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Abstract. This paper explores the reconstruction of a space-dependent parameter in inverse diffusion
problems, proposing a shape-optimization-based approach. The main objective is to recover the absorp-
tion coefficient from a single boundary measurement. While conventional gradient-based methods rely
on the Fréchet derivative of a cost functional with respect to the unknown parameter, we also utilize its
shape derivative with respect to the unknown boundary interface for recovery. This non-conventional
approach addresses the problem of parameter recovery from a single measurement, which represents the
key innovation of this work. Numerical experiments confirm the effectiveness of the proposed method,
even for intricate and non-convex boundary interfaces.

1. Introduction

In this study, we are interested in inverse problems for the steady-state diffusion equation in a bounded
domain Ω ⊂ Rd, where d ∈ {2, 3}, with a Lipschitz boundary ∂Ω:

(1)


−div (α(x)∇u(x)) + µ(x)u(x) = f(x), x ∈ Ω,

α(x)∂nu(x) +
1

ζ
u(x) = 0, x ∈ ∂Ω.

Here, ζ > 0 and ∂n denotes the directional derivative with respect to the outward unit vector n normal
to ∂Ω. Furthermore, α is the diffusion coefficient while µ is the absorption coefficient, and f > 0 is the
source term.

In diffuse optical tomography or simply DOT, coefficients of the diffusion equation are determined
from boundary measurements. Light propagation is most fundamentally governed by the radiative
transport equation. The diffusion equation is obtained by the diffusion approximation to the radiative
transport equation (see, e.g., [NW01, Sec. 7.2, p. 163]). In [Arr99], the derivation is described for isotropic
media. In [HS02], the diffusion approximation for anisotropic media and the reconstruction of the optical
absorption coefficient in the presence of anisotropies are presented. Particularly, equation eqrefeq:main,
in which the time derivative term is absent, corresponds to the steady-state DOT. In the case of diffuse
light, u in (1) means the diffuse fluence rate (energy density up to a constant). See [Arr99, GHA05] for
comprehensive overviews of optical tomography. A more recent review by Durduran et al. [DCBY10]
focuses on diffuse optics for tissue monitoring and tomography. We refer the reader to [ABC+24] for
mathematical and numerical challenges in inverse problems for DOT.

In this work, we focus on the reconstruction of the absorption coefficient, assuming that the diffusion
coefficient is known. The outgoing light intensity, denoted by u := u(x) for x ∈ Σ ⊂ ∂Ω, is measured on
a sub-boundary Σ of the domain boundary ∂Ω. The central difficulty lies in recovering the absorption
coefficient from a single boundary measurement – a problem that is notoriously difficult both in theory
and in practical numerical implementation.

The principal contribution of this work lies in the important observation that the absorption coeffi-
cient is piecewise defined, taking different values in distinct subregions of the domain. This structure
naturally places the problem within the framework of inverse geometry problems involving the simulta-
neous recovery of a coefficient. Motivated by this, we propose the use of shape optimization techniques,
employing tools from shape calculus to guide the reconstruction process. To the best of our knowledge,
this is the first study to approach this reconstruction problem from a shape optimization perspective,
offering a novel and promising direction for addressing this class of inverse problems.

The diffusion equation (1), addressing the inverse problem of recovering the absorption coefficient,
has been studied [OH23]. In particular, it was recently examined by Machida in [Mac23], utilizing the
Rytov series for numerical solutions. As commented in [Mac23], the Rytov approximation generally
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yields superior image reconstructions compared to the Born approximation (cf. [MS15] for its appli-
cation in radiative transport equations). For further details on the Rytov and Born series methods,
we refer readers to the references in [Mac23] (see, e.g., [BV14, HS22, Kel69, Kir08, Lak18]). Prior to
[Mac23], Meftahi in [Mef21] investigated (1) where the excitation frequency is set to zero, focusing on
recovering both the diffusion coefficient α and absorption coefficient µ in (1) under Neumann boundary
conditions using the Neumann-to-Dirichlet map with f ≡ 0. Meftahi established global uniqueness and
Lipschitz stability estimates for the absorption parameter assuming α is known and provided a Lipschitz
stability result for simultaneously recovering α and µ. These results are applicable when parameters
are within known bounds and belong to a finite-dimensional subspace. The proofs rely on monotonicity
results and localized potential techniques detailed in [Mef21]. For a comprehensive list of works on the
development of this method, see the references cited in [Mef21]. The list includes recent studies that
use monotonicity and localized potentials to establish uniqueness and Lipschitz stability results for the
inverse optical tomography problem. We note that in the time-dependent case the global Lipschitz sta-
bility in determining coefficients can be proved in more general settings using Carleman estimates (see
a review in [Yam09]).

Besides optics, the model equation (1) arises in geophysics, such as in reflection seismology, assuming
a description in terms of time-harmonic scalar waves (see, e.g., [Pot06, YYP13]). It is also commonly
encountered in medical imaging (see, e.g., [GFB83, SAHD95, Arr99, NHE+00]).

A few remarks on boundary conditions are necessary.
Firstly, it is worth noting that the Robin boundary condition originates from the Fresnel reflection

[EH79]; see also [JMT21]. When light is absorbed at the boundary, the appropriate boundary condition
is the Dirichlet boundary condition.

Secondly, in [Mef21], Meftahi addresses the inverse problem numerically by proposing two cost func-
tions that are domain integrals. The problem is reformulated using the Neumann-to-Dirichlet operator,
which allows the author to derive the optimality conditions through the Fréchet differentiability of this
operator and its inverse. In our study, we adopt a different approach in three significant ways: (1) We
utilize the conventional boundary data tracking method in a least-squares sense. (2) We rely on a single
measurement on the boundary instead of multiple measurements or inputs. Naturally, a single boundary
measurement is insufficient for accurately reconstructing the absorption coefficient. Therefore, the cen-
tral question we aim to answer in this work is: How can the absorption coefficient be effectively recovered
using only a single measurement? (3) To address the aforementioned issue, we employ shape optimiza-
tion techniques to simultaneously recover both the unknown absorption coefficient and the boundary
interface. This method is more intricate and requires the expression of the shape derivative of the cost
function. Nevertheless, it allows us to avoid using multiple measurements in our numerical procedure
and instead depend solely on a single boundary measurement for the reconstruction, which we consider
to be a novelty and an advantage of our procedure over conventional approaches.

Thirdly, beyond the two main points outlined above, we highlight that using a single measurement
is the most sensible approach here, given the absence of boundary input data. Notably, unlike [Mef21],
which assumes f ≡ 0, we consider a non-identically zero source term f . Additionally, we impose a
homogeneous Robin condition, which is more accurate and relevant from a modeling standpoint (see
[NW01, Sec. 7.2, p. 163]). As a result, boundary input data cannot be controlled, allowing only for a
Dirichlet measurement. Consequently, using multiple Cauchy pairs to recover the absorption coefficient is
not feasible. However, the placement of the source term will be crucial in the numerical implementation
of our proposed method. It is worth mentioning that flux measurement (Neumann measurement) is
also feasible. However, we will employ shape calculus, which typically demands higher regularity in the
solution to the state system. Note that insufficient regularity often leads to instability in numerical
approximations.

Fourthly, building on the previous points, we will develop an iterative method to update the absorption
coefficient and boundary interface at each step, using a Lagrangian approach within the finite element
framework. This approach contrasts sharply with [Mac23], which utilizes nonlinear reconstruction based
on the inverse Rytov series, yet it bears some similarity to the method in [Mef21]. Our technique
enables us to examine both convex boundary interfaces and those with non-convex features. In essence,
we assess our numerical method’s effectiveness in reconstructing absorption coefficients for complex
boundary interfaces, differing significantly from [Mac23, MS09], where only 2D radial geometries were
considered.

Finally, the most notable distinction of our work compared to previous studies is that our recon-
struction method achieves a precise delineation of the boundary interface, as opposed to conventional
approaches that yield only a blurred or diffuse boundary (see, e.g., [Mef21]).
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Consequently, from a theoretical standpoint, the main contribution of this paper is the rigorous
computation of the total derivative of the least-squares functional J with respect to the sub-domain ω
and the absorption parameter µ, given by

J ′(ω, µ)[θ, ν] =
∂J

∂ω
(ω, µ)θ +

∂J

∂µ
(ω, µ)ν,

under a mild regularity assumption on the unknown boundary interface (refer to succeeding sections for
the exact meaning of the terms). For the shape derivative, our main result is provided by Theorem 3.7
(see also Theorem 3.3) in subsection 3.1.3. For the optimality condition with respect to µ, the main result
is given by Theorem 2.11 in subsection 2.3. On the numerical side, we propose a new reconstruction
procedure for estimating the unknown boundary interface.

The new idea will be further detailed and exploited in the aforementioned section where the choice
and positioning of the source function f will be the central focus of the numerical studies, particularly
when dealing with non-convex boundary interfaces.

We further comment on the numerical aspects of this paper and the limitation of the present work
in comparison with [Mef21]. In [Mef21], two numerical methods were examined. The first method
focuses on recovering the absorption coefficient µ assuming a known diffusion (or scattering) coefficient
α, employing a Newton method. The second method aims to reconstruct both α and µ by minimizing
a Kohn-Vogelius functional with a quasi-Newton approach [Kel99], utilizing the analytic gradient of the
cost function and updating the approximation of the inverse Hessian with a BFGS scheme [Kel99].

In this work, our focus will solely be on recovering the absorption coefficient µ, assuming a known
diffusion coefficient α. In contrast to [Mef21], where more extensive computations were necessary, here,
the knowledge of the gradient of the cost function with respect to variations in the absorption coefficient
and the boundary interface is sufficient for obtaining a reasonable reconstruction of the unknowns.
As previously emphasized, the reconstruction will rely on a single measurement instead of multiple
measurements, thereby avoiding the need to compute solutions of the state and associated adjoint states of
more than one pair of given data (or Cauchy pair). The numerical aspects of this work will predominantly
focus on cases where the boundary interface is non-convex, in contrast to previous works such as [Mac23,
Mef21], which primarily examined convex boundary interfaces.

We conclude this section by introducing necessary notation. For open bounded set Ω ⊂ Rd, d ∈ {2, 3},
with (at least) Lipschitz boundary ∂Ω, the standard L2(Ω)-, L∞(Ω)-, H1(Ω)-, L2(∂Ω)-norms will be used
frequently in this paper. Throughout the paper, c will denote a generic positive constant that may have
a different value at different places. We also occasionally use the symbol ‘.’, which means that if x . y,
then we can find some constant c > 0 such that x 6 cy. Of course, y & x is defined as x . y.

2. Recovery of the absorption coefficient

2.1. Settings. Let f : Ω → R be a non-constant function, and ω b Ω an open connected set with a
piecewise smooth boundary ∂ω. We assume α = α0χΩ\ω + α1χω with α0, α1 > 0, or, for simplicity,
α ≡ constant > 0 when unspecified. Let µmin, µmax ∈ R+ and, for a bounded domain Ω ⊂ Rd, let
L∞
+ (Ω) := {η ∈ L∞(Ω) | η > ∃η0 > 0 a.e. in Ω}. In this work, we assume that µ ∈ A, where

(2) A := {µ ∈ L∞
+ (Ω) | µmin 6 µ 6 µmax}.

As mentioned in the Introduction, we aim to recover µ using additional boundary data on ∂Ω. These
measurements can be taken either on the entire boundary or on a subset. Given α, ζ ∈ R+, a sufficiently
regular function f , and µ ∈ A, we define the Dirichlet measurement as h = u|∂Ω, where u : Ω → R
satisfies equation (1).

The inverse problem we are interested in is stated as follows.

Problem 2.1 (Absorption coefficient recovery). Let Ω be a domain with Lipschitz boundary. Given
parameters α, ζ ∈ R+ and 0 6≡ f : Ω → R with sufficient regularity, find µ ∈ A and a function u : Ω → R
that satisfy equation (1), with the condition

u = h on ∂Ω.

We note that boundary measurements alone cannot uniquely determine a general coefficient, mak-
ing the problem ill-posed. This implies that existence, uniqueness, and stability of solutions are not
guaranteed [Had23]. Regularization methods, such as Truncated Singular Value Decomposition (TSVD)
[Isa06, KS05], iterative regularization [AR06, BK04, KS05], and Tikhonov regularization [BK04, EKN89,
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Isa06, TA77], are commonly used to address this issue. In this paper, we use Tikhonov regularization,
transforming the inverse coefficient problem into a minimization problem:

(3) µρ = argminµ∈A {J(µ) +R(µ, ρ)} ,

where
J(µ) :=

1

2
‖u(µ)− h‖2L2(∂Ω) and R(µ, ρ) :=

ρ

2
‖µ‖2L2(Ω) .

In this study, we will depart from the use of multiple measurements, which require solving several
partial differential equations, and instead employ shape optimization techniques to recover the absorption
coefficient from a single measurement. We focus on recovering the absorption coefficient when it is given
by µ = µ0χΩ\ω +µ1χω, where µ0, µ1 ∈ R+ and χω denote the characteristic function of ω b Ω. For later
reference and technical purposes, we assume that µ > µ◦, where µ◦ is a positive constant.

In the following subsections, we present several preliminary results, with proofs in Appendix A. The
main result is given in Theorem 2.11.

2.2. Well-posedness of the state and continuity of the coefficient-to-parameter map. Let us
define the following forms

(4)


a(u, v) =

∫
Ω

(α∇u · ∇v + µuv) dx+
1

ζ

∫
∂Ω

uv ds, where u, v ∈ V := H1(Ω),

l(v) =

∫
Ω

fv dx, where v ∈ V.

Then, the weak formulation of (1) can be stated as follows:

Problem 2.2. Find u ∈ V such that a(u, v) = l(v), for all v ∈ V .

We have the following well-posedness result with respect to Problem 2.2.

Lemma 2.3. Let α, ζ ∈ R+, µ ∈ A, and f ∈ H−1(Ω). Then, there exists a unique weak solution u ∈ V
to Problem 2.2.

The existence of a weak solution to Problem 2.2 remains guaranteed when α ∈ L∞
+ (Ω). Based on

Lemma 2.3, for each µ ∈ A, Problem 2.2 is well-posed. We define the functional F := F (µ) as follows:

(5) F : A −→ V, A 3 µ 7−→ F (µ) = u(µ) ∈ V,

where u = u(µ) solves Problem 2.2. We drop µ when there is no confusion.

Proposition 2.4. The map F is continuous in A and
∥∥F (µ̃)− F (

≈
µ)
∥∥
V
.
∥∥µ̃− ≈

µ
∥∥
L∞(Ω)

.

The mapping (5) is differentiable with respect to µ ∈ A.
Let µ ∈ A. For all ν ∈ A with sufficiently small ‖ν‖L∞(Ω), we have µ+ ν ∈ A and F (µ+ ν) ∈ V . Let

δw = F (µ+ ν)− F (µ). By the definition of F , δw = δw(x) satisfies the equation

(6)


−div (α∇δw) + (µ+ ν)δw = −νu, in Ω,

α∂nδw +
1

ζ
δw = 0, on ∂Ω.

In variational form, δw = δw(x) ∈ V satisfies

(7) a(µ+ ν, δw, v) = −(νu, v)Ω, ∀v ∈ V.

We now state the following proposition.

Proposition 2.5. For any µ ∈ A, F (µ) is differentiable with respect to µ, and the sensitivity δu :=
δu(µ)[ν] = DF (µ)ν uniquely satisfies the equation

(8)


−div (α∇δu) + µδu = −νu, x ∈ Ω,

α∂nδu+
1

ζ
δu = 0, x ∈ ∂Ω,

with the variational form

(9) a(µ, δu, v) = −(νu, v)Ω, ∀v ∈ V,

where u = F (µ). Furthermore, there exists a constant c > 0 such that ‖DF (µ)‖B(A;V ) 6 c.



5

For future needs, we compute the second-order derivative of F . For this purpose, let us denote δ2w =
DF (µ+ ν1)ν2 −DF (µ)ν2, where DF (µ+ ν1)ν2 and DF (µ)ν2 are the derivatives of the map F at points
µ+ ν1 and µ, respectively. In view of Proposition 2.5, we can easily deduce that δu = δu(µ) = DF (µ)ν2
satisfies the following 

−div (α∇δu) + µδu = −ν2u, in Ω,

α∂nδu+
1

ζ
δu = 0, on ∂Ω,

where u = u(µ) = F (µ). A straightforward computation shows that
−div

(
α∇δ2w

)
+ (µ+ ν1)δ

2w = −ν2u(µ+ ν1) + ν2u(µ)− ν1δu(µ), in Ω,

α∂nδ
2w +

1

ζ
δ2w = 0, on ∂Ω.

In variational form, we have δ2w = δ2w(x) ∈ V satisfies

(10) a(µ+ ν1, δ
2w, v) = −(ν2[F (µ+ ν1)− F (µ)], v)Ω − (ν1DF (µ)ν2, v)Ω, ∀v ∈ V.

The above series of computations lead us to the next proposition.

Proposition 2.6. For any µ ∈ A, F (µ) is twice-differentiable with respect to µ, and δ2u := δ2u(µ)[ν1, ν2] =
D2F (µ)[ν1, ν2] ∈ V uniquely satisfies the variational equation

(11) a(µ, δ2u, v) = −(ν2DF (µ)ν1, v)Ω − (ν1DF (µ)ν2, v)Ω, ∀v ∈ V.

with u = F (µ). Additionally, there exists a constant c > 0 such that DF (µ) satisfies the estimate

(12)
∥∥D2F (µ)

∥∥
B(A×A;V )

6 c.

2.3. Regularized problem: well-posedness and first-optimality condition. We now examine
the regularized version of Problem 2.1 within the optimization framework (3). For all µ ∈ L∞

+ (Ω), let
u(µ) ∈ V denote the weak solution of (1), solving Problem 2.2 for the given µ. From (3), we define

(13) Jρ(µ) := J(µ) +R(µ, ρ) =
1

2
‖u(µ)− h‖2L2(∂Ω) +

ρ

2
‖µ‖2L2(Ω) .

We make the following key assumption.

Assumption 2.7. The admissible set B is a finite-dimensional closed convex subset of A.

For example, B is the set of piecewise constant functions corresponding to a partition of Ω.
We now define the following problem.

Problem 2.8. Find µρ ∈ B ⊂ A such that µρ = infµ∈B Jρ(µ).

In this section, we want to prove that the objective function is convex, and its minimizer in B is
unique. We start by noting that for any µ ∈ B and ν ∈ B with µ+ ν ∈ B, formally, we have

J ′
ρ(µ)ν = 〈u(µ)− h, δu〉∂Ω + ρ (µ, ν)Ω ,(14)

J ′′
ρ (µ)[ν, ν] = ‖δu‖2L2(∂Ω) +

〈
u(µ), δ2u

〉
∂Ω

+ ρ ‖ν‖2L2(Ω) ,(15)

where δu = DF (µ)ν is the unique solution to the variational equation (9) while δ2u = D2F (µ)[ν, ν]
uniquely solves the variational equation (11).

On a side note, we underline here that ν ∈ L∞(Ω) ⊂ L2(Ω) and ‖ν‖L2(Ω) 6 |Ω|1/2 ‖ν‖L∞(Ω) (see
[Fol99, Prop. 6.12, p. 186] or [AH09, Thm. 1.5.5(c), p. 46]).

Proposition 2.9 (Strict convexity of Jρ). There exists a constant ρ0 > 0 independent of µ ∈ B ⊂ A,
such that for all ρ > ρ0, Jρ(µ) is strictly convex.

Remark 2.10. We emphasize that Assumption (2.7) is essential for the proof of Proposition 2.9. The
inequality ‖·‖L∞(Ω) . ‖·‖L2(Ω) generally does not hold (cf. [Fol99, Prop. 6.12, p. 186] or [AH09,
Thm. 1.5.5(c), p. 46]). However, for some functions ϕ on Ω, the inequality ‖ϕ‖L∞(Ω) . ‖ϕ‖L2(Ω)

does hold. Specifically, for a fixed k and a bounded set Ω, every ϕ ∈ Pk(Ω) (the set of polynomials of
degree at most k on Ω) satisfies ‖ϕ‖L∞(Ω) 6 c ‖ϕ‖L2(Ω), where the constant c > 0 depends on k.

Next, we characterize the minimizer of the Gâteaux differentiable convex functional Jρ (see [AH09,
Thm. 5.3.19, p. 233]), which is the main result of this section. We provide a well-posedness result and
the first optimality condition for the solution of Problem 2.8 as follows:
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Theorem 2.11. Let B satisfy Assumption 2.7, and let ρ > 0 such that Jρ is strictly convex. Then,
Problem 2.8 has a unique solution µρ ∈ B, which depends continuously on all data with h ∈ H1/2(∂Ω).
Moreover, µρ satisfies the inequality

(16) (−up+ ρµρ, δµ− µρ)Ω > 0, ∀δµ ∈ B,

where p = p(µρ) ∈ V is the solution to the following PDE system

(17)


−div (α∇p) + µρp = 0, in Ω,

α∂np+
1

ζ
p = uρ − h, on ∂Ω,

with uρ = F (µρ), where uρ ∈ V uniquely solves (1) with µ replaced by µρ.

Proof. Let uρ ∈ V be the unique weak solution of (1) with absorption coefficient µρ ∈ B. For convenience,
we drop ·ρ in µρ during the proof. By assumption, B is a closed, convex set in the Hilbert space A, and Jρ
is strictly convex (Proposition 2.9). Using the standard result for convex minimization problems [AH09,
Thm. 5.3.19, p. 233], there exists a unique stable solution µ := µρ ∈ B to Problem 2.8, characterized by
the optimality condition

(18) J ′
ρ(µ)(δµ− µ) > 0, ∀δµ ∈ B.

To verify this, we first calculate the derivative of Jρ with respect to µ. Let ν = δµ − µ and
δuρ = DF (µ)ν. Then, δuρ ∈ V solves (9) with µ = µρ. From (14), the inequality (18) becomes
〈u(µ)− h, δuρ〉∂Ω + ρ (µ, ν)Ω > 0, for all δµ ∈ B.

Next, we eliminate δuρ by introducing the adjoint system (30) and multiply both sides of the first
equation by δuρ. Then, integrating over Ω and applying integration by parts gives 〈u(µ)− h, δuρ〉∂Ω =
a(µ, p, δuρ).

Finally, taking v = p ∈ V in (9) yields a(µ, δuρ, p) = −(νu, p)Ω. Since a(µ, ·, ·) is symmetric, combining
the equations results in the inequality (−up+ρµ, ν)Ω > 0, which holds for all δµ ∈ B, where ν = δµ−µ ∈
B and µ = µρ ∈ B. This proves the proposition. �

3. Shape recovery of the boundary interface

The numerical solution of Problem 2.8 using a gradient-based descent method with (14) does not
provide satisfactory reconstruction of the absorption coefficient with a single measurement. A single
measurement is insufficient for reasonable recovery, requiring multiple measurements [Mef21]. Addition-
ally, domain integral-type cost functions are more effective than boundary integral-type ones for this
recovery process [ZCG20, Mef21]. This study proposes using shape optimization techniques to improve
the recovery of the absorption coefficient, while maintaining the cost function form in (3) and utilizing
a single measurement.

Following [Mac23], we assume that µ0 is known. Then, as a result of the proposed strategy, which
includes the regularization term R for µ, we minimize the regularized objective functional:

(19) min
(µ1,ω)

Jρ(µ1, ω) ≡ min
(µ1,ω)

{J(µ1, ω) +R(µ, ρ)}

where J and R are defined in (13). Hereinafter, we write J(ω) = J(µ1, ω), focusing on the variation of
J with respect to the sub-domain ω.

Looking at (19), we highlight that the objective function J depends not only on µ but also on ∂ω
through the solution u = u(µ, ∂ω) to (1). The optimal solution ω∗ = ω∗(µ), if it exists, depends on µ
via the state equation (1).

Remark 3.1. The addition of R in (19) addresses the ill-posedness of the minimization. Regularization
for both µ and ∂ω enhances stability and improves the approximation of the minimizer as a solution to
the inverse problem of recovering µ and ∂ω. However, regularizing only µ is sufficient for stability in
numerical approximations, as shown in Section 4.

We aim to find the minimizer of J as the solution to Problem 2.8, where µ is fixed in Ω \ ω and ω.
In numerical approximation, the state system (1) can be solved iteratively after fixing µ and ω, then
updating both using the derivative of J with respect to µ and ω. This approach, based on variational
calculus, calculates the gradients of J with respect to both µ and ω in (1), accounting for ω through µ.
Introducing an adjoint variable associated with the measurement h, we derive a kernel representation
of the total derivative, essential for gradient-based algorithms to minimize J . This also shows the
equivalence of the unique minimizer and the critical point of J .
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We underline here that the proposed approach eliminates the need to compute solutions for the
PDEs associated with various input data and multiple measurements. However, in exchange, along with
solving two PDE systems (corresponding to the state and adjoint state problems), we must also compute
the solution of a vector-type Laplace equation. This corresponds to the computation of the extended-
regularized deformations field characterized by the so-called shape gradient of J ; i.e., the variation of J
with respect to the region of interest ω.

To proceed, we have to make the following strong assumptions:

Assumption 3.2. We assume the following:
• Ω ⊂ Rd, d ∈ {2, 3}, is a bounded domain of class Ck,1, k ∈ N;
• Ω contains a Ck,1 subdomain ω b Ω characterized by a finite jump in the coefficients of the PDE

such that Ω \ ω is connected;
• µ = µ0χΩ\ω + µ1χω > µ◦ > 0 for some constant µ◦, where µ0, µ1 ∈ C1(Ω) and χω denote the

characteristic function of ω;
• α = α0χΩ\ω + α1χω, where 0 < α0, α1 ∈ C1(Ω);
• f = f0χΩ\ω + f1χω, where f0, f1 ∈ C1(Ω)).

3.1. Shape sensitivity analysis. The objective of this section is to calculate the shape derivative of J
with respect to ω using the chain rule, assuming the shape derivative of the state u exists.

3.1.1. Notations and some definitions. Let us fix some notations. We denote by n the outward unit
normal to ∂ω pointing into Ω \ ω. Thus, ∂nu− (respectively, ∂nu+) is the normal derivative from the
inside of ω (respectively, Ω \ω) at the interface ∂ω, and [·]± denotes the jump across the same interface.

We fix a small number δ◦ > 0 and define the subdomain Ω◦ b Ω with C∞ boundary as follows:

Ω◦ := {x ∈ Ω | d(x, ∂Ω) > δ◦}.

Let k ∈ N. We define Ok
◦ as the set of all simply connected subdomain ω with Ck,1 boundary ∂ω such

that d(x, ∂Ω) > δ◦ for all x ∈ ω; i.e.,

(20) Ok
◦ := {ω b Ω◦ | d(x, ∂Ω) > δ◦,∀x ∈ ω,Ω \ ω is connected, and ω is of class Ck,1}.

We call Ok
◦ the set of admissible geometries or interface boundaries. Notably, the inclusions are assumed

to be far from the accessible boundary ∂Ω, and Ω \ ω is simply connected. Hereinafter, we call Ω an
admissible domain if Ω contains a subdomain ω ∈ Ok

◦ .
The admissible set of interface boundaries is described by a particular class of perturbations of the

domain Ω. We denote by θ a Ck,1 regular vector field with compact support in Ω◦, and let Θk stands
for the collection of all admissible deformation fields; i.e., we define

(21) Θk := {θ ∈ Ck,1(Rd) | supp(θ) ⊂ Ω◦}.

For exactness, we assume that {x ∈ Ω | d(x, ∂ω) > δ/2} ⊂ Ω◦ ⊂ {x ∈ Ω | d(x, ∂ω) > δ/3}. For θ ∈ Θk,
we let θn := 〈θ,n〉 be its normal component.

Let us define Tt : Ω 7−→ Ω as the perturbation of the identity id given by Tt = Tt(θ) = id+ tθ, where
θ := (θ1, . . . , θd)

> ∈ Θk is a t-independent deformation field. We define Ωt := Tt(Ω), ∂Ωt := Tt(∂Ω) =
∂Ω, and ωt := Tt(ω), i.e., ∂ωt := Tt(∂ω). In addition, Ω0 is such that the interface is given by ∂ω0.

It can be shown that there exists a sufficiently small number t0 > 0 such that for all t ∈ I := [0, t0),
the transformation Tt is a diffeomorphism from Ω ∈ Ck,1 onto its image (see, e.g., [BP13, Thm. 7] for
k = 1). Hereinafter, we let t0 ∈ R+ be small enough so that [t 7→ Tt] ∈ C1(I, Ck,1(Ω)d) and [t 7→
T−1
t ] ∈ C(I, C1(Ω)d) (cf. [IKP06, IKP08]). In fact, here we assume that, for all t ∈ I, It := det DTt > 0.

Accordingly, we define the set of all admissible perturbations of Ω denoted by Ok
ad as follows:

(22) Ok
ad =

{
Tt(θ)(Ω) ⊂ D | Ω = D \ ω ∈ Ck,1, ω ∈ Ok

◦ , t ∈ I,θ ∈ Θk
}
.

It is important to note that the fixed boundary ∂Ω only needs Lipschitz continuity, not Ck,1 regularity.
However, for simplicity, we assume higher regularity for some k ∈ N. The numerical scheme developed
in this study applies to domains Ω with Lipschitz regularity.

The following regularities hold (see, e.g., [IKP06, IKP08] or [SZ92, Lem. 3.2, p. 111]):

(23)


[t 7→ DTt] ∈ C1(I, C0,1(Ω)d×d), [t 7→ (DTt)

−>] ∈ C1(I, C(Ω)d×d),

[t 7→ It] ∈ C1(I, C(Ω)), [t 7→ It] ∈ C1(I, C0,1(Ω)),

[t 7→ At] ∈ C1(I, C(Ω)d×d), [t 7→ At] ∈ C(I, C(Ω)d×d),

[t 7→ bt] ∈ C1(I, C(∂ω)).
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where At := It(DT
−1
t )(DTt)

−>. The derivatives of the maps [t 7→ It], [t 7→ At], and [t 7→ bt] are
respectively given by

(24)



d

dt
It
∣∣
t=0

= lim
t→0

It − 1

t
= div θ,

d

dt
At

∣∣
t=0

= lim
t→0

At − id

t
= (divθ)id−Dθ − (Dθ)> =: A,

d

dt
bt
∣∣
t=0

= lim
t→0

bt − 1

t
= divτθ = divθ

∣∣
τ
− (Dθn) · n.

where divΣθ denotes the tangential divergence of the vector θ on Σ. Furthermore, we assume that, for
any α ∈ L∞

+ (Ω),

(25) |ξ|2 . αAtξ · ξ . |ξ|2 , for all ξ ∈ Rd.

The functional J : Ok
ad → R has a directional first-order Eulerian derivative at Ω in the direction of

the field θ ∈ Θk if the limit

lim
t↘0

J(ωt)− J(ω)

t
=: dJ(ω)[θ]

exists (see, e.g., [DZ11, Sec. 4.3.2, Eq. (3.6), p. 172]). The functional J is said to be shape differentiable
at ω if the limit exists for all θ ∈ Θk and the mapping θ 7→ dJ(ω)[θ] is both linear and continuous on
Θk. In such a case, we call the resulting map as the shape gradient of J .

In the following subsections, we denote the function ϕt : Ωt → R on the reference domain Ω using Tt
as ϕt := ϕt ◦ Tt : Ω → R.

3.1.2. Material and shape derivative of the states. The following proposition presents the first result of
this section, describing the structure of the material and shape derivatives of the state. We stress that
H1 regularity of the state solution is insufficient to justify the existence of its shape derivative. In fact,
higher regularity is required. Therefore, we consider Ck,1 bounded domains, for some k ∈ N, k > 2, and
use an elliptic regularity result to obtain Hk+1 (local) regularity for the state, which is sufficient to prove
Theorem 3.3. If we only assume that Ω is a Lipschitz domain, then u ∈ H1(Ω) globally. However, the
regularity of u improves locally, with u+ ∈ H2(Ω◦ \ω) and u− ∈ H2(ω), where u± = u|Ω± , Ω+ = Ω\Ω−,
and Ω− = ω b Ω◦.

Theorem 3.3. Let the assumptions of Proposition 2.11 and Assumption 3.2 be satisfied, and assume
that Ω ∈ Ok

ad and θ ∈ Θk, for some k ∈ N, k > 2. Then, the state u ∈ V , has the material derivative
u̇ ∈ V satisfying the following variational equation

(26)

∫
Ω

(α∇u̇ · ∇v + µu̇v) dx = −
∫
Ω

(αA∇u · ∇v + div θµuv − div θfv) dx

−
∫
Ω

[∇α · θ(∇u · ∇v) +∇µ · θuv −∇f · θv] dx, ∀v ∈ V.

In addition, u+ ∈ Hk+1(Ω◦ \ Ω−) and u− ∈ Hk+1(Ω−). If u satisfies the continuity conditions

(27) [u]± = 0 and
[
α
∂u

∂n

]
±
= 0 on ∂ω,

then u is shape differentiable and its shape derivative u′(Ω)[θ] ∈ H1(Ω \ ω) ∪H1(ω) solves

(28)



−div (α∇u′) + µρu
′ = 0, in Ω \ ω and in ω,

[u′]± = −θn
[
∂u

∂n

]
±
, on ∂ω,[

α
∂u′

∂n

]
±
= ∇ ·

(
θn [α]± ∇τu

)
− [µ]± uθn + [f ]± θn =: K(u)[θ], on ∂ω,

α∂nu
′ +

1

ζ
u′ = 0, on ∂ω.

A rigorous proof of Theorem 3.3 is given in Appendix B. In equation (28), the jump expression with
the normal derivative of u is given by:[

α
∂u′

∂n

]
±
= α+∇u′+ · n− α−∇u′− · n = α+∇u′+ · n+ + α−∇u′− · n−,
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where n = n+ is the outward unit normal vector to Ω, and n− = −n is the inward unit normal vector.
For any function defined on Ω, we denote its restrictions to Ω+ and Ω− as u+ and u−, respectively,
and drop the subscripts when no confusion arises. The smoothness assumptions for the domain and
deformation fields in Proposition (3.3) can be replaced by C3,λ for some λ ∈ (0, 1).

Proposition 3.4. Let the assumptions of Theorem 3.3 hold. Then, the least-squares misfit functional
J(ω) =

∫
∂Ω

|u− h|2 ds is differentiable with respect to the shape Ω ∈ Ok
ad (i.e., with respect to ω) in the

direction of θ ∈ Θk, k > 2, and its shape derivative is given by

(29) dJ(ω)[θ] =

∫
∂ω

(
− [α]± ∇τu · ∇τp− [µ]± up+ [f ]± p

)
θn ds,

where p ∈ V satisfies the following PDE system:

(30)


−div (α∇p) + µρp = 0, in Ω,

α∂np+
1

ζ
p = uρ − h, on ∂Ω,

subject to the continuity conditions

(31) [p]± = 0 and
[
α
∂p

∂n

]
±
= 0 on ∂ω.

Here, u = F (µ), and u ∈ V uniquely solves (1) and satisfies the continuity equations in (27).

Before proving the proposition, we note that Assumption 3.2 ensures the well-posedness of (28) and
(30) by the Lax-Milgram lemma.

Proof of Proposition 3.4. Let the assumptions of the proposition be satisfied. Then, we have sufficient
regularity of the domain and the state to apply Hadamard’s boundary differentiation formula (see, e.g.,
[DZ11, Thm. 4.3, Ch. 9, p. 486], [HP18, Prop. 5.4.18, Ch. 5.4, p. 225], or [SZ92, Lem. 3.3, Eq. (3.44),
p. 112]). That is, we have dJ(ω)[θ] =

∫
∂Ω

(u− h)u′ ds. We remove u′ from the integral expression above
using the adjoint method; that is, we introduce p as the solution of the adjoint problem (30) and multiply
the main equation with u′ ∈ V , apply integration by parts, and use the boundary conditions to obtain
the equation a(u′, p) =

∫
∂ω
K(u)[θ]p ds. Similarly, by applying the same steps to the adjoint system (30)

with u′ as the multiplier, we obtain a(p, u′) =
∫
∂Ω

(u− h)u′ ds. Observe that – under the continuity
conditions (27) and (31) – we have a(u′, p) = a(p, u′). Thus,

dJ(ω)[θ] =

∫
∂Ω

(u− h)u′ ds =

∫
∂ω

(
divτ (θn [α]± ∇τu)− [µ]± upθn + [f ]± pθn

)
ds

=

∫
∂ω

(
− [α]± ∇τu · ∇τp− [µ]± up+ [f ]± p

)
θn ds.

This proves the characterization of the shape derivative of J as claimed in (29). �

We observe that setting k = 2 is sufficient to establish the results in Theorem 3.3 and Proposition 3.4.
Furthermore, with Ω being Lipschitz and ω belonging to the class C1,1, we can derive the shape gradient of
J as presented in (29). This implies that the assumptions outlined in Assumption 3.2 can be relaxed. To
achieve this, we will employ the so-called rearrangement method in the spirit of [IKP06, IKP08, HIK+09].
The derivation is provided in the next subsection.

3.1.3. Computation of the shape gradient without the shape derivative of the state. In this subsection,
we provide a direct and rigorous computation of the shape gradient bypassing the need to compute the
shape derivative of the state. The method only requires the following mild assumptions:

Assumption 3.5. • Ω ⊂ Rd, where d ∈ {2, 3}, is a bounded Lipschitz domain.
• Ω contains a C1,1 subdomain ω ∈ O1

◦.
• µ = µ+χΩ+

+ µ−χΩ− , where µ± ∈ L∞
+ (Ω) ∩W 1,∞(Ω±).

• α = α+χΩ+ + α−χΩ− , where α± ∈ L∞
+ (Ω) ∩W 1,∞(Ω±).

• f ∈ H1(Ω).

Although f is simplified in this section (and later α for convenience), the shape gradient computation
remains applicable even if f has jump discontinuities.

We have the following remark on the continuity conditions on the product of the normal derivatives
of u and p on the boundary interface ∂ω.
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Remark 3.6. The continuity conditions given in (27) and (31), allow us to deduce that the product
[α∂nu∂np]± θn vanishes in the shape gradient’s kernel, which is the only part where these conditions are
applied. Indeed, the following implication holds for the jump operator [·]±:

[ϕψ]± = [ϕ]± ψ+ + ϕ− [ψ]± = ϕ+ [ψ]± + [ϕ]± ψ− =⇒ [ϕψ]± = 0 if [ϕ]± = [ψ]± = 0.

Thus, by this identity, given that the conditions in (27) hold, we infer that [α∂nu∂np]± = 0. On another
note, we comment that given the assumptions given in Assumption 3.5, one can verify that the solution
u ∈ V of Problem 2.2 satisfies the local higher-regularity result u± ∈ H2(Ω±).

Theorem 3.7. Let Assumption 3.5 be satisfied, and assume that Ω ∈ O1
ad and θ ∈ Θ1. Then, J is

differentiable with respect to ω in the direction of θ and its shape derivative dJ(ω)[θ] is given by

(32) dJ(ω)[θ] =

∫
∂ω

(
− [α]± (∇τu · ∇τp) +

[
α
∂u

∂n

∂p

∂n

]
±
− [µu]± p+ fp

)
θn ds,

where u ∈ V solves (1) and p ∈ V satisfies the corresponding adjoint problem (cf. (30)).

Proof. Assumption 3.5 ensures the boundedness of dJ(ω)[θ] for any admissible domain Ω and deformation
field θ ∈ Θ1. For simplicity in the proof and to avoid lengthy expressions, we assume α ∈ R+ and that
µ is piecewise constant. This omits the corresponding computation for the spatial derivatives of α and
µ in (B.54).

The proof essentially proceeds in two parts. Firstly, we evaluate the limit limt→0
1
t (J(ωt)− J(ω)).

Then, using the regularity of the domain as well as the state and adjoint variables, we characterized the
boundary integral expression for the computed limit. We begin by applying the boundary transformation
formula ∫

∂ωt

ϕt dst =

∫
∂ω

ϕt ◦ TtIt
∣∣DT−>

t n
∣∣ ds =:

∫
∂ω

ϕtbt ds, (bt = It
∣∣DT−>

t n
∣∣),

for a function ϕt ∈ L1(∂Ωt) [DZ11, Eq. (4.9), p. 484] and the identity η2 − ζ2 = (η − ζ)2 + 2ζ(η − ζ) to
obtain the following calculations:

J(ωt)− J(ω)

=
1

2

∫
∂Ωt

∣∣ut − h
∣∣2 dst − 1

2

∫
∂Ω

|u− h|2 ds

=
1

2

∫
∂Ω

{
(bt − 1)(

∣∣ut − h
∣∣2 − |u− h|2) + (bt − 1) |u− h|2 +

∣∣ut − h
∣∣2 − |u− h|2

}
ds

=
1

2

∫
∂Ω

{
(bt − 1)(

∣∣ut − h
∣∣2 − |u− h|2) + (bt − 1) |u− h|2

}
ds

+
1

2

∫
∂Ω

{
2(ut − h− (u− h))(ut − h) +

∣∣ut − h− (u− h)
∣∣2} ds

=
1

2

∫
∂Ω

{
(bt − 1)(

∣∣ut − h
∣∣2 − |u− h|2) + (bt − 1) |u− h|2

}
ds

+
1

2

∫
∂Ω

{
2(ut − u)(u− h) +

∣∣ut − u
∣∣2} ds

= j1(t) + j2(t) + j3(t) + j4(t).

At this point, we note that, following a similar line of argument as in the first step of the proof of
Theorem 3.3, it can be shown that

lim
t↘0

1√
t

∥∥ut − u
∥∥
V
= 0.

Using this result, together with equation (24) and the fact that θ = 0 on ∂Ω, it can be verified that
j̇1(0) = j̇2(0) = j̇4(0) = 0, where j̇i(0) = d

dtji(t)
∣∣
t=0

, for i = 1, 2, 3, 4. For clarity, we comment that
j̇2(0) = 0 comes from the fact that j̇2(0) = 1

2

∫
∂Ω

divτ θ |u− h|2 ds, which is a consequence of (24) and
the observation that divτ θ ∈ C(∂ω) because x 7→ n(x) ∈ C0,1(∂ω). This leads us to

lim
t↘0

1

t
(J(ωt)− J(ω)) = j̇3(0) = lim

t↘0

∫
∂Ω

zt(u− h) ds.

Let us consider the weak formulation of the adjoint problem (30): find p ∈ V such

a(p, v) =

∫
∂Ω

(u− h)v ds, ∀v ∈ V.



11

Now, let us choose v = wt = ut − u ∈ V and again define zt = wt/t. Observe that the result in the first
step of the proof of Theorem 3.3 remains valid under Assumption 3.5; refer to (B.54). This leads us to
the following series of equations

j̇3(0) = lim
t↘0

∫
∂Ω

zt(u− h) ds
(4)
= lim

t↘0
a(p, zt)

= lim
t↘0

{∫
Ω

(α∇p · ∇zt + µpzt) dx+
1

ζ

∫
∂Ω

pzt ds

}
= −

∫
Ω

αA∇u · ∇p dx−
∫
Ω

div θµup dx+

∫
Ω

(∇f · θp+ div θfp) dx

=: j31 + j32 + j33.

Using identity (B.56), the integral expressions j32 and j33 can be expressed as follows, respectively:

j32 = −
∫
Ω

div θµup dx = −
∫
Ω

[µdiv (upθ)− µu(∇p · θ)− µp(∇u · θ)] dx;(33)

j33 =

∫
Ω

(∇f · θp+ fp div θ) dx =

∫
Ω

[div (fpθ)− f∇p · θ] dx.(34)

Next, let us expand j31. From (24), we have

j31 = −
∫
Ω

αdivθ∇u · ∇p dx+

∫
Ω

αDθ∇u · ∇p dx+

∫
Ω

α(Dθ)>∇u · ∇p dx =: k1 + k2 + k3.

We manipulate each term above. First, since u±, p± ∈ H2(Ω±), we have ∇u± · ∇p± ∈W 1,1(Ω±). Thus,
we can utilize the following identity:

−
∫
Ω

div θϕdx =

∫
Ω

θ · ∇ϕdx−
∫
∂Ω

ϕθ · n ds

which holds for θ ∈ C1(Ω)d, ϕ ∈ W 1,1(Ω), and a Lipschitz domain Ω, by assigning ϕ = ∇u± · ∇p± and
replacing Ω with Ω±. Then, because θ = 0 on ∂Ω, we get

k1 =

∫
Ω+

αθ · ∇(∇u+ · ∇p+) dx+

∫
Ω−

αθ · ∇(∇u− · ∇p−) dx

+

∫
∂ω

α(∇u+ · ∇p+)θn ds−
∫
∂ω

α(∇u− · ∇p−)θn ds.

The product ∇(∇u± · ∇p±) · θ can be expanded as follows:

∇(∇u± · ∇p±) · θ = (∇p±)>∇2u±θ + θ>∇2p±∇u± = (∇2u±∇p± +∇2p±∇u±) · θ,

where the latter equation follows from the fact that the Hessian ∇2 is symmetric. These equations yield
the following

k1 =

∫
Ω+

α(∇2u+∇p+ +∇2p+∇u+) · θ dx+

∫
Ω−

α(∇2u−∇p− +∇2p−∇u−) · θ dx

+

∫
∂ω

α(∇u+ · ∇p+)θn ds −
∫
∂ω

α(∇u− · ∇p−)θn ds.

Next, we find equivalent forms of k2 and k3. For this purpose, considering k2, we recall the second
identity given in (B.57) to get

div((θ · ∇u±)∇p±) = Dθ∇p± · ∇u± +∇p>±∇2u±θ + (θ · ∇u±)∆p±.

Integrating both sides of the above equation over Ω±, applying Stokes’ theorem, and utilizing the bound-
ary condition θ = 0 on ∂Ω, we arrive at the following results:∫

Ω±

αDθ∇p± · ∇u± dx = −
∫
Ω±

α
{
∇p>±∇2u±θ + (θ · ∇u±)∆p±

}
dx ∓

∫
∂ω

α(θ · ∇u±)∇p± · n ds.

Interchanging u± and p± and noting that (Dθ)>∇p± ·∇u± = (Dθ)∇u± ·∇p±, we get a similar equation
for k3. Adding these computed expressions for k1, k2, and k3, and writing

∫
Ω±

=
∫
Ω+

+
∫
Ω−

, we get

j31 = k1 + k2 + k3

=

∫
Ω+

α(∇2u+∇p+ +∇2p+∇u+) · θ dx+

∫
Ω−

α(∇2u−∇p− +∇2p−∇u−) · θ dx
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+

∫
∂ω

α(∇u+ · ∇p+)θn ds−
∫
∂ω

α(∇u− · ∇p−)θn ds

−
∫
Ω±

α
[
∇2u±∇p± · θ + (θ · ∇u±)∆p±

]
dx ∓

∫
∂ω

α(θ · ∇u±)∂np± ds

−
∫
Ω±

α
[
∇2p±∇u± · θ + (θ · ∇p±)∆u±

]
dx ∓

∫
∂ω

α(θ · ∇p±)∂nu± ds.

By utilizing the continuity equations for u given in (27) and combining the resulting expression with (33)
and (34), we obtain, after some rearrangements and applying Stokes’ theorem, the following result:

(35)

j̇3(0) =

∫
∂ω

[α(∇u · ∇p)]± θn ds−
∫
∂ω

[α(θ · ∇p)∂nu]± ds−
∫
∂ω

[α(θ · ∇u)∂np]± ds

+

∫
Ω±

(−α∆u± + µ±u± − f) (θ · ∇p±) dx+

∫
Ω±

(−α∆p± + µ±p±) (θ · ∇u±) dx

+

∫
∂ω

(f − [µu]±)pθn ds.

Since u±, p± ∈ H2(Ω±), we have ∇u± ·V,∇p± ·V ∈ H1(Ω±). By multiplying equation (1) by ∇p± ·V,
where α(x) = α ∈ R+ and µ is piecewise constant, we deduce that the fourth integral in (35) equals zero.
Likewise, multiplying equation (30) by ∇u± ·V, we find that the fifth integral in (35) also equals zero.
Therefore, we have

j̇3(0) =

∫
∂ω

[α(∇u · ∇p)]± θn ds−
∫
∂ω

[α(θ · ∇p)∂nu]± ds−
∫
∂ω

[α(θ · ∇u)∂np]± ds

+

∫
∂ω

(f − [µu]±)pθn ds.

As a consequence of (27), we see that [∇τu]± = 0 on ∂ω. Similarly, [∂np]± = [∇τp]± = 0 on ∂ω. Using
these equations, we deduce that[

α(θ · ∇p)∂u
∂n

]
±
=

[
α
∂p

∂n

∂u

∂n

]
±
θn and

[
α(θ · ∇u) ∂p

∂n

]
±
=

[
α
∂u

∂n

∂p

∂n

]
±
θn.

Thus, by using the identity ∇u · ∇p = ∂nu∂np+∇τu · ∇τp, we finally obtain the desired expression for
the shape gradient:

dJ(ω)[θ] =

∫
∂ω

{
− [α]± (∇τu · ∇τp) +

[
α
∂u

∂n

∂p

∂n

]
±
− [µu]± p+ fp

}
θn ds.

This concludes the proof. �

4. Numerical Algorithm and Examples

In this section, we present the numerical implementation of the proposed approach. We begin by
discussing the computation of the forward problem and the selection of the regularization parameter ρ.
Next, we develop a numerical algorithm using a Sobolev-gradient descent scheme for boundary interface
variation. Finally, we validate the scheme with various numerical examples.

4.1. Forward problem. The computational setup is as follows: In the forward problem, all free pa-
rameters in the PDE system are specified, including the input source f and the exact geometry of ω. We
emphasize that, in contrast to the usual approach based on non-destructive testing and evaluation, our
method does not rely on input data from the boundary; instead, we use the observed data – the single
measurement h. This data is synthetically generated by solving the direct problem (1).

To avoid ‘inverse crimes’ (see [CK19, p. 179]), the forward problem is solved using a fine mesh and
P2 finite element basis functions, while coarser triangulations and P1 basis functions are used in the
inversion. Gaussian noise with mean zero and standard deviation γ ‖h‖∞, where γ is a free parameter,
is added to h to simulate noise.

4.2. Choice of regularization functional. Regularization is commonly incorporated by adding spe-
cific terms to the numerical implementation, either during minimization or when addressing ill-posed
systems of equations. These terms often depend on the parametrization of the variable of interest or the
discretization of the ill-posed systems [Run08, Fan22].
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In our numerical experiments, we introduce a regularization functional that combines the perimeter
of ∂ω with Tikhonov regularization for µ on ∂ω:

ρ1
2
P (∂ω) +

ρ2
2
R(µ) :=

ρ1
2

∫
∂ω

1 ds+
ρ2
2

∫
Ω

µ2 dx,

where ρ1 and ρ2 are small positive constants.
In most cases, we omit the perimeter penalization and rely solely on Tikhonov regularization for µ on

∂ω, as this approach is sufficient for accurately reconstructing µ and ∂ω, even with noise-contaminated
data.

4.3. Choice of regularization parameter. In the reconstruction of noisy data, selecting the regular-
ization parameter ρ = ρ2 in (3) is critical. This parameter is often determined using the discrepancy
principle, which relies heavily on accurate knowledge of the noise level. However, precise noise-level
information is often unavailable or unreliable in many applications. Errors in noise estimation can signif-
icantly reduce reconstruction accuracy when using the discrepancy principle. To overcome this difficulty,
we propose a heuristic rule for choosing ρ that avoids dependence on noise-level knowledge. This rule is
based on the balancing principle [CJK10b]: fix β > 1 and compute ρ > 0 such that

(36) (β − 1)J(µ1, ω)−
ρ

2
R(µ) := (β − 1)

1

2
‖u(µ)− h‖2L2(∂Ω) −

ρ

2
‖µ‖2L2(Ω) = 0.

This approach balances the data-fitting term J(µ1, ω) with the penalty term R(µ), where β > 1 controls
their trade-off. It eliminates the need for noise-level knowledge and has been successfully applied to both
linear and nonlinear inverse problems [CJK10a, CJK10b, Cla12, CJ12, IJT11, Mef21].

In the following numerical experiments, we explore two approaches: (1) directly assigning a fixed value
to ρ and (2) applying the heuristic rule (36). Specifically, choosing ρ ∈ (0, 1) indicates the first approach,
while selecting β > 1 corresponds to the balancing principle (36).

4.4. Numerical algorithm. The main steps of our numerical algorithm follows a standard approxima-
tion procedure, the important details of which we provide as follows.

Choice of descent direction for the boundary interface variation. The domain ω is approximated using
boundary interface variation, following an approach similar to domain variation in shape optimization
[DMNV07]. We employ a Riesz representation of the shape gradient G to suppress oscillations on
the unknown interface boundary during the approximation process. Rapid oscillations on the interface
boundary may destabilize the approximation and potentially halt the process prematurely.

To compute a Riesz representative of the kernel −Gn, we generate an H1-smooth extension of the
vector by seeking a weak solution θ ∈ H1

0 (Ω)
d := {ϕ ∈ H1(Ω)d | ϕ = 0 on ∂Ω} to the variational

equation
(37) (∇θ,∇ϕ)Ω + (θ,ϕ)Ω = −〈Gn,ϕ〉∂ω, for all ϕ ∈ H1

0 (Ω)
d.

In this way, we obtain a Sobolev gradient [Neu97] representation θ ∈ H1
0 (Ω)

d of G, which is only
supported on ∂ω. More importantly, this approach produces a smoothed, preconditioned extension of
−Gn over the entire domain Ω. Such an extension allows us to deform the discretized computational
domain by moving the (movable) nodes of the computational mesh – thus moving not only the nodes
on the boundary interface but also all internal nodes within the discretized domain. Further discussions
about discrete gradient flows for shape optimization problems are provided in [DMNV07].

To compute the kth boundary interface ∂ωk, we carry out the following procedures:
1. Initilization: Fix ρ ∈ (0, 1) (or β > 1) and choose initial guesses µ0 and ∂ω0.
2. Iteration: For k = 0, 1, 2, . . ., do the following:

2.1 Solve the state’s and adjoint’s variational equations on the current domain Ωk.
2.2 For a sufficiently small tk1 > 0, do the update µk+1 = µk − t1J

′
ρ(µ

k).
2.3 Choose tk2 > 0, and compute the deformation vector θk using (37) in Ωk.
2.4 Update the current domain by setting Ωk+1 := {x+ tk2θ

k(x) ∈ Rd | x ∈ Ωk}.
3. Stop Test: Repeat Iteration until convergence.

Step-size computation and stopping condition. In Step 2.2, tk1 = tk2 = tk for all k = 0, 1, 2, . . ., and tk

is computed using a backtracking line search inspired by [RA20, p. 281], with the formula

tk = sJ(ωk)/|θk|2H1(Ωk)d

at each iteration step k, where s > 0 is a scaling factor. While the calculation of tk can be refined, this
simple approach already yields effective results, as shown in the next subsection. To prevent inverted
triangles in the mesh after the update, the step size tk is further reduced.
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The algorithm terminates when tk < t0, where t0 > 0 is a small real number, or when the maximum
number of iterations is reached. In all experiments, t0 is set to 10−12 for convex boundary interfaces
and adjusted to 10−6 for noisy data. For non-convex interfaces, where boundary reconstruction is more
challenging under noise, the step size is further reduced when the cost value drops below 10−3 to avoid
overshooting.

In the following subsections, we first test the proposed scheme with exact measurements in a simple
setting, then extend it to more complex setups with noisy data. In all experiments, we set µ0 = 1. For
the initial value µ0, one can simply refer to the history plots of µ1.

4.5. 2D radial problem. We first consider a series of 2D radial problems, similar to the test setup in
[MS09, Mac23]. We let g ∈ R+, η > −1, and suppose that
(38) µ(x) = g(1 + η(x))

where η is supported in a closed ball Ba of radius a, i.e., supp η ⊂ Ba ⊂ Ω.
Let us assume the 2D radial geometry and consider (1). In the polar coordinate system we have

x = (r, θ), where r is the radial coordinate and θ is the angular coordinate. Let Ω be the disk of radius
R centered at the origin. Assuming that η has the radial symmetry, we write η(x) = η(r), for r ∈ (0, R).
Let 0 < Ra < R and ηa > 0. We suppose that η(r) = ηa for r ∈ (0, Ra) and 0 for r ∈ (Ra, R).

Hereinafter, we write g = k2, k > 0. We define l = ζα, set α = 1, and consider Ω− = {x | |x| 6 Ra}
and Ω+ = {x | Ra < |x| < R}. We put ·∗ when referring to the exact parameter value; e.g., we denote
the exact absorption coefficient by µ∗ = µ∗

0χΩ\ω + µ∗
1χω. We consider the form µ∗ = µ∗

0χΩ\ω + µ∗
1χω =

g(χΩ\ω + (1 + η∗a)χω).
In all experiments, we set k = 1, R = 3, l = 0.3, and R∗

a = 1.5 for the axisymmetric case.

4.6. Numerical tests with a constant source function. We consider a constant source function
f = 1. We take s = 0.1 and choose ∂ω0 = Br := {x ∈ R2 | |x| = r = 2.8} as the initial guess for the
boundary interface. The numerical results with µ∗

1 = 1.2 are shown in Figures 1 with fixed ρ and β.
The reconstructions show precision, and the plots indicate that when using a constant source function,
the regularization parameter selection is almost the same, regardless of whether the balancing principle
(36) is applied. This suggests that we can choose a suitable value for ρ to obtain a reconstruction of µ
consistent with the case when (36) is used.
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iteration
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s
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β=1.075

Figure 1. A radial problem in 2D with µ∗
1 = 1.2 and source function f = 1

We repeat the experiment with higher values of η∗. Using the balancing principle (36), we obtain
the results in Figure 2. Accurate identification of µ and ∂ω is possible for higher η∗ values when an
appropriate β is chosen with exact measurements.

4.7. Numerical tests with a point source. We next consider the case of a point source, specifically
when f = δ(x−x0), where x0 is the position of the point source within Ω. The boundary data for optical
tomography can be specified as all possible Cauchy pairs along the boundary. The inverse problem which
is considered here is related to fluorescence diffuse optical tomography.

We set x0 = 0 and (µ∗
0, µ

∗
1) = (1, 1.2). Without applying (36), we obtain the results shown in Figure 3.

The leftmost plots correspond to s = 1, and the middle plots correspond to s = 10. As expected,
increasing the step-size parameter s accelerates convergence toward the exact solution. However, in both
cases, the boundary interface approximation is inaccurate. We then repeat the experiment with a new
initial guess, ∂ω0 = B0.8, yielding a highly accurate approximation of the exact solution, as shown in
the rightmost plot of Figure 3. The scheme depends on the initialization, as anticipated. By selecting
a good initial guess for µ and ∂ω, an accurate identification of the unknown coefficient and boundary
interface can be achieved.

Note that this violates our regularity assumption on the source function.
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Figure 2. 2D radial problem with source function f = 1 and varying µ∗
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Figure 3. Results for a 2D radial problem with f(x) = δ(x)

We repeat the experiments with slight modifications to µ∗. Specifically, we examine the main case
(38) with varying η∗ = 0.2, 1, 2, 5, but using a point source instead of a spatially oscillating source term.
With s = 100, the results are summarized in Figure (4). By carefully selecting initial guesses for the
unknown parameter and boundary interface (see also Figure 3), we achieve precise identification of µ
and ∂ω.
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Figure 4. Results for a 2D radial problem with f(x) = δ(x) and varying η∗a

The previous tests were based on precise measurements. For noisy data, we summarize the recon-
structions of ∂ω∗ = B1.5 and identifications when η∗ = 0.2, 5 in Figure 5. Despite high noise levels, the
identifications of both values and shapes were satisfactory. We used the same ρ as in the non-noisy case
to demonstrate the impact of noise under a fixed Tikhonov regularization parameter. As expected, the
reconstructions were less accurate than with exact measurements, as shown by the cost value history in
the rightmost plots of Figure 5. The reconstructions can be improved by adjusting ρ.
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Figure 5. Results for a 2D radial problem with f(x) = δ(x) under noisy data, with
η∗ = 0.2 (left three plots) and η∗ = 5 (right three plots)

4.8. Numerical tests with a constant source function and non-circular boundary interface.
We repeat the experiments from subsection 4.6, but with the exact boundary interface given by:

∂ω∗ =

{
5(0.4 + 0.06 cos(3t))

(
cos t
sin t

)
,∀t ∈ [0, 2π)

}
.

This boundary is non-convex with minor concavities. As before, we set f = 1, k = 1, R = 3, and l = 0.3,
and show the results for η∗a = 0.2 in Figures 6 with ρ = 0.0002 and s = 4. Though the reconstruction
misses the concavities, it closely matches the exact boundary, and the method accurately identifies µ1.
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Figure 6. An example featuring a non-circular boundary interface

We perform another set of experiments with noisy data at two different levels. The numerical results,
displayed in Figures 7, show the results when γ = 0.5, 0.10. As expected, the reconstructions are less
accurate compared to those with exact measurements but are still reasonable, as seen in the figures. The
relative errors of the computed absorption coefficient and boundary interface are close to the specified
noise levels.
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Figure 7. An example featuring a non-circular boundary interface with noisy data

Next, we conduct experiments by varying η∗a with exact measurements, where the initial guess is
smaller than the exact boundary interface and positioned inside ∂ω∗. Specifically, we use ∂ω0 = B0.5 as
the initial boundary geometry and set s = 10. The results, including the histories of µ1 and cost values,
are shown in Figure 8. The method successfully identified the boundary interface, including its concave
parts, and the values for µ1 closely match the exact values, demonstrating the approach’s robustness.

For the reconstruction with noisy data at γ = 0.05, 0.10 and η∗ = 5, the results are shown in Figure 9.
The Tikhonov regularization parameter ρ is chosen based on the noise level, and a large step-size pa-
rameter s = 5 is used. Despite the noise, the method successfully reconstructed the boundary interface
and identified the absorption coefficient with good accuracy. The histories of µ1 and the cost are also
shown, with higher noise levels corresponding to larger cost values.

We repeated the experiment using a peanut-shaped boundary interface and fixed ρ at 0.0001. The
results, shown in Figure 10, demonstrate that despite the complex shape, the recovery of the absorp-
tion coefficient and boundary geometry remained accurate, even with high noise. This highlights the
robustness of the method for constant source.
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Figure 8. Results for a non-circular boundary interface with varying η∗a values
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Figure 9. An example featuring a non-circular boundary interface with noisy data

To further assess robustness, we examined the impact of different initial guesses with noisy data at
γ = 0.10. As shown in Figure 11, the reconstruction accuracy depends on the initial shape position, as
expected. However, the reconstruction converged to an almost identical exact shape, even under high
noise. Similar results can be expected with varying initial shape geometries.
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Figure 10. An example of a peanut-shaped boundary interface with noisy data

4.9. Numerical tests with point source and non-circular boundary interface. We conduct nu-
merical experiments using a point source to reconstruct a non-circular boundary interface, based on
the setup from subsection 4.8, with some modifications. Using f(x) = 100δ(x) as the point source, we
reconsider the reconstruction problem shown in Figure 6. The results, in Figure 12, compare scenarios
with and without noise, with the regularization parameter ρ set to 10−7. The problem becomes more
ill-posed, as small perturbations in the measurements lead to significant discrepancies in the reconstruc-
tion. Apparently, reconstructing a non-circular boundary interface with a point source is particularly
challenging.

We also test our approach with a more complex boundary interface, parameterized as:

∂ω∗ =

{
5(0.4 + 0.12 cos(3t))

(
cos t
sin t

)
,∀t ∈ [0, 2π)

}
.

We set f(x) = 100δ(x) and µ∗
1 = 6. Reconstruction results using both exact measurements and noisy data

with γ = 0.01 are shown in Figure 13. Reconstruction is highly accurate with exact measurements, but
introducing noise (γ = 0.01) makes it slightly more challenging. However, the reconstructed boundary
interface and coefficient µ remain satisfactory. For exact measurements, we set ρ = 5 × 10−6, and for
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Figure 11. Effect of choice of initial guess
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Figure 12. Results for a non-circular boundary interface with f(x) = 100δ(x) under
exact (first three columns from the left) and noisy measurements (γ = 0.01)

noisy data, ρ = 5 × 10−5. These reconstructions, like the previous examples, depend heavily on the
initial guess.
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Figure 13. Results for a smooth non-circular boundary interface with f(x) = 100δ(x)
and µ∗

1 = 6 under exact (first three columns from the left) and noisy measurements
(γ = 0.01)

Finally, we consider a smaller boundary interface in the last test of this subsection. This time, ω∗ is
parametrized as:

∂ω∗ =

{
8(2 + 0.6 cos(4t))

(
cos t
sin t

)
,∀t ∈ [0, 2π)

}
.

The computational setup remains the same, but instead of fixing ρ, we apply (36) to evaluate its impact
and accuracy. The reconstruction results, shown in Figure 14, were obtained with s = 10 for exact mea-
surements and s = 1 for noisy ones. As expected, reconstructing smaller boundary interfaces, especially
those farther from the exterior boundary, is challenging. Reconstruction accuracy decreases with even
small amounts of noise. However, the method successfully identified concavities in the boundary inter-
face, with the reconstructed geometry closely approximating the exact shape and providing a reasonably
accurate absorption coefficient. Figure 14 also includes plots of the histories of values for µ1, cost values,
and ρ.

From this point forward, all reconstructions use the balancing principle (36). The source is fixed as
f(x) = 100δ(x), µ∗

1 = 6 and noisy measurements mean the noise level is set to γ = 0.005.

4.10. Numerical tests with point source and boundary interface with sharp edges. For the
next experiment, we consider boundary interfaces with sharp edges, which violate our regularity assump-
tion. However, we include these cases to test our numerical method. The setup remains the same as in
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Figure 14. Results for a smooth non-circular boundary interface with f(x) = 100δ(x)
and µ∗

1 = 6 under exact and noisy measurements (γ = 0.005)

the previous subsection, with the only change being the modified boundary interface geometry that needs
reconstruction. Specifically, we test a square boundary interface and an inverted T-shaped polygon.

The reconstruction results are shown in Figures 15 and 16 for exact and noisy measurements. In
Figure 15, reconstructing the square’s vertices is challenging. Even so, the method successfully detects
the edges with good accuracy. Noise significantly affects the reconstruction, making it hard to accurately
deduce the boundary geometry, but the method still identifies the interface and nearly reconstructs µ∗

1

accurately.
A similar observation is made for the inverted T-shaped polygon in Figure 16, which is more chal-

lenging. Although the vertices and edges are not reconstructed, the method accurately determines µ∗
1,

even with noise, and identifies concavities within the boundary interface. These examples demonstrate
the method’s effectiveness in reconstructing non-smooth boundary interfaces.
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Figure 15. Results for a square boundary interface

4.11. Numerical tests with sources close to the boundary. To conclude our numerical examples,
we consider cases with multiple (point) sources. The sources are positioned near the boundary and we
define f as follows:

(39) f(x) =

M∑
i=1

exp

(
1− (x− xi)

2 + (y − yi)
2

ε2

)
,

where ε > 0, M ∈ N, and (xi, yi) = (R̄f cos θi, R̄f sin θi) with θi ∈ [0, 2π] and R̄f ∈ (0, R). We set
R̄f = 2.99, and in this subsection, noisy measurements mean γ = 0.1.

Figure 17 presents results for a circular boundary interface with parameters (µ∗
0, µ

∗
1) = (1, 1.2) under

exact and noisy measurements. Thick black dots indicate the source positions, which remain consistent
across all cases, and reconstructions are achieved without perimeter regularization. Reconstruction
accuracy decreases with fewer sources, as expected. For instance, when θi = (2π/3)i for i = 1, 2, 3 (first
column in Figure 17), the reconstructed shape deviates more from a circle compared to cases with more
sources. Nonetheless, the results remain reasonable, even with noise. For these cases, we set ε = 0.5 in
(39).
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Figure 16. Results for an inverted T-shaped boundary interface
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Figure 17. Results for a circular boundary interface with f (given by (39) with ε = 0.5)
of various positions and instances near the boundary and parameters (µ∗

0, µ
∗
1) = (1, 1.2),

under exact (first three columns from the left) and noisy measurements. No perimeter
regularization was applied in any of the cases.

Next, we revisit the problem with eight sources positioned at θi = π
4 i, where i = 1, . . . , 8 and examine

the effect of varying ε in (39). We consider ε = 0.5, 0.3, 0.2 and apply perimeter penalization with a small
weight. For the remaining experiments, we set (µ∗

0, µ
∗
1) = (1, 6) and γ = 0.1, using a peanut-shaped

boundary interface.
Figures 18 to 20 show the results. Smaller ε values lead to less accurate reconstructions, making it

harder to capture concave boundary regions. These results confirm that ε reflects the diffusion level of
the sources.

Finally, we analyze the reconstruction accuracy based on source positioning under noisy measure-
ments. Using eight sources (M = 8) with ε = 0.5 in (39), we fix the penalization parameter ρ1 to
6× 10−6. Reconstructions are evaluated for six configurations of source positions (see Figure 21 for two
illustrations):

Setup k : θi =
kπ

3
+
iπ

8
, i = 1, . . . , 8, k = 1, . . . , 6.

The reconstruction results are summarized in Figure 22. Even with noisy data, the method recon-
structs the boundary interface and the unknown coefficient µ effectively. Also, observe that source
positioning strongly influences accuracy, particularly for concave boundary regions. Reconstructions
are less accurate in areas farther from the sources, as expected. Overall, the proposed method is ro-
bust and highly effective in reconstructing boundary interfaces with complex geometries under noisy
measurements.
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Figure 18. Results for a peanut-shape boundary interface with source f (given by
(39) with ε = 0.5) near the boundary, under exact (top row) and noisy measurements.
Perimeter penalization was applied in all of the cases with ρ1 = 0.00004.
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Figure 19. Results for a peanut-shape boundary interface with source f (given by
(39) with ε = 0.3) near the boundary, under exact (top row) and noisy measurements.
Perimeter penalization was applied in all of the cases with ρ1 = 0.00003.
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Figure 20. Results for a peanut-shape boundary interface with source f (given by (39)
with ε = 0.2) near the boundary, under exact (top row) and noisy measurements. The
locations of the point sources are marked by thick black dots. Perimeter penalization
was applied in all of the cases with ρ1 = 0.00003.

5. Conclusion

This study introduces a shape-optimization-based approach to tackle the complex, ill-posed problem of
space-dependent parameter reconstruction in inverse diffusion problems. By reconstructing the constant
µ and the boundary interface with only one boundary measurement, we demonstrated the versatility and
robustness of this method, particularly in scenarios involving non-smooth, non-convex boundaries. De-
spite the difficulties in precisely capturing boundary vertices and edges, the method reliably reconstructs
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Figure 21. Positioning of sources
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Figure 22. Results for a peanut-shape boundary interface with f (given by (39) with
ε = 0.5) of various positions and under noisy measurements. Perimeter penalization was
applied in all of the cases with ρ1 = 0.000006.

µ and accurately identifies concave features of the boundary interface, even under noisy conditions. The
influence of point source placement on reconstruction accuracy, especially in concave regions, highlights
an expected spatial sensitivity. Overall, the results confirm that the proposed approach is practical and
effective for complex boundary interface reconstructions, emphasizing its applicability to various related
reconstruction problems that focus on parameter identification with jump discontinuities. A key insight
of the method is its non-trivial nature, as achieving an accurate reconstruction depends on a carefully
chosen parameter β.

In follow-up work, we will focus on stability analysis when the primary quantity of interest is the
jump in the absorption coefficient. Specifically, we will derive a local stability estimate for a parameter-
ized, non-monotone family of domains and provide a quantitative stability result for the local optimal
solution under perturbations of the absorption coefficient parameter. This investigation will extend the
current formulation by incorporating both the first-order and second-order shape derivatives of the cost
functional, offering a deeper understanding of the method’s robustness. Additionally, exploring other
objective functionals, including the well-known Kohn-Vogelius cost functional [KV84, Mef21], will be the
focus of future investigations.

Harrach showed that two parameters can be uniquely determined using the time-independent diffusion
equation (1) if the diffusion coefficient is piecewise constant and the absorption coefficient is piecewise
analytic [Har09]. In this sense, the approach developed in this paper can be applied to the simultaneous
reconstruction of two parameters.

In addition to DOT, the present method can potentially be applied to other optical imaging techniques,
such as fluorescence DOT (FDOT) (see [Jia10, p. 165], [MOW+03, MP03], and [DCBY12]), ultrasound-
modulated fluorescence techniques [Liu14], and fluorescence molecular tomography (FMT) [NTBW02].
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Appendix A. Appendices

A. Proofs of some auxiliary results.

A.1. Well-posedness of the state.

Proof of Lemma 2.3. The proof follows from Lax-Milgram lemma. Indeed, it can be shown that the
following inequalities hold:

|a(u, v)| 6 max{α, µmax, ζ
−1} ‖u‖V ‖|v‖V , (u, v ∈ V );

a(u, u) > min{α, µmin} ‖u‖2V , (u ∈ V );(A.40)
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l(v) 6 cf ‖v‖V , cf := ‖f‖H−1(Ω) , (v ∈ V ).

The last two inequalities imply that

(A.41) ‖u‖V 6 cbcf , cb :=
1

min{α, µmin}
> 0.

The rest of the arguments are standard, so we omit it. �

A.2. Continuity of the parameter-to-state map.

Proof of Proposition 2.4. Let us write

(A.42) a(µ, u, v) =

∫
Ω

(α∇u · ∇v + µuv) dx+
1

ζ

∫
∂Ω

uv ds, µ ∈ A, u, v ∈ V.

Now, since ũ = F (µ̃) and ≈
u = F (

≈
µ), then, clearly, we have a(µ̃, ũ, v) = l(v) = a(

≈
µ,

≈
u, v), for all v ∈ V .

We let w = w(x) = ũ(x)− ≈
u(x) ∈ V . It can easily be verified that

−div (α∇w) + µ̃w = −(µ̃− ≈
µ)

≈
u, in Ω,

α∂nw +
1

ζ
w = 0, on ∂Ω.

Using a in (A.42), we have the variational equation a(µ̃, u, v) = −((µ̃ − ≈
µ)

≈
u, v)Ω, for all v ∈ V . We set

v = w and apply (A.40) and the Cauchy-Schwarz inequality to get

min{α, µmin} ‖w‖2V 6
∥∥µ̃− ≈

µ
∥∥
L∞(Ω)

∥∥≈
u
∥∥
L2(Ω)

‖w‖L2(Ω) 6
∥∥µ̃− ≈

µ
∥∥
L∞(Ω)

∥∥≈
u
∥∥
V
‖w‖V .

Employing estimate (A.41), we obtain
(A.43) ‖w‖V 6 c2bcf

∥∥µ̃− ≈
µ
∥∥
L∞(Ω)

.

Taking c = c2bcf
∥∥µ̃− ≈

µ
∥∥
L∞(Ω)

concludes the proof. �

A.3. Differentiability of the operator F .

Proof of Proposition 2.5. Let u ∈ V be the unique solution to Problem 2.2. Then, the existence of a
unique weak solution to the variational equation (9) can be verified easily using the Lax-Milgram lemma.
We omit the proof since the argumentations are standard.

We subtract (9) from (7) to obtain a(µ, δw − δu, v) = −(νδw, v)Ω, for all v ∈ V . Taking v =
δw − δu, we obtain – appealing to (A.40) and employing Cauchy-Schwarz inequality – the estimate
min{α, µmin} ‖δw − δu‖2V = −(νδw, δw − δu)Ω 6 ‖ν‖L∞(Ω) ‖δw‖V ‖δw − δu‖V . Consequently, we get
‖δw − δu‖V 6 cb ‖ν‖L∞(Ω) ‖δw‖V . In view of (A.43) and with respect to (6), we find that ‖δw‖V 6

c2bcf ‖ν‖L∞(Ω). Combining the last two estimates lead us to ‖δw − δu‖V 6 c3bcf ‖ν‖
2
L∞(Ω). This yields

(A.44)
‖F (µ+ ν)− F (µ)− δu‖V

‖ν‖L∞(Ω)

6
‖δw − δu‖V
‖ν‖L∞(Ω)

6 c3bcf ‖ν‖L∞(Ω) .

In conclusion, F is differentiable at µ and DF (µ)ν = δu.
Now, let us take v = δu ∈ V in (9). Then, again, in view of (A.43) and by the Cauchy-Schwarz inequal-

ity, we get min{α, µmin} ‖δu‖2V 6 |a(µ, δu, δu)| = |(νu, δu)Ω| 6 ‖ν‖L∞(Ω) ‖u‖V ‖δu‖V 6 cbcf ‖ν‖L∞(Ω) ‖δu‖V .
This leads to the inequality
(A.45) ‖δu‖V 6 c, c = c2bcf ‖ν‖∞ .

Thus, it follows that DF (µ) is uniformly bounded, thereby concluding the proof. �

A.4. Second-order sensitivity analysis.

Proof of Proposition 2.6. The well-posedness of (9) in Proposition 2.5 implies the existence of unique
solution δ2u ∈ V to (11) by Lax-Milgram lemma. The proof is standard so we omit it.

Now, we subtract (11) from (10) to obtain a(µ+ ν1, δ
2w, v)− a(µ, δ2u, v) = −(ν2[F (µ+ ν1)−F (µ)−

DF (µ)ν1], v)Ω, for all v ∈ V , or equivalently, after rearrangement,
a(µ, δ2w − δ2u, v) = −(ν2[F (µ+ ν1)− F (µ)−DF (µ)ν1], v)Ω − (ν1δ

2w, v)Ω, ∀v ∈ V.

By taking v = z := δ2w − δ2u and then employing the Cauchy-Schwarz inequality as well as the
coercivity of the bilinear form a (cf. (A.40)), we obtain

1

cb
‖z‖2V 6 ‖ν2‖L∞(Ω) ‖F (µ+ ν1)− F (µ)−DF (µ)ν1‖V ‖z‖V + ‖ν1‖L∞(Ω)

∥∥δ2w∥∥
V
‖z‖V .(A.46)



26 M. MACHIDA, H. NOTSU, AND J. F. T. RABAGO

Utilizing estimates (A.44) and (A.45) – employing similar argumentations while noting (A.43) – we have

‖F (µ+ ν1)− F (µ)−DF (µ)ν1‖V 6 c3bcf ‖ν1‖
2
L∞(Ω) and

∥∥δ2w∥∥
V
6 c3bcf ‖ν1‖L∞(Ω) ‖ν2‖L∞(Ω) .

With these estimates, we deduce from (A.46) the following bound ‖z‖2V 6 c3bcf ‖ν1‖
2
L∞(Ω) ‖ν2‖L∞(Ω),

from which we obtain the estimate

(A.47)
∥∥DF (µ+ ν1)ν2 −DF (µ)ν2 − δ2u

∥∥
V

‖ν1‖L∞(Ω)

6

∥∥δ2w − δ2u
∥∥
V

‖ν1‖L∞(Ω)

6 c3bcf ‖ν1‖L∞(Ω) ‖ν2‖L∞(Ω) .

This shows that F is twice-differentiable at µ and δ2u = D2F (µ)[ν1, ν2].
Now, choosing v = δ2u in (11), and then utilizing estimate (A.45), we obtain

(A.48)
∥∥δ2u∥∥

V
6 c3bcf ‖ν1‖L∞(Ω) ‖ν2‖L∞(Ω) .

Choosing c = c3bcf ‖ν1‖L∞(Ω) ‖ν2‖L∞(Ω), we conclude that D2F (µ) is uniformly bounded. This proves
the proposition. �

A.5. Strict convexity of the regularized functional.

Proof of Proposition 2.9. For brevity, we write u = u(µ). Observe that the first and the third term
of J ′′

ρ (µ)[ν, ν] are non-negative, hence, we only need to examine the second term. We claim that it is
positive. In view of (A.41) and (A.48), together with the trace theorem, we get∣∣〈u, δ2u〉

∂Ω

∣∣ 6 ‖u‖L2(∂Ω)

∥∥δ2u∥∥
L2(∂Ω)

. ‖u‖L2(Ω)

∥∥δ2u∥∥
L2(Ω)

6 c3bcf ‖u‖V ‖ν‖2L∞(Ω)

6 c4bc
2
f ‖ν‖

2
L∞(Ω) .

Let ρ0 = c4bc
2
f > 0. Invoking our key assumption (2.7), we get the following lower estimate

J ′′
ρ (µ)[ν, ν] > ‖δu‖2L2(∂Ω) −

∣∣〈u, δ2u〉
∂Ω

∣∣+ ρ ‖ν‖2L2(Ω) > ‖δu‖2L2(∂Ω) + (ρ− ρ0) ‖ν‖2L∞(Ω) .

Clearly, choosing ρ > ρ0 > 0, we get J ′′
ρ (µ)[ν, ν] > 0 – proving that Jρ is strictly convex. �

B. Computation of the material and shape derivatives of the state.

Proof of Theorem 3.3. The proof consists of two primary steps: first, we characterize the material de-
rivative of the state, followed by the derivation of the shape derivative of the state; see [ADK07] for a
closely related derivation in the context of a transmission problem.

First step: Let ut = u(ωt), where t ∈ I, and Ω ∈ Ok
ad, satisfying (2.2). To prove the given proposition,

we first show the existence of the material derivative u̇ of u which is defined as follows (see, e.g., [SZ92,
Eq. (3.38), p. 111]):

(B.49) u̇ = u̇(Ω)[θ] = lim
t↘0

u(Ωt) ◦ Tt − u(Ω)

t

provided the limit u̇ exists in H1(Ω) where (u(Ωt) ◦ Tt)(x) = u(Ωt)(Tt(x)), x ∈ Ω.
Let us consider ut ∈ Vt := H1(Ωt), the solution of the perturbed problem for a given variation θ ∈ Θk

given by the solution of
(B.50) at(ut, vt) = lt(vt), ∀vt ∈ Vt.

where 
at(ut, vt) =

∫
Ωt

(αt∇ut · ∇vt + µtutvt) dxt +
1

ζ

∫
∂Ωt

utvt dst, for ut, vt ∈ Vt,

lt(vt) =

∫
Ωt

ftvt dxt, for vt ∈ Vt.

Here, αt, µt, and ft are defined as α, µ, and f but replacing Ω by the perturbed domain Ωt, and the
gradient, ∇, is taken with respect to the spatial variable x ∈ Ω.

By applying the change of variables (cf. [DZ11, subsec. 9.4.2–9.4.3, pp. 482–484]), one can write
equation (B.50) as follows:
(B.51) at(ut, v) = lt(v), ∀v ∈ V,

where 
at(ut, v) =

∫
Ω

(αtAt∇ut · ∇v + Itµ
tutv) dx+

1

ζ

∫
∂Ω

btu
tv ds, for ut, v ∈ V,

lt(v) =

∫
Ω

Itf
tv dx, for v ∈ V, (ϕt = ϕt ◦ Tt : Ω → R).
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Here, observe that bt = It
∣∣(DTt)−>n

∣∣ = 1 because θ vanishes on ∂Ω.
Now, for all t ∈ [0, t0), with t0 sufficiently small, one can show that wt = ut − u ∈ V is a unique

solution to the variational equation at(ut, v)−a(u, v) = lt(v)− l(v), for all v ∈ V , which can equivalently
be written as
(B.52) ã(wt, v) = l̃(v), ∀v ∈ V,

where

(B.53)



ã(wt, v) =

∫
Ω

(αt∇wt · ∇v + µtwtv) dx+
1

ζ

∫
∂Ω

wtv ds, for wt, v ∈ V,

l̃(v) = −
∫
Ω

(αt − α)At∇ut · ∇v dx−
∫
Ω

α(At − id)∇ut · ∇v dx

−
∫
Ω

It(µ
t − µ)utv dx−

∫
Ω

(It − 1)µutv dx

+

∫
Ω

It(f
t − f)v dx+

∫
Ω

(It − 1)fv dx, for ut, v ∈ V.

The well-posedness of (B.52) essentially follows from the Lax-Milgram theorem, by applying standard
arguments and noting that limt↘0At = id and limt↘0 It = 1 uniformly on Ω, as well as the regularity
assumptions on µ and f given in Assumption 3.2. As a consequence, one can deduce that ‖wt‖V . ‖u‖V
(t ∈ I = [0, t0)). This means that the set {wt | t ∈ I} is bounded in V for sufficiently small t0.

Let us define zt = 1
tw

t for t ∈ (0, t0) which also belongs to V . Then, we have

(B.54)

ã(zt, v) = −
∫
Ω

(
αt − α

t

)
At∇ut · ∇v dx−

∫
Ω

α

(
At − id

t

)
∇ut · ∇v dx

−
∫
Ω

It

(
µt − µ

t

)
utv dx−

∫
Ω

(
It − 1

t

)
µutv dx

+

∫
Ω

It

(
f t − f

t

)
v dx+

∫
Ω

(
It − 1

t

)
fv dx =

1

t
l̃(v) =: lt(v), (∀v ∈ V ).

By selecting v = zt as the test function in the equation above, we can infer the boundedness of the
sequence {zt} in V . Specifically, we consider a sequence {tn} such that limn→∞ tn = 0, and our goal is
to demonstrate that limn→∞ ztn exists. The properties of the transformation Tt given in (23), together
with the boundedness of wt in V implies that ∇zt is bounded in L2(Ω)d, equivalently the sequence
{ztn} is bounded in V . Thus, there is a subsequence, which we still denote by tn with tn ↘ 0 and
an element z ∈ V such that ztn ⇀ z weakly in V . Since ∇utn → ∇u in L2(Ω)d, limtn↘0 Itn = 1 and
limtn↘0Atn = id uniformly on Ω, and the derivatives of the maps [t 7→ It] and [t 7→ At] given in (24) we
get

(B.55)

a0(z, v) :=

∫
Ω

(α∇z · ∇v + µzv) dx+
1

ζ

∫
∂Ω

zv ds

= −
∫
Ω

(∇α · θ(∇u · ∇v) + αA∇u · ∇v) dx−
∫
Ω

(∇µ · θuv + div θµuv) dx

+

∫
Ω

(∇f · θv + div θfv) dx

=: j1(v) + j2(v) + j3(v) =: l0(v), (∀v ∈ V ).

In above, the limit equation

(B.56) lim
t→0

1

t

(
Itϕ

t − ϕ
)
= div(ϕθ) = ϕdiv θ +∇ϕ · θ

was used which holds for any differentiable mapping t 7→ Itϕ
t from interval I to L2(Ω) with ϕ ∈ V

and θ ∈ Θk (cf. [IKP06, Cor. 3.1]). Since this equation has a unique solution, we deduce the weak
convergence ztn ⇀ z in V for any sequence {tn}. Meanwhile, the strong convergence follows from the
fact that a0(z, z) = limtn↘0 ã(z

tn , ztn) = limtn↘0 ltn(z
tn) = l0(v). together with the weak convergence

previously shown. This proves the characterization of the (unique) material derivative z = u̇ ∈ V of
u ∈ V given in equation (26).

Second step: Next, we shall derive the structure of the shape derivative of the state. First, we recall
that the function u has a shape derivative u′ at 0 in the direction of the vector field θ ∈ Θk if the limit

u′ = lim
t↘0

u(Ωt)− u(Ω)

t
,
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exist. This expression and the material derivative u̇ are related by u′ = u̇ − (∇u · θ) provided that
∇u · θ exists in some appropriate function space [SZ92, Eq. (3.38), p. 111]. We comment that the shape
derivative u′ of (1) is not continuous across the interface ∂ω. As a consequence, u′ cannot be in H1(Ω).
Nonetheless, it belongs to H1(Ω+) ∪H1(Ω−).

To proceed with the derivation of u′, we rewrite equation (B.55) in another form. To do so, we observe
that by applying the chain rule in conjunction with (24), the following expansions and identities hold
(here u is restricted to Ω±):

(B.57)

− (∇α · θ(∇u · ∇v) + αA∇u · ∇v) = ∇u ·
(
α(Dθ +Dθ>)− div (αθ)id

)
∇v

= div (α(θ · ∇u)∇v + α(θ · ∇v)∇u− α(∇u · ∇v)θ)
− (θ · ∇u) div (α∇v)− (θ · ∇v) div (α∇u),

α∇(∇u · θ) · ∇v = α∇2uθ · ∇v + α∇θ∇u · ∇v

= α(∇v)>∇2uθ + αDθ∇v · ∇u
= div (α(θ · ∇u)∇v)− (θ · ∇u) div (α∇v),

where ∇θ = (Dθ)> = ∂θj/∂xi and ∇2u denotes the Hessian of u which is symmetric. On the other
hand, taking ∇v± · θ ∈ H1(Ω±), where v± ∈ V ∩H2(Ω±), θ ∈ Θk (i.e., θ = 0 in ∂ω), as a test function
in Problem 2.2 yields the following equation

(B.58)
∫
Ω

(α∇u · ∇(∇v · θ) + µu(∇v · θ)) dx =

∫
Ω

f(∇v · θ) dx.

Moreover, we have the following equivalent expressions

j2(v) = −
∫
Ω

div (µuvθ) dx+

∫
Ω

(µ(θ · ∇u)v + µu(θ · ∇v)) dx,

j3(v) =

∫
Ω

div (fvθ) dx−
∫
Ω

f(∇v · θ) dx.

Utilizing the above identities in (B.55) with z replaced by u̇± = u′± +∇u± · θ ∈ H1(Ω±) (observe that
(∇u · θ) 6∈ H1(Ω) but u± ∈ Hk+1(Ω±), k > 2), we get

(B.59)

a0(u
′, v) +

∫
Ω

(α∇(∇u · θ) · ∇v + µ(∇u · θ)v) dx

=

∫
Ω

(α∇(∇u · θ) · ∇v + µ(∇u · θ)v) dx−
∫
Ω

[(θ · ∇v) div (α∇u)− µu(θ · ∇v) + f(∇v · θ)] dx

+

∫
Ω

div (α(θ · ∇v)∇u− α(∇u · ∇v)θ) dx−
∫
Ω

[div (µuvθ)− div (fvθ)] dx.

In above equation (and also in other places when no confusion arise), it should be noted that the integrals
over each domain can be divided into two separate domain integrals. For example, we have∫

Ω

(α∇(∇u · θ) · ∇v + µ(∇u · θ)v) dx =

∫
Ω+

(α+∇(∇u+ · θ) · ∇v + µ+(∇u+ · θ)v) dx

+

∫
Ω−

(α−∇(∇u− · θ) · ∇v + µ−(∇u− · θ)v) dx,

where Ω+ = Ω \ ω and Ω− = ω.
For θ ∈ Θk, observe that by using integration by parts, we have −

∫
Ω
(θ · ∇v) div (α∇u) dx =∫

Ω
α∇u · ∇(θ · ∇v) dx. Then, in view of (B.58), equation (B.59) can be simplified as follows

(B.60) a0(u
′, v) =

∫
Ω

[div (α(θ · ∇v)∇u− α(∇u · ∇v)θ)− div (µuvθ) + div (fvθ)] dx,

which provides an inititial characterization of the shape derivative of the state.
To complete the proof, we express the right side of (B.60) as a boundary integral over ∂ω. This

is accomplished by applying the divergence theorem after partitioning the integral into two domains
of integration: Ω \ ω and ω. We then utilize the notation [·]±, which denotes the difference between
the traces of a function at the boundary interface ∂ω as we approach from Ω \ ω and ω, respectively.
Specifically, by applying the divergence theorem in both Ω and Ω \ ω, followed by integration by parts,
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we obtain

(B.61)

∫
Ω

(−div (α∇u′) + µu′)v dx+

∫
∂Ω

(
α∂nu

′ +
1

ζ
u′
)
v ds−

∫
∂ω

[
α
∂u′

∂n

]
±
v ds

= a0(u
′, v) =

∫
Ω

(α∇u′ · ∇v + µu′v) dx+
1

ζ

∫
∂Ω

u′v ds

= −
∫
∂ω

{
(θ · ∇v) [α∇u]± · n− [α∇u]± · ∇vθn − [µu]± vθn + [f ]± vθn

}
ds,

where θn = θ · n. By comparing the left-most and right-most sides of the equation, while varying v
(which we assume to be sufficiently smooth–at least in H2(Ω)) over Ω = (Ω \ ω) ∪ ω and the over ∂Ω,
we deduce that the following equations hold at least in distributional sense:

−div (α∇u′) + µu′ = 0, in Ω \ ω and in ω,

α∂nu
′ +

1

ζ
u′ = 0, on ∂Ω.

We next derive the equation for u′ on ∂ω. First, let us note that, by elliptic regularity result, u± ∈
Hk+1(Ω±) (for d ∈ {2, 3}). Then, for some k ∈ N, k > 2, we have u ∈ C1,α(Ω±), 0 < α 6 k − d/2,
d ∈ {2, 3}, because of the Sobolev embedding Hk+1(Ω±) ↪→ C1,α(Ω±) (see, e.g., [DD12, Thm. 2.84,
p. 98] or [AF03, Thm. 4.12, p. 85]). Now, because [u]± = 0 on ∂ω, we have [∇u]± = [(∂u/∂n)n]± on
∂ω; that is, [∇τu]± = 0 on ∂ω. Hence, [u̇]± = 0 on ∂ω, and so [u′]± = [u̇]± − [∇u · θ]± = − [∇u · θ]± on
∂ω. By these equations, we deduce that

[u′]± = −θn
[
∂u

∂n

]
±

on ∂ω.

Next, we note that, from tangential Stokes’ formula [MS76], we have
∫
∂ω

θ · ∇τϕds = −
∫
∂ω
ϕdivτ θ ds,

when θ · n = 0 (i.e., θ is a tangential field). Here, the operators ∇τ and divτ are respectively the tan-
gential gradient and tangential divergence operators (see, e.g., [DZ11, HP18, SZ92]). We observe that
(([α∇u]± · n)θ − θn [α∇u]±) · n = 0 on ∂ω. Hence, we can replace ∇v by ∇τv. In addition, we know
that [∇τu]± = 0 on ∂ω which implies that

−
∫
∂ω

θn [α]± ∇τu · ∇v ds = −
∫
∂ω

θn [α∇u]± · ∇v ds

=

∫
∂ω

{
(θ · ∇v) [α∇u]± · n−

(
[α∇u]± · ∇v

)
θn
}
ds

=

∫
∂ω

v divτ (θn [α]± ∇τu) ds.

Using this identity, we arrive at the following equation∫
∂ω

[
α
∂u′

∂n

]
±
v ds =

∫
∂ω

(
divτ (θn [α]± ∇τu)− [µu]± θn + [f ]± θn

)
v ds,

which holds for all v ∈ V . By varying v, we deduce that[
α
∂u′

∂n

]
±
= K(u)[θ] = divτ (θn [α]± ∇τu)− [µu]± θn + [f ]± θn, on ∂ω.

This finally establishes the structure of the shape derivative of the state given in equation (28). For
the more general structure of the shape derivative without the aforementioned continuity conditions, see
Theorem 3.7. �

C. Existence of a shape solution. In this appendix, we address the question of the existence of an
optimal solution to the optimization problem

(C.62) min
ω∈O1

◦, Ω∈O1
ad

J(ω).

To establish this existence, we must impose a key assumption regarding the regularity of the boundary
interface, which is fortunately a consequence of the definition of the set of admissible domains O1

ad

provided in (22). For the purpose of our analysis, it suffices to assume that Ω is Lipschitz continuous,
which allows us to establish the desired existence result (refer to Proposition C.5). In this section, we
assume that f ∈ H−1(Ω) and that α exhibits jump discontinuities at the boundary interface. Therefore,
without further notice, we consider Problem 2.2 with α defined according to Assumption 3.5.
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Because Problem 2.2 admits a unique weak solution by Lemma 2.3, we can define the map Ω 7−→ u :=
u(ω), and denote its graph by

G = {(ω, u) : ω ∈ O1
◦ and u solves Problem 2.2},

The primary result we aim to establish is as follows:

Theorem C.1. The minimization problem (C.62) admits at least one solution in G.

To demonstrate the validity of this assertion, we first need to endow the set G with a topology that
ensures its compactness and the lower semi-continuity of the functional J . To achieve this, we introduce
a topology on G induced by the Hausdorff convergence, denoted as Ω(n) H−→ Ω. This framework enables
us to prove the existence of the optimal solution to (C.62) across arbitrary dimensions (d ∈ {2, 3}).
To prepare for our discussion, we will briefly review the definitions of Hausdorff distance, Hausdorff
convergence, and the ε-cone property. For further elaboration on these concepts, readers are referred to
[Pir84, Ch. 3].

Definition C.2 ([HP18, Def. 2.2.7, p. 30]). Let ω1 and ω2 be two (compact) subsets of Rd, d >
2. The Hausdorff distance distH(ω1, ω2) between ω1 and ω2 is defined as follows distH(ω1, ω2) =
max{ρ(ω1, ω2), ρ(ω2, ω1)} where ρ(ω1, ω2) = sups∈ω1

d(x, ω2) and d(x, ω2) = infy∈ω2
|x− y|. Note that

distH defines a topology on the closed bounded sets of Rd.

Definition C.3 ([HP18, Def. 2.2.8, p. 30]). Let {ω(n)} and ω be open sets included in D ⊂ Rd, d > 2.
We say that the sequence ω(n) converges in the sense of Hausdorff to ω if distH(Ω \ ω(n),Ω \ ω) −→ 0

as n −→ ∞. We will denote this convergence by ω(n) H−→ ω or simply by ω(n) −→ ω when there is no
confusion.

Definition C.4 ([HP18, Def. 2.4.1, p. 54]). Let ξ be a unitary vector in Rd, d > 2, ε > 0 be a real
number, and y ∈ Rd. A cone C with vertex y, direction ξ, and dimension ε is the set defined by

C(y, ξ, ε) = {x ∈ Rd | 〈x− y, ξ〉Rd > cos(ε)‖x− y‖Rd and 0 < ‖x− y‖Rd < ε},

where 〈·, ·〉Rd is the Euclidean scalar product of Rd and ‖ · ‖Rd is the associated euclidean norm.
An open bounded set Ω ⊂ Rd satisfies the ε-cone property, if for x ∈ ∂Ω, there exists a unitary vector

ξx ∈ Rd such that for all y ∈ Ω ∩Bε(x), we have C(y, ξ, ε) ⊂ Ω, where Bε(x) denotes the open ball with
center x and radius ε.

Given the definitions provided above, we hereby assert the ensuing proposition, pivotal in substanti-
ating the proof of Theorem C.1.

Proposition C.5 ([HP18, Thm. 2.4.7, p. 56]). An open bounded set Ω ⊂ Rd has the ε-cone property if
and only if it has a Lipschitz boundary.

Proposition C.5 guarantees that each admissible subdomain ω ∈ O1
◦ satisfies the ε-cone property,

which is sufficient to establish Theorem C.1. We emphasize that given a sequence of open sets {ω(n)}
in O1

◦, there exists an open set ω ∈ O1
◦ and a subsequence {ω(k)} such that ω(k) → ω. This convergence

implies ∂ω(k) → ∂ω. These convergences also hold for characteristic functions and compact sets, as shown
in [HP18, Thm. 2.4.10, p. 59]. Moreover, the implied convergence “ω(n) → ω implies ∂ω(n) → ∂ω” holds
in the Hausdorff sense for domains with Lipschitz boundaries [Hol01, Ex. 3.2] or satisfying the cone
property [Che75]. For a detailed discussion on Hausdorff convergence, see [HP18, Sec. 2.2.3, Def. 2.2.8,
p. 30]. It is also worth noting that for a sequence of measurable sets {ω(n)}, the corresponding sequence
of characteristic functions χω(n) is weakly-∗ relatively compact in L∞(Rd). This means that we can find
an element χ ∈ L∞(Rd) and a subsequence {ω(k)}k>0 ⊂ {ω(n)}n>0 such that (cf. [HP18, Eq. (2.3),
p. 27])

(C.63) for all ψ ∈ L1(Rd), lim
k→∞

∫
Rd

χω(k)ψ dx =

∫
Rd

χωψ dx.

In the above, the limit χ is generally not a characteristic function, as it takes values in (0, 1) [HP18,
Prop. 2.2.28, p. 45]. However, if the convergence occurs “strongly” in the sense of Lp

loc for some p ∈ [1,∞),
then χ becomes a characteristic function in the limit. In this case, a subsequence can be extracted that
converges almost everywhere, implying that χ takes on only the values 0 and 1, coinciding with the
characteristic function of the set where it equals 1 [HP18, p. 27]. This remark is precisely stated in the
following proposition.
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Proposition C.6 ([HP18, Prop. 2.2.1, p. 27]). If {ω(n)}n>0 and ω are measurable sets in Rd such that
χω(n) weakly-∗ converges in L∞(Rd) in the sense of (C.63) to χω, then χω(n) −→ χω in Lp

loc(Rd) for any
p < +∞ and almost everywhere.

Now, with the previous results at our disposal, we can easily prove the following proposition.

Proposition C.7. Let the following assumptions be satisfied:
• {ω(n)} ⊂ O1

◦ is a sequence that converges to ω? ∈ O1
◦ in the Hausdorff sense and in the sense of

characteristic functions;
• for each n ∈ N, Ω(n) ∈ O1

ad, Ω(n) := (Ω \ ω(n)) ∪ ω(n), and u(n) ∈ H1(Ω(n)) solves Problem 2.2
with Ω = (Ω \ ω(n)) ∪ ω(n).

Then, the sequence u(n) ∈ H1(Ω) converges (up to a subsequence) to a function u? in H1(Ω)-weak and
in L2(Ω)-strong such that u? = u solves Problem 2.2 in Ω = (Ω \ ω) ∪ ω with ω = ω?. Moreover,
χω(n)∇u(n) converges strongly in L2(ω)d to χω∇u. In addition, if the following compatibility conditions
χΩ\ω(n)u −→ u|Ω\ω and χω(n)u −→ u|ω strongly in H1(Ω \ ω) and in H1(ω), respectively, then the
convergence u(n) −→ u also holds strongly in H1(Ω).

Proof. Let the given assumptions be satisfied. To prove this proposition, we adapt the argument structure
used in the proof of [AR24, Prop. 2.2.3], reproducing key analytical steps where appropriate.

By definition of u(n), we have
A(n) :=

∫
Ω

α0χΩ\ω(n)∇u(n) · ∇v dx+

∫
Ω

α1χ
(n)
ω ∇u(n) · ∇v dx

+

∫
Ω

χΩ\ω(n)µ0u
(n)v dx+

∫
Ω

χ(n)
ω µ1u

(n)v dx+
1

ζ

∫
∂Ω

u(n)v ds =

∫
Ω

fv dx, for all v ∈ V.

Taking v = u(n) ∈ H1(Ω) and using the equivalence between the norm |||v|||Ω := ‖∇v‖L2(Ω) + ‖v‖L2(∂Ω)

and the usual H1(Ω)-Sobolev norm, we obtain the inequality
∥∥u(n)∥∥

H1(Ω)
. ‖f‖H−1(Ω). Hence, {u(n)}

is bounded in H1(Ω). By the Rellich-Kondrachov and Banach-Alaoglu theorems, we may extract a
subsequence {u(k)} ⊂ {u(n)} such that we have weak convergence u(k) ⇀ u? in H1(Ω) and strong
convergence u(k) → u? in L2(Ω), for some element u? ∈ H1(Ω).

We next show that the limit point u? ∈ H1(Ω) actually solves Problem 2.2 in Ω = (Ω\ω)∪ω (i.e., u? =
u where u solves Problem 2.2) by passing through the limit and using the pointwise almost everywhere
convergence of the characteristic functions χΩ\ω(n) to χΩ\ω? and χω(n) to χω? . From Proposition C.6,
we know that χω(n) almost everywhere converges to χω? in L1(Ω). As a consequence, we get (cf. [HP18,
p. 130])

(C.64) χΩ\ω(n)∇ψ −→ χΩ\ω?∇ψ and χω(n)∇ψ −→ χω?∇ψ strongly in L2(Ω).

We show that u? = u actually solves Problem 2.2 by proving that A(n) −→ A(∞) as n −→ ∞ where
A(∞) :=

∫
Ω

α0χΩ\ω∇u · ∇v dx+

∫
Ω

α1χω∇u · ∇v dx

+

∫
Ω

χΩ\ωµ0uv dx+

∫
Ω

χωµ1uv dx+
1

ζ

∫
∂Ω

uv ds =

∫
Ω

fv dx, for all v ∈ V.

Using (C.64), the weak convergence u(n) ⇀ u? in H1(Ω), and the weak-∗ convergences χΩ\ω(n)⇀χΩ\ω?

and χω(n)
∗
⇀ χω? in L∞(Ω), we see that
∫
Ω

α0χΩ\ω?∇u? · ∇v dx+

∫
Ω

α1χω?∇u? · ∇v dx

+

∫
Ω

χΩ\ω?µ0u
?v dx+

∫
Ω

χω?µ1u
?v dx+

1

ζ

∫
∂Ω

u?v ds =

∫
Ω

fv dx, for all v ∈ V.

By the uniqueness of the limits (see Lemma 2.3), we deduce that A(n) −→ A(∞). Thus, we conclude
that u? = u((Ω \ ω?) ∪ ω?) – recovering Problem 2.2.

The proofs of the final two statements Proposition C.7 follow a similar approach as the proof of the
last part of Proposition 2.2.3 in [AR24] (see also [HP18, Proof of Cor. 3.7.4., p. 130]), and are therefore
omitted. This completes the proof of the proposition. �

To close out this appendix, we provide the proof of Theorem C.1.
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Proof of Theorem C.1. Observe that the infimum of J(ω) is finite. Hence, we can find a minimiz-
ing sequence {ω(n)} ⊂ O1

◦ which is bounded such that limn→∞ J(ω(n)) = infω∈O1
◦
J(ω). By [HP18,

Thm. 2.4.10, p. 59], there exists ω? ∈ O1
◦, and a subsequence {ω(k)} ⊂ {ω(n)} such that ω(k) converges

to ω? in the sense of Hausdorff (Definition C.3) and also in the sense of characteristic functions. This
implies that the first assumption in Proposition C.7 is satisfied. With the second premise of Proposi-
tion C.7, we know that u(n) ∈ H1(Ω) (of functions u(n) ∈ H1(Ω) which solves Problem 2.2 on each of
its respective domain Ω = (Ω \ ω(n)) ∪ ω(n)) – taking a further subsequence if necessary – converges to
(the unique limit) u? ∈ H1(Ω) where u? = u((Ω \ ω?) ∪ ω?) solves Problem 2.2 in Ω = (Ω \ ω?) ∪ ω?.
Now, to conclude, it is left to show that the shape functional J(ω) is lower-semicontinuous; that is, we
have J(ω?) 6 limk→∞ J(ω(k)) = inf ω̂∈O1

◦
J(ω̂) 6 J(ω). From Proposition C.7, we know that the maps

(Ω \ ω) 7→ u(Ω \ ω) and ω 7→ u(ω) are continuous. Therefore, the map ω 7→ J(ω) is also continuous, in
particular, it is lower-semicontinuous. This proves Theorem C.1. �
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