the unknown boundary Γ∗:

Case 1: Γ∗ = Γ∗
1 :=

















−0.25 +
0.6 + 0.54 cos t+ 0.06 sin 2t

1 + 0.75 cos t
cos t

0.05 +
0.6 + 0.54 cos t+ 0.06 sin 2t

1 + 0.75 cos t
sin t






, ∀t ∈ [0, 2π)











;

Case 2: Γ∗ = Γ∗
2, where Γ∗

2 is the boundary of the domain ω∗ = (−0.55, 0.55)2 \ [0, 0.55]2.

For the forward problem, the exterior boundary is discretized using N∗
ext = 500 points in both

cases. In Case 1, the exact interior boundary is discretized with N∗
int = 700 points, while

in Case 2, we use N∗
int = 900 points. For the inversion procedure, the exterior and interior

boundaries are discretized with Next = 120 and Nint = 100 points, respectively, in all cases.
The numerical algorithm terminates after N iterations. In the numerical experiments, N

is chosen to be large enough that the cost value has already saturated. For the 2D cases, we
set N = 200 iterations for Case 1 and N = 600 iterations for Case 23, and we set µ = 0.5. For
all the 3D numerical experiments considered below, we use N = 600.

We will also test our algorithm with noisy data, where the noise level δ is expressed as a
percentage. Speci昀椀cally, the manufactured solution u∗D (i.e., the exact solution of the forward
problem for a given input f) is corrupted by adding Gaussian noise (denoted as g.n.) with mean
zero and standard deviation 0.5. The noisy solution is then given by uδD = (1+δ×g.n.)u∗D, and
we de昀椀ne g|Σ := ∂nu

δ
D. At this juncture, it is important to note that least-squares formulations

3The algorithm could run for extended periods, and the stopping criterion could be enhanced. However, this
straightforward termination condition already yields satisfactory results based on our experience.
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of the boundary identi昀椀cation problem are ill-posed. In simpler terms, this means that even
small changes in the measurements can lead to signi昀椀cant di昀昀erences in the identi昀椀ed unknown
boundaries. Moreover, the presence of noise can destabilize the reconstruction, as it introduces
irregularities along the boundary after some iterations in the procedure. To ensure the smooth
evolution of the free boundary during each iteration, regularization techniques are typically
incorporated alongside the extension-regularization method applied to the deformation 昀椀eld. A
common approach involves penalizing the perimeter (or surface area in three dimensions) of the
free boundary through a term like η

∫

Γ 1 ds, where η > 0 is a small regularization parameter. In
all cases where this perimeter penalization is used, we set η = 0.001, unless otherwise speci昀椀ed.

In our numerical tests, we will also examine the e昀昀ect of perimeter regularization, as well
as the e昀昀ect of adaptive mesh re昀椀nement. The mesh re昀椀nement is performed using the built-in
adaptmesh function in FreeFEM++. Although mesh re昀椀nement is not a regularization method
in the classical sense—since it does not improve the well-posedness of the inverse problem—
it plays a crucial practical role in maintaining mesh quality during the shape optimization
process. In this context, it may be viewed as a form of mesh regularization, since repeated
deformations can lead to element distortion, especially in the presence of high levels of noise,
such as overly thin or elongated triangles, which may compromise numerical stability. This
interpretation aligns with the idea that Delaunay triangulation itself can be seen as a form of
regularization by projection onto a 昀椀nite-dimensional space.

We focus on the reconstruction using the Dirichlet-data tracking approach given by Equa-
tion (6) since the Neumann-data tracking approach (7) is less stable from our experience; see
[CAR25].

The numerical results for the test scenarios are shown in Figure 1 and Figure 2. These
昀椀gures present the identi昀椀ed inclusion with and without noise (δ = 0%, 10%, 15%). The thick
black line outlines the object’s surface, while the red line indicates the exact inclusion geome-
try. Black dotted lines represent initial guesses, and other lines show identi昀椀cation results at
di昀昀erent noise levels.

Our shape optimization method achieves reasonable reconstructions, especially in noise-
free cases. However, it accurately locates the inclusion but cannot capture its exact shape,
particularly in concave regions, as expected. This limitation, consistent with prior 昀椀ndings,
persists even in less regular cases, such as those violating C1,1 regularity assumptions [AR25,
CAR25]. The cost histories in the 昀椀gures con昀椀rm higher computed costs with measurement
noise.

To evaluate the impact of employing perimeter regularization and adaptive mesh re昀椀ne-
ment, we conduct further tests focusing on reconstructing Γ∗

2. The summarized results, pre-
sented in Figure 3, compare scenarios with and without regularization—that is, with perimeter
penalization applied using η = 0.001. The graph also includes reconstructions with perimeter
regularization and adaptive mesh re昀椀nement at each iteration. Although some improvements
are observed with perimeter regularization (which also helps prevent overlapping of nodes after
deformation; see Figure 3), these improvements are not substantial, even when combined with
adaptive remeshing. We believe this is due to the ill-posedness of the problem, which is made
worse by the high noise level in the measurements and possibly by the non-smoothness of the
exact inclusion, characterized by a re-entrant corner. We note that, because of this re-entrant
corner, adaptive mesh re昀椀nement is a useful tool to improve the accuracy of the solutions,
especially since the mesh deformation vector clearly depends on the mesh quality. Addition-
ally, while there are di昀昀erences in the reconstructed shapes, the variations in cost histories
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Figure 1: Reconstruction of Γ∗

1 in the absence and presence of noise (δ = 0%, 10%, 30%). The
plot on the right shows the cost value histories for each case.
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Figure 2: Reconstruction of Γ∗
2 in the absence and presence of noise (δ = 0%, 10%, 30%). The

plot on the right shows the cost value histories for each case.
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are minimal. Despite the di昀케culty the method has in detecting sharp inclusion corners, the
reconstructed shapes are fairly accurate representations of the actual inclusion geometry, even
in the presence of signi昀椀cant noise.
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Figure 3: Reconstruction of Γ∗
2 with noisy data (δ = 30%) with perimeter regularization and

with adaptive mesh re昀椀nement. The plot on the right shows the cost value histories for each
case.

Finally, for the last set of numerical examples for 2D case, we set σ = 2 +
0.5 sin(0.5πx) cos(0.5πy), g(t) = esin t, t ∈ [0, 2π), and β = λ = 0.0001. The results are
shown in Figures 4 and 5 using the conventional shape optimization method of tracking the
Dirichlet-data in L2 sense with perimeter regularization imposed for reconstruction with noisy
data. Notice from the plots that in the absence of noise, we obtain fair reconstructions of the
obstacles, indicating the unknown shapes have concavities. As expected, however, the recon-
struction is much less accurate at the presence of noise, and it is di昀케cult to indentify correctly
the concave parts of the obstacles.
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Figure 4: Reconstruction of Γ∗
1 with δ = 0%, 10%, 30% using (6) with perimeter regularization

but without adaptive mesh re昀椀nement. The right plot shows the histories of cost values for
each noise levels.

4.3 Alternating direction method of multipliers

To improve detection in the case of measurements with a high level of noise, we propose an
application of the Alternating Direction Method of Multipliers (ADMM) in the context of
shape optimization, originally introduced in [RHA+24] for the cavity identi昀椀cation problem
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Figure 5: Reconstruction of Γ∗
2 with δ = 0%, 10%, 30% using (6) with perimeter regularization

but without adaptive mesh re昀椀nement. The right plot shows the histories of cost values for
each noise levels.

governed by a simple Laplace equation. The proposed method is based on the introduction of
an auxiliary variable into the cost functions provided in (6) and (7). Since the new minimization
formulation we will develop essentially involves the same modi昀椀cations as applied to (6) and
(7), we shall focus solely on tracking the Dirichlet data. We will then proceed to solve the
resulting minimization problem via an alternating direction method of multipliers or ADMM
developed in [RHA+24]. Hence, the following discussion will be based on [RHA+24].

Hereinafter, we will denote J := JD, and as before, Ω ∈ C2,1 is an admissible domain and
for later use, we assume that θ ∈ Θ∩C2,1(D)d and g ∈ H3/2(Σ); see Remark 3.5. Now, to start,
we reformulate our original shape inverse problem (5) into the following shape optimization
problem with inequality constraints.

Problem 4.1. Let a and b, b > a, be given 昀椀xed constants. Find the shape ω∗ in the space of
admissible set

Oad = {ω ∈ A | a 6 uN 6 b a.e. in Ω where uN solves problem (3)}

such that
ω∗ = argmin

ω∈Oad

J(Ω) := argmin
ω∈Oad

{

1

2

∫

Σ
|uN − f |2 ds

}

. (40)

A comment on the choise of a and b is necessary. To choose suitable values for a and b,
omne can apply the maximum principle in Sobolev spaces [GT01, Thm. 8.1, p. 179] in the case
where the data f is prescribed, one can set b = supΣ f . On the other hand, because u = 0 on
Γ, then a straightforward choice is to take a = 0. These choices of a and b will be used later
in our numerical experiements.

We highlight that identifying ω is equivalent to identifying Ω, given that Ω = D \ω. Thus,
whenever we de昀椀ne ω, we are simultaneously de昀椀ning Ω, and vice versa. To directly incorporate
the inequality constraint in the cost function, we will introduce the auxiliary variable v which
satis昀椀es v = uN a.e. in Ω and consider the set E de昀椀ned as follows

E =
{

(ω, v) ∈ Oad × L2(Ω) | uN = v a.e. in Ω
}

.

Then, we can rewrite (40) as follows

(ω∗, v∗) = argmin
(ω,v)∈E

{J(Ω) + UK(v)} , (41)
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where the set K is the closed convex non-empty set of L2(Ω) de昀椀ned by

K =
{

v ∈ L2(Ω) | a 6 v 6 b a.e. in Ω
}

,

while UK is the indicator functional of the set K; that is, UK(v) = 0 if v ∈ K, otherwise,
UK(v) = ∞ if v ∈ L2(Ω) \ K.

To apply ADMM to the control model (41), we need to de昀椀ne the augmented Lagrangian
functional 昀椀rst. This is possible since the minimum of problem (41) is the saddle point of the
following augmented Lagrangian functional

Lβ(ω, v;λ) = J(Ω) + UK(v) +
β

2

∫

Ω
|uN − v|2 dx+

∫

Ω
λ(uN − v) dx, (42)

where λ is the Lagrange multiplier and β > 0 is a penalty parameter. In this work, as in
[RHA+24], we consider a 昀椀xed value for the penalty parameter β. While it is possible to
develop an optimization scheme for β within our main algorithm using bilevel optimization
[Dem20], we have opted to keep β 昀椀xed to simplify our discussion. This choice consistently
yields good results, as we will demonstrate further below.

Now, to 昀椀nd a saddle point of the Lagrangian functional Lβ , we will implement an approxi-
mation procedure based on ADMM. Speci昀椀cally, starting with initial values v0, λ0 ∈ L2(Ω), we
will iteratively compute the optimizer of L for k = 1, 2, . . . by solving the following sequence
of minimization problems:

ωk+1 = argmin
ω∈Oad

Lβ(ω, v
k;λk); (SP1)

vk+1 = argmin
v∈L2(Ω)

Lβ(ω
k+1, v;λk); (SP2)

λk+1 = λk + β(uk+1
N − vk+1), (SP3)

where uk+1
N := uN (Ωk+1).

Now, utilizing Lβ given in (42), we can outline the ADMM scheme in Algorithm 1.

Algorithm 1 ADMM algorithm for the solution of problem (40).

1. Input Fix β, a, and b, and de昀椀ne the Cauchy pair (f, g).

2. Initialization Choose an initial shape ω0. Also, set the initial values v0 and λ0.

3. Iteration For k = 1, 2, . . ., compute vk, λk using equations (SP1)–(SP3) through sequen-
tial computations:

{vk, λk}
(SP1)
−→ ωk+1 (SP2)

−→ vk+1 (SP3)
−→ λk+1.

4. Stop Test Repeat Iteration until convergence.

In the following two subsections, we will outline the resolution of (SP1) and (SP2).
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4.3.1 Solution of ω-subproblem (SP1)

We 昀椀rst look for the solution of the 昀椀rst ω-subproblem (SP1) in which we need to minimize
Lβ with respect to ω. The ω-subproblem (SP1) is given as follows

ωk+1 = argmin
ω∈Oad

{

J(Ω) + UK(v
k) +

β

2

∫

Ω
|uN − vk|2 dx+

∫

Ω
λk(uN − vk) dx

}

.

Let us consider the following shape functional

Y k(Ω) := Lβ(ω, v
k;λk) = J(Ω) +

β

2

∫

Ω
|uN − vk|2 dx+

∫

Ω
λk(uN − vk) dx,

where J(Ω) = 1

2

∫

Ω
|uN − f |2 dx and uN solves problem (3) over Ω = D \ ω.

Obviously, resolving the ω-subproblem (SP1) necessitates the shape derivative of Y k. Fol-
lowing the computations outlined in subsection 3.3.2, the shape derivative of Y k at Ω, in the
direction of the vector 昀椀eld θ ∈ Θ ∩ C2,1(D)d, can be formally computed as follows:

dY k(Ω)[θ] =

∫

Σ

(

uN − f
)

u′N ds+ β

∫

Ω

(

uN − vk
)

u′N dx+
β

2

∫

Ω
div

(

(

uN − vk
)2
θ
)

dx

+

∫

Ω
λku′N dx+

∫

Ω
div

(

λk
(

uN − vk
)

θ
)

dx

=

∫

Σ

(

uN − f
)

u′N ds+ β

∫

Ω

(

uN − vk
)

u′N dx+
β

2

∫

Γ

(

vk
)2
θn ds

+

∫

Ω
λku′N dx−

∫

Γ
λkvkθn ds,

(43)

where u′N solves (19). In (43), we have used the fact that uN = 0 on Γ and θ = 0 on Σ.
We point out that Equation (43) is di昀케cult to handle since we cannot 昀椀nd explicitly the

direction θ. In fact, the computed expression with the shape derivative uN
′ is not useful

for practical applications, especially in the numerical realization of the proposed shape opti-
mization problem via an iterative procedure. This is because the implementation requires the
solution of (19) for each velocity 昀椀eld θ, at every iteration. To get around this di昀케culty, we
apply the adjoint method as in subsection 3.3.2. For this purpose, we will introduce another
variable w – in order to eliminate from the gradient expression the shape derivative u′N – which
solves the following adjoint problem







div (σ∇w) + b · ∇w + w divb = β
(

uN − vk
)

+ λk in Ω,
w = 0 on Γ,

σ∂nw + wb · n = −(uN − f) on Σ.
(44)

This leads us to the following expression for the shape derivative of Y k:

dY k(Ω)[θ] =

∫

Γ
Hk

n · θ ds =

∫

Γ

(

−σ∂nw∂nuN +
β

2

(

vk
)2

− λkvk
)

n · θ ds, (45)

In practice, the computed shape derivative −Hn is not directly used in numerical procedures
as a descent direction because it can cause boundary oscillations during the approximation
process, leading to algorithmic instabilities. To mitigate this problem, we use the Sobolev-
gradient method [Neu97] (refer to the algorithm in subsection 4.1), which we will discuss next.

23



4.3.2 Extension and regularization of the deformation 昀椀eld

The shape gradient of Y , similar to J , is only supported on Γ and may lack the neces-
sary smoothness for numerical implementation, especially when using 昀椀nite element methods
(FEMs). To improve the regularity of the descent direction H (omitting k for simplicity) and
extend its de昀椀nition across the entire domain Ω, we will utilize its H1 Riesz representative of
H as done in subsection 4.1. We can then formulate a Sobolev gradient-based descent (SGBD)
algorithm laid out in Algorithm 2 to solve (SP1).

Algorithm 2 SGBD algorithm for ω-subproblem (SP1)

1. Input Fix β, a, b, and ε and set λk, µ, Ωk
m = Ωk, ukm = uk, vkm = vk. Also, set m = 0.

2. Iteration For m = 1, 2, . . .,

2.1 solve (3) and (44) over the current domain Ω = Ωk
m;

2.2 set θkm = θ where θ ∈ VΣ(Ω)
d, Ω = Ωk

m, solves the variational equation
∫

Ω
(∇θ : ∇ϕ+ θ ·ϕ) dx = −

∫

Γ
Hn ·ϕ ds, ∀ϕ ∈ H1

Σ,0(Ω)
d.

2.3 for some scalar tk = µJk(Ωk
m)/‖θk‖H1(Ωk

m)d , set Ωk
m+1 :=

{

x+ tkθkm(x) | x ∈ Ωk
m

}

.

3. Stop test Repeat Iteration until convergence; i.e., while ‖dY k(Ωk
m)[θkm]‖ > ε do Iteration

4. Output Ωk+1 = Ωk
m+1.

In Step 2.3 of Algorithm 2, we initialize the step size tk using the formula t0 =
µJ(Ω0)/‖θ0‖H1(Ω0)d , where µ = 0.5. We maintain this step size in later iterations but ad-
just it to prevent inverted triangles (or tetrahedrons) within the mesh after each update.
Alternatively, we could employ a backtracking procedure, starting with the initial step size
tk = µJ(Ωk)/‖θk‖H1(Ωk)d (where µ > 0 is su昀케ciently small), based on a line search method for
shape optimization as in [RA20, p. 281]. However, the previously mentioned step size choice
is more e昀昀ective for reconstructing the unknown obstacle.

4.3.3 Solution of the v-subproblem (SP2)

Now we turn our attention to the resolution of v-subproblem (SP2) by minimizing Lβ with
respect to v. That is, we solve the v-subproblem (SP2) given by

vk+1 = argmin
v∈L2(Ω)

{

J(Ωk+1) + UK(v) +
β

2

∫

Ω
|uk+1

N − v|2 dx+

∫

Ω
λk(uk+1

N − v) dx
}

.

Applying the projection method, we obtain

vk+1 = PK

(

uk+1
N + λk/β

)

,

where PK(ϕ) := max(a,min(b, ϕ)), for all ϕ ∈ L2(Ω) is the projection operator onto the
admissible set K.
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4.3.4 ADMM-SGBD algorithm

Finally, based on the discussions above, we can now propose a modi昀椀cation of Algorithm 1 for
the numerical solution of the constrained shape optimal control problem (40) with an inequality
constraint subject to (3). More precisely, Algorithm 1 can be speci昀椀ed as a nested iterative
ADMM-SGBD scheme for the optimal control problem (41) following the instructions given in
Algorithm 3.

Algorithm 3 ADMM-SGBD

1. Initialization Specify (f, g), and choose ω0, λ0, β, a, b, v0, µ, and ε.
2. Iteration For k = 0, . . . , N ,

2.1 compute ukN solution of the state (3) associated to ωk;
2.2 compute wk solution of the adjoint state (44);
2.3 update ωk+1 by the gradient-descent method in Algorithm 2;
2.4 update vk+1 as vk+1 = max

(

a,min
(

uk+1
N + λk/β, b

))

;

2.5 set λk+1 = λk + β(uk+1
N − vk+1).

3. Stop test Repeat Iteration until convergence.

Remark 4.2. The techniques and algorithms described earlier can be readily adapted for
scenarios involving noisy data. When considering the addition of a regularization term, whether
the data is a昀昀ected by noise or not (such as through perimeter or volume regularization), these
terms are integrated into the Lagrangian functional. This modi昀椀cation entails including the
corresponding shape derivatives in (43).

4.4 Numerical experiments in 2D via ADMM with space-dependent di昀昀u-
sion coe昀케cient

We now demonstrate the e昀昀ectiveness of the proposed ADMM scheme and its advantage over
the conventional algorithm discussed in subsection 4.1. To do so, we 昀椀rst replicate the numeri-
cal experiments detailed in subsection 4.2 using noisy data with a noise level of δ = 30% where
σ ≡ 1.1, then after that we consider the same test case in the latter part of subsection 4.2
where the di昀昀usion coe昀케cient σ is non-constant. The results of the reconstruction using Algo-
rithm 3 without any additional regularization term in the Lagrangian functional are depicted
in Figures 6, showcasing two di昀昀erent initial obstacle guesses. The reconstructions notably
outperform those shown in Figures 2 and 3, exhibiting increased accuracy and reduced oscil-
lations compared to the conventional approach. Additionally, Figures 6 present the histories
of the cost functions and gradient norms for further insight.

For the non-constant case of σ, the results are illustrated in Figure 7. When compared with
Figures 4 and 5, which depict results from the conventional shape optimization method, the
improvement in this case appears to be minimal. We suspect that the choice of cost function
is one of the main reasons behind this issue. A more suitable Lagrangian functional, denoted
by Lβ, should be constructed to explicitly incorporate the di昀昀usion coe昀케cient into the cost
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Figure 6: Reconstruction of Γ∗
2 with noisy data (δ = 30%) and Γ0 = B(0, 0.9) using ADMM

without regularization and without adaptive mesh re昀椀nement.

function. To address this problem, it would be interesting to explore how a Kohn–Vogelius-
type cost functional [KV84] performs in this context. Incorporating the di昀昀usion coe昀케cient
into the Lagrangian corresponding to the ADMM formulation could potentially improve the
reconstruction.
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Figure 7: Reconstruction of Γ∗
1 (left, also note the di昀昀erence in initial guesses) and Γ∗

2 (right)
via ADMM both with perimeter regularization and without adaptive mesh re昀椀nement.

4.5 Numerical experiments in 3D via ADMM with space-dependent di昀昀u-
sion coe昀케cient

Let us now examine test cases in three spatial dimensions to further evaluate our algorithm.
The domain D is the unit sphere centered at the origin, σ(x) = 1.1 and b(x) = (1.0 +
0.5 sin (arctan(x2/x1)), 1.0 + 0.5 cos (arctan(x2/x1)), 1.5)

>, x = (x1, x2, x3) ∈ D ⊂ R
3. Again,

the data is synthetically constructed and we set g(x) = exp(x21 + x22), x = (x1, x2, x3) ∈ ∂D.
On the other hand, the computational setup remains largely the same as in the 2D case, with
only a few adjustments. Speci昀椀cally, we set N = 600, λ0 = 0.001, a = 0.5minu(Ω \ ω∗),
b = 1.5maxu(Ω \ ω∗), v0 = 1, ε = 10−6, and ω0 = B(0, 0.8).

For the exact obstacle, we analyze two shapes: a dumbbell shape and a star shape, setting
β = 0.1 in the ADMM scheme. In the forward problem, the exact domain is discretized with
minimum and maximum mesh sizes h∗min = 0.05 and h∗max = 0.1 (see, e.g., the 昀椀rst row of plots
in Figure 8), using tetrahedrons with a maximum volume of 0.001. For the inversion process,
the domain (Ω \ ω)0 is discretized with a coarse mesh, having hmin = 0.15 and hmax = 0.2,
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using tetrahedrons with a volume of 0.005. When dealing with noisy data, we combine the
ADMM and the conventional shape optimization (SO) schemes with surface penalization (cf.
[RHA+24]), using η = 0.003, to reduce excessive irregularities on the surfaces of the obstacles;
see [RA18].

The 昀椀gures, from Figure 8 to Figure 11, show the numerical results including both exact
measurements and data a昀昀ected by noise. The key observations align with those from the
2D experiments. Notably, the ADMM results are more accurate than those from SO, as
ADMM e昀昀ectively reconstructs the exact obstacle even with high noise levels in the data.
Additionally, it is observed that smaller obstacles are harder to reconstruct accurately, as
shown in Figure 10 and Figure 11. Nevertheless, ADMM detects the concavities of obstacles
more e昀昀ectively than SO, demonstrating a signi昀椀cant advantage. To provide more insights on
these methods, Figure 12 displays the plots showing the histories of cost values and gradient
norms for the test cases considered. From the plots, it is evident that the cost values for SO are
consistently lower compared to those for ADMM. This is primarily due to the additional term
in the objective functional of the ADMM formulation. Furthermore, the increase in cost values
for ADMM can be attributed to the last integral term appearing in the objective functional,
which is not always positive. We also considered cases where σ is non-constant. However, as
in the 2D case, the improvement is minimal.

Figure 8: Exact geometry of a dumb-bell shape obstacle (top/昀椀rst row) and reconstructed
shapes obtained via SO (middle/second row) and ADMM (bottom/third row) with exact data.
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Figure 9: Reconstructed shapes obtained via SO (top row) and ADMM (bottom row) with
noisy data at a 30% noise level.

Figure 10: Exact geometry of a star-shape obstacle (top/昀椀rst row) and reconstructed shapes
obtained via SO (middle/second row) and ADMM (bottom/third row) with exact data.
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Figure 11: Reconstructed shapes obtained via SO (top row) and ADMM (bottom row) with
noisy data at a 30% noise level.

O

O

O

O

O

O

O

O

Figure 12: Histories of cost values and gradient norms.
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4.6 Numerical experiments in 3D via ADMM with space-dependent di昀昀u-
sion matrix

Finally, we explore a broader scenario where instead of a di昀昀usion coe昀케cient, a di昀昀usion matrix
dependent on space is utilized. We comment here that the expression for the shape derivative
remains unchanged; however, assumptions in (A) need to be modi昀椀ed accordingly for technical
reasons and the speci昀椀c details of the calculation di昀昀er. For instance, it should be noted that
σ∂nu should be computed as (σ∇u) · n. These di昀昀erences are omitted here, as the underlying
argument closely follows that of Section 3.

The computational setup to solve the present case mirrors the previous subsection, ex-
cept for σ(x) = (σij(x))ij ∈ L∞(D)3×3, 1 6 i, j 6 d, where σij = 0 if i 6= j, σ11 = 2 −
0.5 cos (arctan(x2/x1)), σ22 = 2+ 0.5 sin (arctan(x2/x1)), and σ33 = 2+ 0.5 sin (πx1) sin (πx2).
Furthermore, we assume that the data is corrupted with δ = 30% noise.

The 昀椀gures presented in Figure 13 and Figure 14 depict the numerical results of the current
experiment. As expected, even in the general case, ADMM exhibits superior accuracy over
SO, successfully reconstructing unknown obstacles amidst signi昀椀cant data noise. Remarkably,
as evident in the plots shown in Figure 13 and Figure 14, ADMM further distinguishes itself
by accurately detecting the concave features of these obstacles even under considerable noise
levels, thereby emphasizing its pronounced superiority over SO.

Figure 13: Reconstructed shapes obtained via SO (top row) and ADMM (bottom row) with
noisy data at a 30% noise level.

5 Conclusion

In this paper, we investigated a shape inverse problem for the advection–di昀昀usion equation with
spatially varying coe昀케cients. Within a shape optimization framework, we aimed to reconstruct
an unknown obstacle from boundary measurements. We considered two objective functions, JD
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Figure 14: Reconstructed shapes obtained via SO (top row) and ADMM (top row) with noisy
data at a 30% noise level.

and JN , established their di昀昀erentiability, and derived the corresponding shape gradients using
the adjoint method. Numerical reconstructions were carried out using the alternating direction
method of multipliers (ADMM) combined with a Sobolev gradient descent approach in a 昀椀nite
element setting. The results demonstrated accurate reconstructions of various obstacle shapes,
even in the presence of noise. In particular, ADMM improved the detection of concavities,
especially in cases with constant di昀昀usion and spatially varying advection.
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A Di昀昀erentiability of the state variables

In these proofs, we streamline notation by omitting the subscript N . Furthermore, we introduce
a generic constant c > 0, which remains independent of t and may assume di昀昀erent values in
varying contexts. Lemma A.1 shows the continuity and coercivity of at. Lemma A.2 describes
the solution in the transformed perturbed domain while Lemma A.3 establishes that ut is of
class C1 in a neighborhood of 0. Subsequently, by applying the implicit function theorem, we
demonstrate the existence of the material derivative.
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Lemma A.1. Given the assumptions in (A), assume that |b|∞ is su昀케ciently small with
b ◦ Tt = b

t and σ ◦ Tt = σt. Then, the map at : I × VΓ(Ω)× VΓ(Ω) → R given by

(t, ϕ, ψ) 7−→

∫

Ω
σtAt∇ϕ · ∇ψ dx+

∫

Ω
b
t · Ct∇ϕψ dx

is a continuous and coercive bilinear form on VΓ(Ω)× VΓ(Ω) which satis昀椀es

at(ϕ,ϕ) > c‖ϕ‖2VΓ(Ω),

for some positive constant c := c(Ω) that is independent of t.

Proof. Assume (A) and that
∣

∣b
t
∣

∣

∞
is su昀케ciently small – to be speci昀椀ed later in the proof.

Then, the following estimate holds

∣

∣at(ϕ,ψ)
∣

∣ =

∣

∣

∣

∣

∫

Ω
σtAt∇ϕ · ∇ψ dx+

∫

Ω
b
t · Ct∇ϕψ dx

∣

∣

∣

∣

6 c sup
t∈I

(

|σt|∞ |At|∞ +
∣

∣b
t
∣

∣

∞
|Ct|∞

)

‖ϕ‖VΓ(Ω) ‖ψ‖VΓ(Ω)

6 c sup
t∈I

(

σt1 |At|∞ +
∣

∣b
t
∣

∣

∞
|Ct|∞

)

‖ϕ‖VΓ(Ω) ‖ψ‖VΓ(Ω)

6 c ‖ϕ‖VΓ(Ω) ‖ψ‖VΓ(Ω) ,

which shows the continuity of the given map. On the other hand, for the coercivity of at, we
use the boundedness of At given in (14) from which we obtain

(c1 − 1)|ξ|2 6 (At − I)ξ · ξ 6 (c2 − 1)|ξ|2.

Then, we have the following estimate

at(ϕ,ϕ) =

∫

Ω
σt∇ϕ · ∇ϕdx+

∫

Ω
σt (At − I)∇ϕ · ∇ϕdx+

∫

Ω
C>
t b

t · ∇ϕϕdx

> cσt0 (1 + c1 − 1) ‖ϕ‖2VΓ(Ω) −
∣

∣b
t
∣

∣

∞
sup
t∈I

|Ct|∞ ‖ϕ‖2VΓ(Ω)

>

(

cc1σ
t
0 −

∣

∣b
t
∣

∣

∞
sup
t∈I

|Ct|∞

)

‖ϕ‖2VΓ(Ω) ,

for some constant c > 0. So, for su昀케ciently small
∣

∣b
t
∣

∣

∞
, more speci昀椀cally, if

∣

∣b
t
∣

∣

∞
is such that

∣

∣b
t
∣

∣

∞
<

cσt0
supt∈I |Ct|∞

,

then
at(ϕ,ϕ) > c ‖ϕ‖2VΓ(Ω) ,

for some positive constant c := c(Ω) that is independent of t.

Lemma A.2. For any ψ ∈ VΓ(Ω), the function ut ∈ VΓ(Ω) solves the equation

at(ut, ψ) =

∫

Σ
gψ ds. (46)
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Proof. Let ut = u(Ωt) the solution of problem (3). Then, we have
∫

Ωt

σ∇ut · ∇ψt dxt +

∫

Ωt

b · ∇utψt dxt =

∫

Σ
gtψt ds, ∀ψ ∈ VΓ(Ω),

where ψt = 0 on Γ and ∇(ut) ◦Tt = (DTt)
−>∇ut (see, e.g., [BP13, Eq. (71)]) with ut ∈ VΓ(Ω)

and gt ◦ Tt = gt = g ∈ H1/2(Σ) and b ◦ Tt = b
t and σ ◦ Tt = σt. By the change of variable, the

transported function ut(x) = (u(Ωt) ◦ Tt)(x), x ∈ Ω, solves the following variational equation
∫

Ω
σtAt∇u

t · ∇ψ dx+

∫

Ω
b
t · Ct∇u

tψ dx =

∫

Σ
gψ ds, ∀ψ ∈ VΓ(Ω), (47)

as desired.

Lemma A.3. The solution t 7→ ut of (46) is C1 in a neighborhood of 0.

Proof. To prove the claim, we will apply the implicit function theorem (IFT). Upon careful
examination of (46), it can be veri昀椀ed that ut − u represents the unique element in VΓ(Ω)
satisfying the variational equation

∫

Ω
σtAt∇(ut − u) · ∇ψ dx+

∫

Ω
b
t · Ct∇(ut − u)ψ dx

=

∫

Σ
gψ ds−

∫

Ω
σtAt∇u · ∇ψ dx−

∫

Ω
b
t · Ct∇uψ dx, ∀ψ ∈ VΓ(Ω),

Using the duality pairing 〈·, ·〉 between VΓ(Ω) and its dual space V ′(Ω), we can de昀椀ne a function
F : I × VΓ(Ω) −→ V ′(Ω) by

〈F(t, ϕ), ψ〉 =

∫

Ω
σtAt∇(ϕ+ u) · ∇ψ dx+

∫

Ω
b
t · Ct∇(ϕ+ u)ψ dx−

∫

Σ
gψ ds

= at(ϕ+ u, ψ)−

∫

Σ
gψ ds, (ϕ,ψ ∈ VΓ(Ω)).

Above, it su昀케ces to assume relaxed regularities for the data and the domain to establish the
boundedness of the map F through a duality pairing argument. Because in (15) the maps
[t 7→ At], [t 7→ Ct], [t 7→ σt], and [t 7→ b

t] are C1 in a neighborhood of 0, then clearly F is C1.
Then, taking ϕ = ut − u ∈ VΓ(Ω), we have

〈F(t, ut − u), ψ〉 =

∫

Ω
σtAt∇u

t · ∇ψ dx+

∫

Ω
b
t · Ct∇u

tψ dx−

∫

Σ
gψ ds

= at(ut, ψ)−

∫

Σ
gψ ds = 0, ∀ψ ∈ VΓ(Ω).

The next step is to show that there exists a unique function k, a mapping t 7→ ut − u from a
neighborhood of 0 to VΓ(Ω) such that F(t, k(t)) = 0. To accomplish the task, let us note that
ut − u solves uniquely F(t, ut − u) = 0 in VΓ(Ω). In addition, we see that

〈F(0, ϕ), ψ〉 − 〈F(0, 0), ψ〉 = 〈DϕF(0, 0)ϕ,ψ〉 = at(ϕ+ u, ψ)− at(u, ψ) = at(ϕ,ψ).

By Riesz’ representation theorem, with VΓ(Ω) being a Hilbert space, we obtain

〈DϕF(0, 0)ϕ,ψ〉 = dϕF(0, 0)(ϕ,ψ) = at(ϕ,ψ).
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Using Lemma A.1, we deduce via Lax-Milgram lemma that dϕF(0, 0) is an isomorphism from
V (Ω) to V ′(Ω), and we conclude by IFT that the map k given by [t 7→ ut − u] is C1 in a
neighborhood of 0.

To 昀椀nish the proof, we will demonstrate that (17) actually holds. For this purpose, let
us denote by u̇ ∈ VΓ(Ω) the derivative of the map [t 7→ ut − u] ∈ C1([−ε, ε];VΓ(Ω)), ε > 0
su昀케ciently small, as t → 0. Di昀昀erentiating the equation F(t, ut − u) = 0 with respect to t,
leads to

at(u̇, ψ)− l(u;ψ) = 〈DϕF(0, 0)u̇, ψ〉+ 〈
∂

∂t
F(0, 0), ψ〉 = 0, ∀ψ ∈ VΓ(Ω),

where l is given by (18).

B Proof of key identities

Here we provide proofs to the key identities used in this study.
We start with the proof of identity (24).

Proof of identity (24). Let θ = (θ1, · · · , θd)
> and σ = σ(x), x ∈ R

d, be di昀昀erentiable. For
notational convenience, we write ∂i := ∂/∂xi. For example, σ∇u = (σ∂1u, . . . , σ∂du)

>. Now,
by expansion, we have

∇(σ∇u) = (σ∂j(∂iu) + ∂jσ∂iu)i,j = σ∇2u+ (∂jσ∂iu)i,j , (1 6 i, j 6 d).

Additionally, let us note that

(∂jσ∂iu)i,j θ · ∇v =

d
∑

i=1

d
∑

j=1

∂jσ∂iuθj∂jv =

d
∑

i=1

∂iσ(∇u · ∇v)θi =

(

d
∑

i=1

∂iσθi

)

(∇u · ∇v)

= (∇σ · θ)(∇u · ∇v)

Thus, we have
∇(σ∇u)θ · ∇v = σ∇2uθ · ∇v + (∂jσ∂iu)i,j θ · ∇v

= σ∇2uθ · ∇v + (∇σ · θ)(∇u · ∇v).

Proof of the 昀椀rst identity in Lemma 3.7. Because div (∇× ϕ) = 0 for all ϕ ∈ VΓ(Ω) and u =
p = 0 on Γ while θ ∈ Θ (i.e., θ = 0 on Σ), then the application of integration-by-parts clearly
yields

∫

Ω
∇× (σ∇u× θ) · ∇p dx = −

∫

Ω
div (∇× (σ∇u× θ)) p dx

+

∫

∂Ω
∇× (σ∇u× θ) · pn ds

= 0.

The same holds when u and p are interchanged.
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Proof of the second identity in Lemma 3.7. Let (u, p) ∈ [VΓ(Ω) ∩H
2(Ω)]2 and θ ∈ Θ. Then,

by straightforward computations, we have

−

∫

Ω
δ(σ∇p · ∇u) dx = −

∫

Γ
(σ∇p · ∇u)θn ds+

∫

Ω
θ · ∇(σ∇p · ∇u) dx

= −

∫

Γ
(σ∇p · ∇u)θn ds+

∫

Ω
θ ·
[

∇>(σ∇p)∇u+∇2u(σ∇p)
]

dx

= −

∫

Γ
(σ∇p · ∇u)θn ds+

∫

Ω
∇(σ∇p)θ · ∇u dx+

∫

Ω
σ∇2uθ · ∇p dx.

Because u = p = 0 on Γ, then it immediately follows that
∫

Ω
∇(σ∇p)θ · ∇u dx+

∫

Ω
σ∇2uθ · ∇p dx+

∫

Ω
δ(σ∇p · ∇u) dx =

∫

Γ
σ∂np∂nuθn ds.

Proof of identity (37). Let us reconsider (31) with ϕ = p ∈ VΓ(Ω), ψ = ∇u · θ, u ∈ VΓ(Ω),
θ ∈ Θ, and F = b ∈W 1,∞(Ω)d. Then, in particular, p = 0 on Γ and θ = 0 on Σ, and we get
∫

Ω
[p(∇u · θ) divb+ (b · ∇p)(∇u · θ) + (b · ∇(∇u · θ))p] dx =

∫

∂Ω
p(∇u · θ)(b · n) ds = 0,

∫

Ω
[p(∇u · b)δ + (θ · ∇p)(∇u · b) + (θ · ∇(∇u · b))p] dx =

∫

∂Ω
p(∇u · b)(θ · n) ds = 0.

Subtracting the second equation from the 昀椀rst one, we obtain the following sequence of equal-
ities

∫

Ω
[(b · ∇p)(θ · ∇u)− (b · ∇u)(θ · ∇p)] dx

=

∫

Ω
p(∇u · b)δ dx−

∫

Ω
p(∇u · θ) divb dx+

∫

Ω
[θ · ∇(∇u · b)p− b · ∇(∇u · θ)p] dx

=

∫

Ω
p(∇u · b)δ dx−

∫

Ω
p(∇u · θ) divb dx+

∫

Ω
[Db(θ · ∇u)p−Dθ(b · ∇u)p] dx,

=

∫

Ω
∇× (b× θ) · ∇up dx,

where the second equation line follows from the fact that ∇2u is symmetric.
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