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Abstract. We expose here a novel application of the so-called coupled com-
plex boundary method – first put forward by Cheng et al. (2014) to deal with
inverse source problems – in the framework of shape optimization for solving the
exterior Bernoulli problem, a prototypical model of stationary free boundary
problems. The idea of the method is to transform the overdetermined problem
to a complex boundary value problem with a complex Robin boundary con-
dition coupling the Dirichlet and Neumann boundary conditions on the free
boundary. Then, we optimize the cost function constructed by the imaginary
part of the solution in the whole domain in order to identify the free boundary.
We also prove the existence of the shape derivative of the complex state with
respect to the domain. Afterwards, we compute the shape gradient of the cost
functional, and characterize its shape Hessian at the optimal domain under a
strong, and then a mild regularity assumption on the domain. We then prove
the ill-posedness of the proposed shape problem by showing that the latter ex-
pression is compact. Also, we devise an iterative algorithm based on a Sobolev
gradient scheme via finite element method to solve the minimization problem.
Finally, we illustrate the applicability of the method through several numerical
examples, both in two and three spatial dimensions.

1. Introduction. Let A and B be two bounded and simply connected domains
in Rd, d ∈ {2, 3} (the space dimension), with respective boundaries Γ := ∂A and
Σ := ∂B, such that B ⊃ A. Denoting by Ω the annular domain B \ A (which is
assumed, unless stated otherwise, to be non-empty bounded open Lipschitz subset
of Rd throughout the paper), an exterior free boundary problem may be given as
follows: for given functions f , g, h, one tries to find Ω with the associated function
u := u(Ω) such that the overdetermined problem

−∆u = f in Ω, u = g on Γ, u = 0 and ∂nu = h on Σ, (1)
is satisfied, where ∂nu := ∇u · n is the outward normal derivative of u.

In this work, we are primarily interested in solving the free boundary problem
(FBP) (1) through the novel application of the so-called coupled complex bound-
ary method or CCBM in solving stationary FBPs through the context of shape
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optimization. For simplicity of discussion, we will consider the prototypical case of
(1) in two spatial dimensions popularly known as the exterior Bernoulli problem
wherein f ≡ 0, g ≡ 1, and h = λ, where λ < 0 is a fixed constant in (1). That is,
we consider the problem of finding a pair (Ω, u) := (Ω, u(Ω)) that solves the system

−∆u = 0 in Ω, u = 1 on Γ, u = 0 and ∂nu = λ on Σ. (2)

The system of partial differential equations (PDEs) admits a classical solution
for simply connected bounded domain Ω for any λ < 0, and uniqueness can be
guaranteed for bounded convex domains A [29]. Moreover, in the said case, it
was shown in [41, Thm 1.1] that the free boundary is C2,α regular. For additional
qualitative properties of solutions, as well as their numerical treatment, we refer
the readers, for instance, to [29]. The problem in consideration is also known in
the literature as the Alt-Caffarelli problem [3]. It originates from the description
of free surfaces for ideal fluids [30], but copious industrial applications leading to
similar formulations to (2) arises in many other related contexts, see [9, 28, 29]. We
mention that, in this paper, we do not tackle the question of existence of optimal
shape solutions for the proposed shape optimization problem. Instead, we will
tacitly assume the existence of an optimal domain which is sufficiently regular to
carry out a second-order shape calculus. Even so, we mention that existence proofs
and tools developed in this direction are issued in [6, 36, 37, 38].

The methods of shape optimization is a well-established tool to solve free bound-
ary problems, and in the case of (2), the method can be applied in several ways.
The usual strategy is to choose one of the boundary conditions on the free boundary
to obtain a well-posed state equation and then track the remaining boundary data
in L2(Σ) (see [24, 25, 35, 37, 42, 55, 56]) or utilize the Dirichlet energy functional as
a shape functional (see [23, 34]). Another option is to consider an energy-gap type
cost function which consists of two auxiliary states; one that is a solution of a pure
Dirichlet problem and one that satisfies a mixed Dirichlet-Neumann problem (see
[5, 4, 26]). The latter formulation is precisely given as the minimization problem

JKV (Ω) :=
1

2

∫
Ω

|∇ (uN − uD)|2 dx → inf, (3)

where the state functions uN and uD respectively satisfy the well-posed systems

−∆uN = 0 in Ω, uN = 1 on Γ, ∂nuN = λ on Σ; (4)

−∆uD = 0 in Ω, uD = 1 on Γ, uD = 0 on Σ. (5)

The equivalence between the above shape optimization formulation and the exte-
rior Bernoulli problem (2) issues from the following statement. If (Ω, u) is a solution
of (2), then uN = uD = u; therefore, JKV (Ω) ≡ 0. Conversely, if JKV (Ω) = 0, then
u = uN = uD is a solution of problem (2) because uD − uN ∈ H1

Γ,0 := {ϕ ∈ H1(Ω) |
ϕ = 0 on Γ}, JKV (Ω) =

1
2

∣∣uD − uN
∣∣
H1(Ω)

is a norm on H1
Γ,0(Ω). Formulation (3) is

better known in the literature as the Kohn-Vogelius approach (see, e.g. [4, 26, 43]).
Recently, some modifications of the above mentioned existing methods were of-

fered and examined in [52, 53], including the so-called Dirichlet-data-gap cost func-
tional approach – firstly proposed in [54]. These approaches make use of a Robin
problem as one of the state problem. Additionally, we mention that there is another
numerical technique – closely related to shape optimization method and was orig-
inally conceived to solve moving boundary problems via finite element method –
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called the comoving mesh method or CMM developed in [61] which can be applied
to solve the free boundary problem (2); see [61, Section 3] for details.

In this paper, we want to offer yet another shape optimization reformulation of
(2) which, of course, also applies to (1). The idea is somewhat similar to [52, 63],
but applies the concept of complex PDEs. More exactly, we showcase here a new
application of the so-called coupled complex boundary method for solving stationary
free boundary problems. The idea of the method is simple: we couple the Dirichlet
and Neumann data in a Robin boundary condition in such a way that the Dirichlet
data and the Neumann data are the respective real and imaginary parts of the
Robin boundary condition. As a result, the conditions that have to be satisfied on
the free boundary are transformed into one condition that needs to be satisfied on
the domain. With the new method, as in problem (3), the objective function can
then be defined as a volume integral, see (10).

The CCBM was first put forward by Cheng et al. in [8] for solving an inverse
source problem (see also [7]) and was then used to solve the Cauchy problem stably
in [7]. It is later on applied to an inverse conductivity problem with one mea-
surement in [32] and also to parameter identification in elliptic problems in [65].
Much more recently, CCBM was also applied in solving inverse obstacle problems
by Afraites in [1]. To the best of our knowledge – as the method has not been
applied yet to solving FBPs in previous investigations – this is the first time that
CCBM will be explored to deal with stationary FBPs, particularly as a numerical
resolution to the exterior Bernoulli problem. This, in turn, provides new direc-
tions in treating related free boundary/surface problems in the context of shape
optimization.

The remainder of the paper is as follows. In Section 2, we describe how CCBM
actually applies to solving problem (2) in the framework of shape optimization.
We also give further motivations about the present study – providing merits to
considering CCBM as a way to solve FBPs. Section 3 is devoted to proving that
the map t 7→ ut is C1 in a neighborhood of zero, and to the characterization of its
derivative. Analogous results for the map t 7→ J(Ωt) are also exhibited therein,
including especially the first-order shape derivative of the cost. We also derive its
second-order shape derivative in subsection 4.2, looking particularly on its struc-
ture at the solution of (2). With the latter expression, we examine the instability
of the shape optimization problem in subsection 4.3 by proving the compactness
of the shape Hessian of J at a critical shape. In Section 5, we devise a numerical
algorithm (subsection 5.1) based on Sobolev gradient method to solve the shape op-
timization problem in consideration. This is followed by an intermediate subsection
(subsection 5.2), where we state and prove a small result concerning a stationary
point of an evolving domain that evolves according to a given pseudo flow field
related to Sobolev gradient method used in this investigation. Then, we illustrate
the feasibility of the proposed method through several numerical examples both
in two and three spatial dimensions (subsection 5.3). Lastly, in Appendix 7.1, a
rigorous proof of the existence of the material derivative of the state, as well as the
characterization of its corresponding shape derivative, are provided.

2. CCBM in shape optimization setting. We present here the proposed CCBM
formulation of (2) and give the motivation of the method for solving the free bound-
ary problem.
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2.1. Formulation and notations. In what follows we present the CCBM formula-
tion of (2) and its shape optimization reformulation by introducing the least-squares
fitting for the imaginary part of the complex PDE solution. The discussion will be
issued in the case of two dimensions, but the results easily extend in three dimen-
sions. The main point of departure of the method is to recast (2) into the complex
PDE system

−∆u = 0 in Ω, u = 1 on Γ, ∂nu+ iu = λ on Σ, (6)

where i =
√
−1 stands for the unit imaginary number. Letting u = u1 + iu2

denote the solution of (6), it can be verified that the real-valued functions u1 and
u2 respectively satisfy the real PDE systems:

−∆u1 = 0 in Ω, u1 = 1 on Γ, ∂nu1 − u2 = λ on Σ; (7)
−∆u2 = 0 in Ω, u2 = 0 on Γ, u1 + ∂nu2 = 0 on Σ. (8)

As mentioned earlier, a Robin-type boundary condition has already been used
in [52, 53, 54, 63]. The formulation issued here, however, is not covered by any of
the aforementioned study. This is because the Robin coefficient appearing in (6)
is a complex number while the ones used in [52, 53, 54] are positive real numbers.
Moreover, the Robin coefficient in [63] is assumed to be a non-negative real number.

Remark 2.1. Let us note that if u2 = 0 in Ω, then we have u2 = ∂nu2 = 0 on Σ
and u1 = 0 on Σ. In view of (7) and (8), we see that the pair (Ω, u1) solves the
original free boundary problem (2). Conversely, if (Ω, u) is the solution to the free
boundary problem (2), then clearly u1 and u2 satisfy (7) and (8).

We infer from the previous remark that the original free boundary problem (2)
can be recast into an equivalent shape problem given as follows.

Problem 2.2. Given a fixed interior boundary Γ and a real number λ < 0, find
an annular domain Ω, with the exterior boundary Σ := ∂Ω \ Γ, and a function
u := u(Ω) such that u2 = 0 in Ω and u = u1 + iu2 solves the PDE system (6).

Notation. The notations for the function spaces used in the paper are as follows.
We denote by Wm,p(Ω) the standard real Sobolev space with the norm ‖ ·‖Wm,p(Ω).
Let W 0,p(Ω) = Lp(Ω), and Hm(Ω) denotes the space Wm,2(Ω) with the correspond-
ing inner product (·, ·)m,Ω and norm ‖·‖Hm(Ω). We let Hm(Ω) be the complex version
of Hm(Ω) with the inner product ((·, ·))m,Ω and norm ||| · |||Hm(Ω) defined as follows:
for all u, v ∈ Hm(Ω), ((u, v))m,Ω = (u, v)m,Ω and |||v|||2Hm(Ω) = ((v, v))m,Ω. Similarly,
we denote V (Ω) := H1

Γ,0(Ω), V(Ω) := H1
Γ,0(Ω), Q = L2(Ω), Q = L2(Ω), S = L2(Σ),

S = L2(Σ). Lastly, we define |||v|||2V(Ω) :=
∫
Ω
∇v · ∇v dx+

∫
Σ
vv dσ.

Before we go further, we remark that the complex PDE system (6) is well-posed.
Indeed, with the sesquilinear form a defined on V(Ω)× V(Ω) by

a(u, v) =

∫
Ω

∇u · ∇v dx+ i

∫
Σ

uv dσ, ∀u, v ∈ V(Ω),

and the linear form l(v) = λ
∫
Σ
v dσ, we may state (6) in variational form as follows:

find u ∈ H1(Ω), u = 1 on Γ, such that a(u, v) = l(v), for all v ∈ V(Ω). (9)

The existence and uniqueness of solution of the problem follows from the complex
version of the Lax-Milgram lemma [13, p. 376] (see also [57, Lem. 2.1.51, p. 40]).
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Now, to solve Problem 2.2, we introduce the cost functional

J(Ω) =
1

2
‖u2‖2L2(Ω) =

1

2

∫
Ω

|u2|2 dx, (10)

where u2 – the imaginary part of u – is subject to the state problem (8). The shape
optimization problem that we consider then is the problem of minimizing J(Ω) over
a set of admissible domains Oad. Here, Oad is essentially the set of C1,1 annular
domains Ω with (fixed) interior boundary Γ and (free) exterior boundary Σ. It
actually suffices to consider Γ to be only Lipschitz regular in deriving the (first-
order) shape derivative of the functions and shape functionals involved, but for
simplicity, we also assume it to be C1,1 regular. For second-order shape sensitivity
analysis, we will require the domain Ω be of class C2,1 – at least when applying the
chain rule approach.

To numerically solve the optimization problem J(Ω) → inf, we will apply a
shape-gradient-based descent method based on finite element method (FEM). We
will not, however, employ any kind of adaptive mesh refinement in our numerical
scheme as opposed to [52, 53, 54]. In this way, we can further assess the stability
of the new method in comparison with the Kohn-Vogelius approach. Our method
is of course different from [24, 25, 26] which make use of the boundary element
method to numerically solve the shape optimization problem studied in the said
papers. The expression for the shape derivative of the cost will be exhibited in the
next section using shape calculus [16, 40, 47, 58, 60]. We point out though that
as opposed to [24, 25, 26] where the chain rule approach is used to compute the
shape derivative of the cost, our approach does not use the strong form of the shape
(Eulerian) derivative of the state, but instead only make use of the weak form of
the material (Lagrangian) derivative of the state problem (see Remark 3.11). This
technique also applies to computing the second-order shape derivative of the cost
which requires the domain to be only of class C1,1.

Throughout the rest of the paper, we shall refer to the Kohn-Vogelius method
as KVM, or just KV, and to our proposed shape optimization method simply by
CCBM.

2.2. Motivations. To further motivate the study of the proposed shape optimiza-
tion formulation J(Ω) → inf, we discuss here about some key advantages of CCBM
over the KVM (3) (and to other traditional approaches) while giving some addi-
tional observations about the two formulations.

From the theoretical point of view, the computation of the first-order shape
derivative of the cost function J is simpler compared to JKV when computed via a
Lagrange formulation or through the minimax formulation [15]. This is because the
corresponding Lagrangian expression for CCBM is composed of only one equality
constraint (this corresponds to problem (6)) in addition to the objective function
J . In the case of KVM, the Lagrangian consists of the cost function JKV and two
equality constraints corresponding to a mixed Dirichlet-Neumann problem and a
pure Dirichlet problem. Moreover, in order to take into account in the Lagrangian
functional the Dirichlet data on the free boundary for KVM, one needs to introduce
a suitable Lagrangian multiplier in constructing the functional. Such additional
requirement is not needed in the case of the CCBM formulation. In addition, when
applying instead the chain rule approach to get the shape derivative of the cost J
through the shape derivative of the states, one only needs to compute and justify
the existence of the shape derivative of a single complex PDE in contrast to the
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case of KVM where one has to deal with the shape derivative of two systems of
PDEs. Certainly, the latter would be more involved, especially when considering
more general and complicated boundary value problems.

Also, we add that the formulation – under suitable assumptions – offers more
regularity for the solution of the corresponding adjoint problem (see Remark 3.7)
than in the case of formulating (2) into a shape optimization setting that utilizes a
boundary-data-tracking-type cost functional.

Meanwhile, from the numerical viewpoint, CCBM appears to have nearly the
same computational complexity with respect to KVM. Nonetheless, it features some
notable advantages in terms of overall performance over KVM, but also presents
some downsides. On the one hand, CCBM only needs to solve one complex state
problem to evaluate its corresponding cost function. On the other hand, it also
requires to solve another PDE system (this corresponds to the adjoint problem (16)
associated with the formulation) in order to calculate its shape gradient. This is
as opposed to KVM which does not need the introduction of an adjoint problem.
Also, we stress here that, when applying FEM for instance, one does not need
to solve the coupled problems (7) and (8) simultaneously since it is enough to
solve the variational problem corresponding to (6). Even so, the time needed to
compute the solution to (6) is practically the same with the time required to solve
the two state problems associated with the KV formulation via a finite element
scheme. These observations may not seem to provide any advantages to CCBM over
KVM, but computational results – specifically obtained under large deformations
of the domains – provided in Examples 5.12–5.13 of subsection 5.3 show otherwise.
In fact, in many of these performed experiments, CCBM seems to require less
overall computational-time-per-iteration of the approximate shape solution to (2)
compared to KVM when solve via a gradient-based scheme, not to mention that,
in some instances, KVM converges prematurely and sometimes tends to overshoot
the optimal shape not like CCBM. In general, KVM converges faster than CCBM,
but the two methods complete the same number of iterations at nearly the same
time. Moreover, as we observed in our numerical experiments, CCBM seems to
have some sort of a similar smoothing effect that has been observed in [52] when
replacing the Dirichlet boundary condition with a Robin boundary condition in a
Neumann-data-tracking approach.

In addition, we become aware – after conducting numerous numerical experi-
ments – that the cost function JKV is less sensitive compared to J . In fact, we
notice that JKV (Ω) is insensitive to large deformations of Ω. In some sense, this
means that, after some iterations, the kth approximant Ωk of the exact shape solu-
tion Ω∗ gets stuck to some certain geometry and so will not get closer to the exact
solution even after an additional number of iterations. The insensitivity of JKV

to large variations limits the algorithm to take smaller step sizes at each iterations
– so to avoid being stuck at certain point which may not yet be considered opti-
mal. Surely, in some situations, smaller step sizes may result to slower convergence
behavior.

Be that as it may, the two methods provide almost the same optimal solution to
the given problem. These claims are made evident in subsection 5.3 where numerical
examples are provided. Last but not least, we point out that there is another
domain-integral-type penalization that may be considered. More exactly, one may
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opt to penalize, instead of JKV , by the cost functional

JL2(Ω) :=
1

2

∫
Ω

(uN − uD)
2 dx.

Compared with JKV , however, its shape gradient is more complex in structure
and would be numerically expensive to evaluate. In fact, it can be checked that in
this case one would need to solve five real boundary value problems: two state equa-
tions, two adjoint equations (cf. [45]), and one to approximate the mean curvature
of the free boundary implicitly.

The discussion given above, as well as the numerical findings issued in subsection
5.3, clearly warrants the proposal of the new method as a way to solve stationary
free boundary problems such as (1) and (2).

3. Shape derivatives. This section is devoted to proving that the map t 7→ ut is
C1 in a neighborhood of zero (Proposition 3.1), and to the characterization of its
derivative. Similar results for the map t 7→ J(Ωt) (Theorem 3.5) is also presented
herein. On this purpose, we need the notions of shape derivatives of functions and
shape functionals. We will provide these in subsection 3.1. Meanwhile, a rigorous
proof of existence of the Lagrangian derivative of the state – presented specifically
in its weak form – will be given in subsection 3.2. Finally, the shape derivative of
the cost functional will be exhibited in subsection 3.3.

3.1. Some elements of shape calculus. To derive the shape variation of J with
respect to the domain, we apply the concept of velocity or speed method (see,
e.g., [16, Chap. 4] or [17]). We let Dk(Rd;Rd) be the space of k-times contin-
uously differentiable functions with compact support contained in Rd. Consider
V ∈ Ek := C([0, ε);Dk(Rd;Rd)), N 3 k > 2, and let ε > 0 be a small real
number. The field V(t)(x) = V(t, x), x ∈ Rd, generates the transformations
Tt(V)(X) := Tt(X) = x(t;X), t > 0, X ∈ Rd, through the differential equa-
tion ẋ(t;x0) = V(t, x(t;x0)), x(0;x0) = x0, with the initial value x0 specified. We
denote the “transformed domain” Tt(V)(Ω) at t > 0 by Ωt =: Tt(Ω), and assumed
that all admissible deformations of Ω is contained in a larger open, bounded, and
connected set U ⊂ Rd (e.g., a ball in Rd) of class Ck,1. In this work, the evolutions
of the reference domain Ω is described using time-independent velocity fields V such
that

V ∈ Θk := {V ∈ Ck,1(Ω)d | V = 0 on Γ ∪ ∂U}. (11)

Here, we are fixing the interior boundary Γ by taking V = 0 on Γ. We note that
it is enough to consider transformations Tt that only change the position of the free
part Σ of ∂Ω, but do not rotate it. In other words, we may just consider vector
fields that have zero tangential part along Σ; that is, V|Σ = (V · n)n = Vnn.

We say that the function u has a material derivative u̇ and a shape derivative u′
at 0 in the direction of the vector field V if the limits

u̇ = lim
t↘0

u(Ωt) ◦ Tt − u(Ω)

t
and u′ = lim

t↘0

u(Ωt)− u(Ω)

t
,

exist, respectively, where (u(Ωt) ◦ Tt)(x) = u(Ωt)(Tt(x)). These expressions are
related by u′ = u̇ − (∇u · V) provided that ∇u · V exists in some appropriate
function space [16, 60].
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Given a shape functional j : Ω → R, we say that it has a directional Eulerian
derivative at Ω in the direction of V if the limit

lim
t↘0

j(Ωt)− j(Ω)

t
=: d j(Ω)[V]

exists (cf. [16, Eq. (3.6), p. 172]). If the map V 7→ d j(Ω)[V] is linear and
continuous, then j is shape differentiable at Ω, and the map is referred to as the
shape gradient of j. Similarly, the second-order Eulerian derivative of j at Ω along
the two fields V and W is given by

lim
s↘0

d j(Ωs(W))[V]− d j(Ω)[V]

s
=: d2j(Ω)[V,W]

if the limit exists [14, Def. 2.3]. In addition, j is said to be twice shape differentiable
if, for all V and W, d2j(Ω)[V,W] exists, and is bilinear and continuous with respect
to V,W. Accordingly, we call the expression as the shape Hessian of j.

To complete our preparation, we also mention some properties of Tt := Tt(V),
V ∈ Θ1, that are essential to our investigation. For sufficiently small t > 0, Tt and
its inverse T−1

t are both in D1(Rd;Rd) [16, Chap. 4]. Moreover, for t ∈ [0, ε), ε > 0
can be chosen sufficiently small so that It := det DTt > 0. Throughout the paper,
we use the notations

At := It(DT
−1
t )(DTt)

−> and Bt = It|(DTt)−>n|,
and assume that, for all t ∈ I, It := det DTt > 0. In addition, we assume that we
can find pair of constants Λ1, Λ2 (0 < Λ1 < Λ2) and Λ3, Λ4 (0 < Λ3 < Λ4) such
that

Λ1 6 Bt 6 Λ2 and Λ3|ξ|2 6 Atξ · ξ 6 Λ4|ξ|2, for all ξ ∈ Rd. (12)
Clearly, the following regularities hold:

[t 7→ It] ∈ C1(I, C(Ω)), [t 7→ At] ∈ C1(I, C(Ω)d×d), [t 7→ Bt] ∈ C1(I, C(Σ)). (13)
Lastly, we note the following derivatives:

d

dt
It
∣∣
t=0

= lim
t→0

It − 1

t
= divV,

d

dt
At

∣∣
t=0

= lim
t→0

At − I

t
= (divV)I−DV − (DV)> =: A,

d

dt
Bt

∣∣
t=0

= lim
t→0

Bt − 1

t
= divΣV = divV

∣∣
Σ
− (DVn) · n,

where divΣV denotes the tangential divergence of the vector V on Σ.

3.2. Lagrangian derivatives of the state. The main objective of this section
is to prove the proposition below concerning the material derivative of the state.
Throughout the section, Ω is assumed to be of class C1,1 and V ∈ Θ1. This implies
that, for sufficiently small t > 0, Tt is a C1,1 diffeomorphism of Ω onto Ωt.

Proposition 3.1. Let Ω be of class C1,1 and V ∈ Θ1. The map t 7→ ut ∈ H1(Ω) is
C1 in a neighborhood of 0. Its Lagrangian derivative at 0, denoted by u̇, belongs to
V(Ω) and satisfies∫

Ω

∇u̇ · ∇v dx+ i

∫
Σ

u̇v dσ = −
∫
Ω

A∇u · ∇v dx− i

∫
Σ

(divΣV)uv dσ

+ λ

∫
Σ

(divΣV)v dσ, ∀v ∈ V(Ω)
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To prove the above result, we need the following lemmas.

Lemma 3.2. The sesquilinear form at defined on V(Ω)× V(Ω) by

at(u, v) =

∫
Ω

At∇u · ∇v dx+ i

∫
Σ

Btuv dσ, ∀u, v ∈ V(Ω),

is bounded and coercive on V(Ω)× V(Ω) for sufficiently small t > 0.

Proof. For u, v ∈ V(Ω) and sufficiently small t > 0, we have, by Cauchy-
Schwarz and trace inequalities, the estimate |at(u, v)| 6 ct|||u|||V(Ω)|||v|||V(Ω) where
ct = max (|At|∞, |Bt|∞). This shows that at is bounded. Also, we have that1

at(u, u) =

∫
Ω

{∇u · ∇u+ (At − I)∇u · ∇u} dx+ i

∫
Σ

{uu+ (Bt − 1)uu} dσ.

Because the maps t 7→ At and t 7→ Bt are continuous at 0, then – for sufficiently
small t – max (|At − I|∞, |Bt − 1|∞) < 1. Consequently, we get the inequality
<({at(u, u)} &

(
|||∇u|||2Q + |||u|||2S

)
. Hence, at is coercive for small enough t.

Lemma 3.3. The function ut = ut1 + iut2 uniquely solves in H1(Ω) the equation∫
Ω

At∇ut · ∇v dx+ i

∫
Σ

Btu
tv dσ = λ

∫
Σ

Btv dσ, ∀v ∈ V(Ω),

ut = 1 on Γ.

(14)

Proof. The function ut ∈ H1(Ωt) satisfies ut = 1 on Γ, and solves the variational
problem ∫

Ωt

∇ut · ∇ϕt dxt + i

∫
Σt

utϕt dσt = λ

∫
Σt

ϕt dσt, ∀ϕt ∈ V(Ωt),

where V(Ωt) = {ϕt ∈ H1(Ωt) | ϕt = 0 on Γ}. Using the relation ut = ut ◦Tt := u1t ◦
Tt+ iu2t ◦Tt, the identity (∇ϕt) ◦Tt = DT−>

t ∇ϕt which holds for any ϕt ∈ H1(Ωt)
and ϕt ∈ H1(Ω), and the change of variables (cf. [16, subsec. 9.4.2–9.4.3, pp.
482–484]), we get ut = 1 on Γ and the variational equation above transforms to∫

Ω

At∇ut · ∇ϕt dx+ i

∫
Σ

Btu
tϕt dσ = λ

∫
Σ

Btϕ
t dσ, ∀ϕt ∈ V(Ω).

We immediately get (14) by taking v = ϕt above. Now, from Lemma 3.2, at(·, ·) :
[V(Ω)]2 → R is bounded and coercive. We let u0 ∈ H1(U) be a fixed function such
that u0 = 1 on Γ. Then, ut − u0 ∈ V(Ω), and by (14), we have∫

Ω

At∇(ut − u0) · ∇v dx+ i

∫
Σ

Bt(u
t − u0)v dσ

= −
∫
Ω

At∇u0 · ∇v dx− i

∫
Σ

Btu0v dσ + λ

∫
Σ

Btv dσ, ∀v ∈ V(Ω).

For t > 0 small enough, the following estimates hold∣∣∣∣∫
Σ

Btu0v dσ

∣∣∣∣ . |Bt|∞|||u0|||H1(U)|||v|||H1(Ω),∣∣∣∣λ ∫
Σ

Btv dσ

∣∣∣∣ . |Bt|∞|Σ|1/2|||v|||H1(Ω),

1Here, I stands for the identity matrix in d = 2 dimensions.
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Ω

At∇u0 · ∇v dx
∣∣∣∣ 6 |At|∞|||u0|||H1(U)|||v|||H1(Ω).

By Lax-Milgram lemma, zt = ut − u0 ∈ V(Ω) is the unique solution in V(Ω) of∫
Ω

At∇zt · ∇v dx+ i

∫
Σ

Btz
tv dσ

= −
∫
Ω

At∇u0 · ∇v dx− i

∫
Σ

Btu0v dσ + λ

∫
Σ

Btv dσ, ∀v ∈ V(Ω).

Now, let ut = zt + u0 ∈ H1(Ω). Then, we have∫
Ω

At∇ut · ∇v dx+ i

∫
Σ

Btu
tv dσ

=

∫
Ω

At∇(zt + u0) · ∇v dx+ i

∫
Σ

Bt(z
t + u0)v dσ

= λ

∫
Σ

Btv dσ, ∀v ∈ V(Ω).

Clearly, ut = zt + 1 = 1 on Γ because zt ∈ V(Ω). Uniqueness of ut follows from
the uniqueness of zt. That is, ut uniquely solves (14) in H1(Ω).

Lemma 3.4. The map t 7→ ut is C1 in a neighborhood of 0.
Proof. We prove the statement using the implicit function theorem (IFT). In view
of (14), we see that ut − u is the unique element in V(Ω) that satisfies∫

Ω

At∇(ut − u) · ∇v dx+ i

∫
Σ

Bt(u
t − u)v dσ

= −
∫
Ω

At∇u · ∇v dx− i

∫
Σ

Btuv dσ + λ

∫
Σ

Btv dσ, ∀v ∈ V(Ω).

Denoting by 〈·, ·〉 the duality pairing between V(Ω) and its dual space V′(Ω), we
consider the function F : I × V(Ω) → V′(Ω) defined by

〈F(t, w), v〉 :=
∫
Ω

At∇(w + u) · ∇v dx+ i

∫
Σ

Bt(w + u)v dσ − λ

∫
Σ

Btv dσ,

for all v, w ∈ V(Ω). Clearly, F is C1 because t 7→ At and t 7→ Bt are C1 in a
neighborhood of 0 by (13). We observe that ut − u uniquely solves F(t, ut − u) = 0
in V(Ω). In addition, 〈DwF(0, 0)w, v〉 = at(w, v). Using Lemma 3.2, we deduce
via the complex version of Lax-Milgram lemma that dwF(0, 0) is an isomorphism
from V(Ω) to V′(Ω). By the IFT, we conclude that the map t 7→ ut − u is C1 in
a neighborhood of 0. Now let u̇ ∈ V(Ω) be its derivative at t = 0. Differentiating
F(t, ut − u) = 0 with respect to t, we obtain 〈DwF(0, 0)u̇, v〉+

〈
∂
∂tF(0, 0), v

〉
= 0,

for all v ∈ V(Ω), leading to (14).

3.3. Computation of the shape gradient. We now prove the differentiability of
the map t 7→ J(Ωt) and characterize its derivative.
Theorem 3.5 (Shape gradient of J). Let Ω be of class C1,1 and V ∈ Θ1. The
map t 7→ J(Ωt) is C1 in a neighborhood of 0, and its derivative at 0 is given by
dJ(Ω)[V] =

∫
Σ
Gν ·V dσ where

G =
1

2
|u2|2 −

[
∇Σp1 · ∇Σu2 −∇Σp2 · ∇Σu1

+ p1 (∂nu1 + κu1) + p2 (∂nu2 + κu2) + λκp2

]
,

(15)
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κ stands for the mean curvature of the free boundary Σ, u = u1 + iu2 is the unique
solution to (6), and p = p1 + ip2 uniquely solves the adjoint system

−∆p = u2 in Ω, p = 0 on Γ, ∂np− ip = 0 on Σ. (16)

Remark 3.6. The weak formulation of (16) reads as follows:

find p ∈ V(Ω) such that
∫
Ω

∇p · ∇ϕdx− i

∫
Σ

pϕ dσ =

∫
Ω

u2ϕdx, ∀ϕ ∈ V(Ω).

(17)
The existence and uniqueness of solution to the variational problem (17) is again

a consequence of the Lax-Milgram lemma.

Remark 3.7. In general, for Ω of class Ck+1,1, k a non-negative integer, it can
be shown that the weak solution u ∈ H1(Ω) to the variational problem (9) is also
Hk+2(Ω). In particular, u2 ∈ Hk+2(Ω). Consequently, we find that the weak
solution p of problem (17) is not only in H1(Ω), but is also an element of Hk+4(Ω).

Theorem 3.5 relies on following lemma. The H2(Ω) regularity of u, which holds
true since Ω is assumed to be C1,1 and V ∈ Θ1, will be used subsequently without
further notice.

Lemma 3.8. Let Ω be of class C1,1 and V ∈ Θ1. The solution u of the state problem
(6) and the adjoint variable p which is the solution to (16) satisfy the equation∫

Ω

A∇u · ∇p dx = −
∫
Ω

u2V · ∇u dx+

∫
Σ

(∇p · ∇u)Vn dσ + i

∫
Σ

u(V · ∇p) dσ

+ i

∫
Σ

p(V · ∇u) dσ − λ

∫
Σ

(V · ∇p) dσ.

(18)

Proof. The result follows from the formula∫
Ω

A∇ϕ · ∇ψ dx =

∫
Ω

(∆ϕ)V · ∇ψ dx+

∫
Ω

(∆ψ)V · ∇ϕdx−
∫
Σ

∂nϕ(V · ∇ψ) dσ

−
∫
Σ

∂nψ(V · ∇ϕ) dσ +

∫
Σ

(∇ψ · ∇ϕ)Vn dσ,

(19)
which holds for all functions ϕ, ψ ∈ V(Ω) ∩ H2(Ω) and V ∈ Θ1, where A =
(divV)I−DV− (DV)> (see, e.g., [16]). Letting ϕ = u and ψ = p, and noting that
∂np = −ip and ∂nu = −iu+ λ on Σ and that −∆p = u2 in Ω, we obtain∫

Ω

A∇u · ∇p dx = −
∫
Ω

u2V · ∇u dx+ i

∫
Σ

u(V · ∇p) dσ + i

∫
Σ

p(V · ∇u) dσ

− λ

∫
Σ

(V · ∇p) dσ +

∫
Σ

(∇p · ∇u)Vn dσ,

as desired. This proves the lemma.

Proof of Theorem 3.5. By change of variables, we write J(Ωt) = 1
2

∫
Ω
It|ut2|2 dx.

Because [t 7→ It] ∈ C1(I, C(Ω)) and [t 7→ ut] ∈ C1(I,H1(Ω)), then the mapping
t 7→ J(Ωt) is also C1 in the neighborhood I of 0, and we have

dJ(Ω)[V] =
1

2

∫
Ω

(divV)|u2|2 dx+

∫
Ω

u2u̇2 dx. (20)
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On the one hand, using the identity −
∫
Ω
(divv)φdx =

∫
Ω
v · ∇φdx −∫

Σ
φ(v · ν) dσ, which holds (on bounded Lipschitz domain Ω) for any vector field

v ∈ C1(Ω)2 and scalar function φ ∈ W 1,1(Ω), the first integral can be equivalently
written as

1

2

∫
Ω

(divV)|u2|2 dx = −
∫
Ω

u2V · ∇u2 dx+
1

2

∫
Σ

|u2|2Vn dσ. (21)

On the other hand, the second integral is actually not useful for practical appli-
cations, especially in the numerical realization of the present shape minimization
problem because it requires the solution of (14) for each velocity field V. A way
to resolve this issue is to rewrite the integrand in terms of another variable – get-
ting rid of the term u̇ – through the adjoint method. To this end, we utilize the
variational problem (17) with the test function ϕ = u̇ ∈ V(Ω) to obtain∫

Ω

u2u̇ dx =

∫
Ω

∇p · ∇u̇ dx− i

∫
Σ

pu̇ dσ. (22)

Now, choosing v = p ∈ V(Ω) as the test function in (14) gives us∫
Ω

∇u̇ · ∇p dx+ i

∫
Σ

u̇p dσ = −
∫
Ω

A∇u · ∇p dx− i

∫
Σ

(divΣV)up dσ

+ λ

∫
Σ

(divΣV)p dσ.

(23)

Hence, taking the complex conjugate of both sides of (22) and then comparing
the resulting equation to (23) leads us to the identity∫

Ω

u2u̇ dx = −
∫
Ω

A∇u · ∇p dx− i

∫
Σ

(divΣV)up dσ + λ

∫
Σ

(divΣV)p dσ.

Applying (18) in Lemma 3.8, we can further write∫
Ω

u2u̇ dx =

∫
Ω

u2V · ∇u dx− i

∫
Σ

p(V · ∇u) dσ − i

∫
Σ

u(V · ∇p) dσ

− i

∫
Σ

up divΣV dσ −
∫
Σ

(∇p · ∇u)Vn dσ

+ λ

∫
Σ

∇p ·V dσ + λ

∫
Σ

p divΣV dσ.

At this point we apply the following version of the tangential Green’s formula2,
which is valid, for instance, when Σ is C1,1,∫

Σ

(∇φ ·V + φdivΣV) dσ =

∫
Σ

(∂nφ+ φdivΣn)Vn dσ. (24)

Here, the function φ is supposed to be W 2,1(U) regular. We also note the fact
that κ = divΣn, where κ is the mean curvature of Σ, and utilize the identity
∇p · ∇u = ∇Σp · ∇Σu+ ∂np∂nu

3 on Σ to obtain∫
Ω

u2u̇ dx =

∫
Ω

u2V · ∇u dx− i

∫
Σ

p (∂nu+ κu)Vn dσ

−
∫
Σ

∇Σp · ∇ΣuVn dσ + λ

∫
Σ

κpVn dσ.

2A proof of this formula can be found in [47].
3Here ∇Σ is the tangential gradient operator on Σ. The intrinsic definition of the operator is

given in [16, Chap. 5., Sec. 5.1, p. 492]. More discussion on tangential calculus can be found in
the same referenced text.
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The desired expression immediately follows by comparing the respective complex
parts on both sides of the above equation, and together with (21).

The next conclusion can be drawn easily from (15), (16), and Remark 2.1.

Corollary 3.9 (Necessary condition). Let the domain Ω∗ be such that the state
u = u(Ω∗) satisfies the overdetermined boundary value problem (2), i.e., there holds

u2 = 0 on Ω∗. (25)

Then, the domain Ω∗ is stationary for the shape problem 1
2

∫
Ω
|u2|2 dx → inf,

where u2 is subject to (8). That is, it fulfills the necessary optimality condition

dJ(Ω∗)[V] = 0, for all V ∈ Θ2. (26)

Proof. By the assumption that u2 = 0 on Ω∗, one finds that p = p(Ω∗) on Ω∗. Thus,
it follows that G = 0 on Σ∗ which implies that dJ(Ω∗)[V] = 0, for any V ∈ Θ1.

Remark 3.10. In connection with the previous result, we remark that solutions
of the necessary condition (26) might exist such that the state does not satisfy
equation (25). However, only in the case of exact matching of boundary data a
stationary domain Ω∗ is a global minimum because J(Ω∗) = 0.

Remark 3.11. To obtain the form dJ(Ω)[V] =
∫
Σ
Gν ·V dσ – in accordance with

Hadamard–Zolésio’s structure theorem – via the chain rule approach, the authors
in [24, 25, 26, 53, 54] utilize the strong form of the equation as well as the boundary
conditions satisfied by the shape derivative of u. The existence of the said derivative,
however, requires more regularity on u, in addition to assuming that the domain is
at least C2,α (α ∈ (0, 1]). Allowing this higher regularity assumptions and taking
the shape differentiability of the state u for granted, an alternative and more direct
argument to derive the shape derivative of J could be given, see Appendix 7.2. The
derivation of the shape gradient of the cost issued above is based on the Lagrangian
derivative u̇ which is rigorously accounted for in the proof of Theorem 3.1. We
emphasize that only the weak form of the Lagrangian derivatives is utilized. This
bypasses the need to use the strong form of the shape derivative of u. Alternatively,
Theorem 3.5 could be shown via the strong form of the equation, and of the Eulerian
derivatives of the state, as well as the boundary conditions satisfied by the shape
derivative of u coupled with Hadamard’s domain differentiation formula (see, e.g.,
[16, Thm. 4.2, p. 483]), [40, eq. (5.12), Thm. 5.2.2, p. 194] or [60, eq. (2.168), p.
113]): {

d

d t

∫
Ωt

f(t, x) dxt

}∣∣∣∣
t=0

=

∫
Ω

∂

∂t
f(0, x) dx+

∫
∂Ω

f(0, σ)Vn dσ. (27)

4. Instability analysis of the critical shape. In this section, we investigate
the question of stability of the proposed shape optimization formulation of (2) at a
critical shape Ω∗. To do this, we need the expression for the shape Hessian of J at Ω∗

which we exhibit in subsection 4.2. Afterwards, we deal with the stability condition
of the present shape optimization problem in subsection 4.3. A quick review of
the sufficient second-order optimality condition for the present shape optimization
problem is given first in the following subsection.
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4.1. Sufficient conditions. Before we proceed to the computation of the shape
Hessian, we briefly provide here a rough discussion about the regular local optimality
of second-order of the critical shape Ω∗ (the optimal solution of the proposed shape
problem) on the basis of [27, Thm. 3.3]. Hereinafter, whenever we state the phrase
‘C◦ regular/smooth’ we mean that the object it describes is either C0,1∩C2,α regular,
α > 0, or simply C2,1 regular. Similar definition is given for C◦(Ω) and C◦(Σ).
Moreover, C◦(·) := [C◦(·)]2 (e.g., C2,α(Ω) := [C2,α(Ω)]2). In the sequel, we say that
Ω ∈ C◦ is an admissible perturbation of Ω̂ ∈ C◦ if for some fixed small number
δ ∈ (0, 1) the following inequality condition holds:

‖φ− φ̂‖C◦(R;R2) < δ,

where φ, φ̂ ∈ C◦(R;R2) are respectively a periodic parametrization of the free bound-
ary of Ω and Ω̂. We denote the collection of such perturbations of Ω̂ by Uδ(φ̂). Note
that, essentially, Uδ(φ̂) is the set of all perturbations Ω that are ‘sufficiently near’
– based on some appropriate metric – to Ω̂. In fact, in the next proposition, the
result only holds for all perturbations Ω that lies in some specific vicinity of the
stationary shape Ω∗ (i.e., domains whose free boundaries are contained within some
certain tubular neighborhood of Σ∗). We let U := U1(·) be another open bounded
set containing all sets Uδ(·), δ ∈ (0, 1).

Proposition 4.1 (sufficient second-order optimality condition). Let the necessary
condition

dJ(Ω∗)[V] = 0, for all V ∈ Θ2 ∩ C◦(U), (A1)
holds for a certain critical shape Ω∗ ∈ C◦. For all admissible perturbation Ω =
Ω(φ) ∈ Uδ(φ

∗) of Ω∗, we suppose that there is a constant cb > 0 which depends
continuously on Ω via the parametric function φ such that the bilinear form imposed
by the shape Hessian satisfies the following inequality

|d2J(Ω)[V,W]| 6 cb(Ω)‖V‖H1(Σ)‖W‖H1(Σ), (A2)

if Ω ∈ Uδ(φ∗), and the remainder estimate
|d2J(Ω)[V,W]− d2J(Ω∗)[V,W]| 6 η

(
‖φ− φ∗‖C◦(R;R2)

)
‖V‖H1(Σ)‖W‖H1(Σ),

(A3)
for all V,W ∈ Θ2 ∩ C◦(U), where η : R+

0 → R+
0 is a decreasing function that

satisfies the condition η(s) → 0 as s→ 0. Then, the domain Ω∗ is a strong regular
local optimum of second-order with respect to a specific constant ĉe > 0,

J(Ω)− J(Ω∗) 6 ĉe‖φ− φ∗‖H1(Σ∗), for all Ω ∈ Uδ̂(φ
∗). (28)

if and only if the shape Hessian satisfies the strong coercivity estimate
d2J(Ω∗)[V,V] > ce‖V‖2H1(Σ∗), for all V ∈ Θ2 ∩ C◦(U), (A4)

for some constant ce > 0.

As remarked in many references (see, e.g., [22, 23, 27, 21, 24, 25, 26]), it is gen-
erally impossible to realize coercivity with respect, for instance, to the space C2,α

where the involved objects are defined and differentiation is undertaken (hence As-
sumption (A4)). In subsection 4.3, we will show that the energy space of the bilinear
form imposed by the shape Hessian d2J(Ω) is the Sobolev space H1(Σ), and that
coercivity of the shape Hessian d2J(Ω∗) can only be achieved in the weaker space
H1/2(Σ∗). The latter result implies that the shape problem under consideration is
mildly ill-posed.
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4.2. Shape Hessian of the cost function at the critical shape. Our goal here
is to get the structure of the shape Hessian at a critical shape (see Proposition 4.3).
To do this we shall assume that Ω is of class C2,1 and take the deformation fields
from the set Θ2. Given this assumption, the existence of the shape derivative of
the state is guaranteed. This implies that we only need to apply the chain rule
to get the desired expression. By this approach, however, we first need to exhibit
the shape derivative of the states which we give in the next lemma. A revision of
Proposition 4.3 with the mild C1,1 regularity assumption on the domain, however,
is given in Proposition 4.5.

Lemma 4.2. Let Ω ∈ C2,1 and V ∈ Θ2. Then, u ∈ H3(Ω) is shape differentiable
with respect to Ω in the direction of V, and its shape derivative u′ ∈ H1(Ω) uniquely
satisfies the boundary value problem

−∆u′ = 0 in Ω, u′ = 0 on Γ, ∂nu
′ + iu′ = Υ(u)[Vn] on Σ, (29)

where Υ(u)[Vn] = divΣ(Vn∇Σu)− i(∂nu+ κu)Vn + λκVn.

Because the above results is new and is in fact not yet available in the literature,
we provide the proof of the lemma in Appendix 7.1. Now with the lemma at hand,
the first of the two main results of this subsection is now in order.

Proposition 4.3. Let Ω ∈ C2,1 and V,W ∈ Θ2. Then, the shape Hessian of J at
the solution Ω∗ of the Bernoulli problem (2) has the following structure:

d2J(Ω∗)[V,W] = −
∫
Σ∗
λ(p′1,W + κp′2,W )Vn dσ, (30)

where p′W = p′1,W + ip′2,W satisfies the complex PDE system

−∆p′W = u′2,W in Ω∗, p′W = 0 on Γ, ∂np
′
W − ip′W = 0 on Σ∗. (31)

Proof. The higher regularity assumption on Ω and on the deformation fields allows
us to apply formula (27) twice. Indeed, we may write dJ(Ω)[V] =

∫
Ω
u2u

′
2 dx +∫

Σ
div

(
1
2 |u2|

2V
)
dσ by Stokes’ theorem. Then, by the same approach, we get

d2J(Ω)[V,W] =

∫
Ω

u2u
′′
2,V,W dx+

∫
Ω

u′2,V u
′
2,W dx

+

∫
Ω

div

[
u2u

′
2,WV + div

(
1

2
u22V

)
W

]
dx.

Clearly, at Ω = Ω∗, the above expression for the shape Hessian reduces to
d2J(Ω∗)[V,W] =

∫
Ω∗ u

′
2,V u

′
2,W dx. To obtain (30) from this equation, we uti-

lize the adjoint problem (31). Note that the shape derivative of the state and of the
adjoint variable at the stationary solution Ω∗ of (2) are given by

−∆u′V = 0 in Ω∗, u′V = 0 on Γ, ∂nu
′
V + iu′V = λ(κ− i)Vn on Σ∗, (32)

and by system (31), respectively. Multiplying each of these systems by p′W ∈ V(Ω)
and u′V ∈ V(Ω), respectively, and then applying integration by parts will eventually
lead us to the identity

∫
Ω∗ u

′
2,Wu′V dx =

∫
Σ
λ (κ− i) p′WVn dσ. Comparing the real

and imaginary parts on both sides of this equation in the end will give us (30).

Remark 4.4. Observing from problem (32), we see that u′2,V 6= 0 provided V 6≡ 0

on Σ∗. Therefore, from the proof of Proposition 4.3, we have d2J(Ω∗)[V,V] =∫
Ω∗ |u′2,V |2 dx = ‖u′2,V ‖2L2(Ω∗) > 0 for any V 6≡ 0 on Σ∗. This inequality, however,
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does not mean that the shape optimization problem is already well-posed. The
matter will be discussed further in the next subsection.

We remark that the second-order shape derivative d2J(Ω)[V,W] can actually be
expressed using the material derivatives of u and p instead of their shape deriva-
tives. This allows for a more general formula since one does not need additional
regularity for u and p. Howbeit, the order two analysis was only carried out in
this work in order to examine the ill-posedness of the proposed shape optimization
problem (see also Remark 5.3). Hence, we only need the expression for the shape
Hessian at a critical shape d2J(Ω∗)[V,W], and since we already assume that Ω
is of class C2,1, the second-order shape derivative d2J(Ω∗)[V,W] can be obtained
with less effort and computations as the shape derivative for u and p are already
available, and that we do not need to find a simplified form of

∫
Ω
u2u

′′
2,V,W dx in

terms of u2 because the function already vanishes at Ω = Ω∗. Still, we stress that
it is possible to obtain the second-order shape derivative d2J(Ω∗)[V,W] without
using u′′2,V,W . This can be done by writing d2J(Ω∗)[V,W] using the material de-
rivative u̇2 which then also allow one to weaken the regularity assumption on the
domain. In this case, we only need Ω be of class C1,1. Indeed, from (20), we have
dJ(Ωs)[V] = 1

2

∫
Ω
(divV)Is|us2|2 dx +

∫
Ω
us2u̇

s
2 dx. Note here that the deformation

field V is independent of s > 0. Therefore, differentiating the integral expression
with respect to s, and then evaluating at s = 0, we get

d2J(Ω)[V,W] =
1

2

∫
Ω

[
(divV)(divW)|u2|2 + 2(divV)u2u̇2,W

]
dx

+

∫
Ω

(u̇2,V u̇2,W + u2ü2,V,W ) dx,

for any given vector fields V,W ∈ Θ1. At Ω = Ω
∗, u2 ≡ 0, and so we obtain

d2J(Ω∗)[V,W] =
∫
Ω
u̇2,V u̇2,W dx. This integral can of course be expressed in terms

of the material derivative of p using the same technique used in the proof of Theorem
3.5. In fact, however, we can just simply introduce an adjoint problem in order to
get rid of the first-order derivative terms. To this end, let us consider the PDE
system

−∆qW = u̇2,W in Ω, qW = 0 on Γ, ∂nqW − iqW = 0 on Σ, (33)

at Ω = Ω
∗ which can be shown to be well-posed, and that qW ∈ V(Ω) because of

Proposition 3.1. Here, of course, qW = q1,W+iq2,W , where q1,W and q2,W denote the
real and imaginary parts of qW , respectively. Multiplying the above equation by u̇V ,
and then applying integration by parts, yields

∫
Ω∗ ∇q̄W · ∇u̇V dx+ i

∫
Σ∗ q̄W u̇V dσ =∫

Ω∗ u̇2,W u̇V dx. Let us also consider equation (14) with v = qW ∈ V(Ω),
Ω = Ω

∗, and u̇ replaced by u̇V . Then,
∫
Ω∗ ∇u̇V · ∇q̄W dx + i

∫
Σ∗ u̇V q̄W dσ =

−
∫
Ω∗ A∇u1 · ∇q̄W dx + λ

∫
Σ∗ (divΣV)q̄W dσ. Comparing this equation with the

previous one, we get the equation
∫
Ω∗ u̇2,W u̇V dx = −

∫
Ω∗ A∇u1 · ∇q̄W dx +

λ
∫
Σ∗ (divΣV)q̄W dσ. Meanwhile, it can be verified that a similar identity

to (18) holds for u̇2 ∈ V(Ω) and q̄W ∈ V(Ω) at Ω = Ω
∗ that is given

by −
∫
Ω∗ A∇u1 · ∇q̄W dx = −

∫
Σ∗ (∇q̄W · ∇u1)Vn dσ − i

∫
Σ∗ q̄W (V · ∇u1) dσ +

λ
∫
Σ∗ (V · ∇q̄W ) dσ. Putting together the last two equations, and then appealing to

formula (24), we get∫
Ω∗
u̇2,W u̇V dx = −i

∫
Σ∗
λq̄WVn dσ + λ

∫
Σ∗
κq̄WVn dσ.
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Finally, comparing the real and imaginary parts on both sides of the above equa-
tion, we arrive at the final expression for the shape Hessian of J at a critical shape
Ω∗:

d2J(Ω∗)[V,W] = −
∫
Σ∗
λ(q1,W + κq2,W )Vn dσ.

The above integral expression is clearly identical to (30) in terms of structure.
To close this subsection, we formally summarize the previous result into a propo-

sition given below which is essentially a revision of Proposition 4.3 with weaker
regularity assumptions on the domain Ω and on the deformation fields V and W,
and combined with a different adjoint problem.

Proposition 4.5. Let Ω ∈ C1,1 and V,W ∈ Θ1. Then, the shape Hessian of J at
the solution Ω∗ of the Bernoulli problem (2) has the following structure:

d2J(Ω∗)[V,W] = −
∫
Σ∗
λ(q1,W + κq2,W )Vn dσ, (34)

where qW = q1,W + iq2,W satisfies the complex PDE system

−∆qW = u̇2,W in Ω∗, qW = 0 on Γ, ∂nqW − iqW = 0 on Σ∗. (35)

Remark 4.6. As was shown in the computation of expression (34) issued above,
the shape derivative of the state is not needed to exhibit the structure of the shape
Hessian at a critical shape. It therefore goes without saying that the expression for
the shape Hessian of the cost function, for general domains of class C1,1, can also
be obtained without using the second-order shape derivative of the state by using
the same technique applied to show (34). Here, we omit the computation of the
said expression since we are only interested in the structure of d2J(Ω∗) (see Remark
5.3).

4.3. Compactness of the Hessian at the optimal domain. Having computed
the form of the shape Hessian at a stationary domain Ω∗, we now examine the
stability or instability of the presently proposed shape optimization formulation.
Before that, we first make a few remarks regarding the structure of the shape
Hessian.

It can be verified that the exact form of the shape Hessian d2J(Ω)[V,W] depends
on the shape derivative κ′ of the mean curvature κ. In fact, with the first-order shape
derivative of J (which is sufficiently smooth) given as dJ(Ω)[V] =

∫
Σ
Gn ·V dσ,

where G is given by (15), the shape Hessian can be shown to have the structure

d2J(Ω)[V,W] =

∫
Σ

[G′
WVn + (∂nG+ κG)VnWn −GK +GDVW · n] dσ,

for time-independent velocity fields V and W, where K = vΣ · (DΣn)wΣ + n ·
(DΣv)wΣ + n · (DΣw)vΣ, v = V|Σ, v = vΣ + vnn := (v · τ)τ + (v · n)n and DΣ

denotes the tangential differential operator called the tangential Jacobian matrix
given as DΣv = DV|Σ − (DVn)n> (see, e.g., [16, Eq. (5.2), p. 495]). Obviously,
from (15), the term G′ appearing in the shape Hessian is composed of the derivative
n′ of the normal vector and κ′ of the mean-curvature. The form of n′

W and κ′W
obtained along the deformation field W ∈ Θ2 are respectively given by

n′
W = (DWn · n)n− (DW)>n− (Dn)W

and
κ′W = trace

{
D
[
(DWn · n)n− (DW)>n

]
−DnDW

}
−∇κ ·W;



18 JULIUS FERGY T. RABAGO

see, e.g., [16, 60]. Clearly, the latter expression consists of a second-order tangential
derivative of the velocity field W, and this derivative actually exists due to our
assumption that Ω is of class C2,1 [16, 60]. Hence, we can actually decompose
the shape Hessian into three parts: h1(Ω)[V,W], h2(Ω)[V,W], and h3(Ω)[V,W],
where h2 is composed of the term n′

W while h3 consists of the expression κ′W , and
such that we have the estimates (cf. [26, proof of Thm. 3])

|h1(Ω)[V,W]| . ‖V‖L2(Σ)‖W‖L2(Σ),

|h2(Ω)[V,W]| . ‖V‖H1/2(Σ)‖W‖H1/2(Σ),

|h3(Ω)[V,W]| . ‖V‖H1(Σ)‖W‖H1(Σ).

From these, we can infer that the shape Hessian defines a continuous bilinear
form d2J(Ω) : H1(Σ)×H1(Σ) → R; that is,

|d2J(Ω)[V,W]| . ‖V‖H1(Σ)‖W‖H1(Σ).
4

In addition, one can also obtained a remainder estimate given by
|d2J(Ω)[V,W]− d2J(Ω∗)[V,W]| 6 η (M(Ω,Ω∗)) ‖V‖H1(Σ)‖W‖H1(Σ),

where M(B1, B2) is some appropriate metric measuring the distance between the
two sets B1 and B2 in Rd while η : R+

0 → R+
0 is a decreasing function that satisfies

η(s) → 0 as s→ 0 (cf. Assumption A3).
In connection with the above discussion, it is natural to ask whether we also have

the estimate d2J(Ω∗)[V,V] & ‖V‖2
H1(Σ∗)

. This inequality condition actually has
something to do with the stability of a local minimizer Ω∗ of J . A result regarding
sufficient second-order conditions from [10, 12, 20]5 in fact states that a local min-
imizer Ω∗ is stable if and only if the shape Hessian d2J(Ω∗) is strictly coercive in
its corresponding energy space which is the H1(Σ∗) space in the present case. Such
strict coercivity, however, cannot be established for the shape Hessian (30). The
aforesaid lack of coercivity is known, especially in the shape optimization literature,
as the two-norm discrepancy, see [10, 19, 27] for more details. Meanwhile, for a more
recent study concerning the question of stability in the field of shape optimization –
focusing especially on the strategy using second-order shape derivatives – we refer
the readers to [11].

To analyze the shape Hessian (30), we will write it into an equivalent expression
(see [22, 23, 24, 25, 26]) and adapt the method already used in [1, 2]. We first
introduce the operators L : H1/2(Σ∗) → H1/2(Σ∗) and K : H1/2(Σ∗) → H1/2(Σ∗)
(see [53, Sec. 3.4]), defined respectively as LV := λVn and Kv := κv, which we
shall utilize in our argumentation. The continuity of the operators L and K follow
from the next lemma (cf. [22, Lem. 3.3] and see also [24, 25, 26]).

Lemma 4.7. Let Ω ⊂ R2 be a bounded Lipschitz domain with boundary Γ := ∂Ω.
Then, the map v 7→ φv is continuous in H1/2(Γ) for any v ∈ H1/2(Γ) and φ ∈
C0,1(Γ).

Proof. By McShane-Whitney extension theorem, there is some function φ̃ ∈ C0,1(Ω)

such that φ̃|Γ = φ. Also, from [46, Thm. 3.37, p. 102], there is a bounded linear

4The notation H1(·) stands for the Sobolev space H1(·) := {v := (v1, v2) : v1, v2 ∈ H1(·)} and
is equipped with the norm ‖v‖2

H1(·) = ‖v1‖2H1(·) + ‖v2‖2H1(·). Similar definition is also given to
the H1

Γ,0(·)-space.
5Independently of [10, 12], also Eppler derived second-order sufficient optimality conditions in

[20]; see particularly Section 4 of the said paper.
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extension operator Ẽ : H1/2(Γ) → H1(Ω). Hence, in view of [33, Thm. 1.4.1.1,
p. 21] and by trace theorem, we see that the operator Kv = φv is continuous in
H1/2(Γ) since Kv = trace(φ̃Ẽv) is a composition of bounded operators.

Remark 4.8. Let us note that for C1,1 smooth boundary Σ, κ is well defined
almost everywhere on the boundary and actually belongs to L∞ on account of
Rademacher’s theorem (see, e.g., [57, Thm. 2.7.1, p. 67]). Moreover, the mean cur-
vature is continuous for boundaries of class C2,1. Due to our smoothness assumption
on the free boundary, the operator K is actually a continuous map from Hs(Σ∗) to
Hs(Σ∗) for all s ∈ [0, 1], and the same is also true for the (bijective) map L.

In addition to L and K, we also introduce the operator Pi, i ∈ {1, 2}, by Pi :

H1/2(Σ∗) → H−1/2(Σ∗), V 7→ p′i,V , for all i ∈ {1, 2}. Accordingly, we may write
the shape Hessian at the optimal domain Ω∗ as

d2J(Ω∗)[V,V] = −
∫
Σ∗

(λVnp
′
1,V + κλVnp

′
2,V ) dσ

= −〈LV,P1V〉 − 〈KLV,P2V〉,

where 〈 · , · 〉 is the duality product between H1/2(Σ∗) and H−1/2(Σ∗).
Now, in relation to Remark 4.8, we state our final result which claims the ill-

posedness of the proposed CCBM formulation of (2).

Proposition 4.9. Let Ω∗ be the stationary solution to (2), then the Riesz operator
associated to d2J(Ω∗) : H1/2(Σ∗) → H−1/2(Σ∗) is compact.

Proof. The idea of the proof is to express the shape Hessian as a composition of
linear continuous operators and a compact one (the compactness being obtained
using the compactness of the imbedding between two Sobolev spaces). As shown
above, the operators L and K are continuous, but the operators P1 and P2 are
compact. We verify this claim by decomposing these operators as composition of
continuous and compact ones. For the product −〈LV,P1V〉, we decompose the map
P1 by first expressing it as the composition P1 = Q2 ◦ Q1 where Q1 : H1/2(Σ∗) →
H1(Ω∗), V 7→ u′2, and Q2 : H1(Ω∗) → H−1/2(Σ∗), φ 7→ w. Here, u′2 solves (29) and
w = w1 + iw2 satisfies

−∆w = φ in Ω∗, w = 0 on Γ, ∂nw − iw = 0 on Σ∗. (36)
Clearly, Q1 is continuous. Next, we further write Q2 as Q2 := R3 ◦ R2 ◦ R1

where
R1 : H1(Ω∗) → H3(Ω∗), φ 7→ w1,

R2 : H3(Ω∗) → H5/2(Σ∗), w1 7→ w1,

R3 : H5/2(Σ∗) → H−1/2(Σ∗), w1 7→ w1.

The operators R1 and R2 are continuous while R3 is the compact embedding of
H5/2(Σ∗) into H−1/2(Σ∗).6

For the product −〈KLV,P2V〉, a similar decomposition is applied, but with an
additional decomposition to get the compactness result. Indeed, let us decompose
the map P2 as the composition P2 = Q2◦Q1 where Q1 : H1/2(Σ∗) → H1(Ω∗), V 7→

6An embedding result for fractional Sobolev spaces Hs(Ω) under bounded Ck,α-domains, k =

0, 1, . . ., α ∈ [0, 1], can be found in [64, Thm. 7.9, p. 119]. See also [57, Thm. 2.5.5, p. 61], but
for Lipschitz and Ck domains.
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u′2, and Q2 : H1(Ω∗) → H−1/2(Σ∗), φ 7→ w. Here, again, u′2 and w respectively
solves (29) and (36). Next, we write Q2 as Q2 := S4 ◦ S3 ◦ S2 ◦ S1 where

S1 : H1(Ω∗) → H3(Ω∗), φ 7→ w1,

S2 : H3(Ω∗) → H3/2(Σ∗), w1 7→ ∂nw1,

S3 : H3/2(Σ∗) → H5/2(Σ∗), ∂nw1 7→ w2,

S4 : H5/2(Σ∗) → H−1/2(Σ∗), w2 7→ w2.

The first three operators S1, S2, and S3 are continuous while S4 is the compact
embedding of H5/2(Σ∗) into H−1/2(Σ∗). This proves the compactness result.

Related results, specifically given for L2-tracking type and compact gradient
tracking functionals, are issued in [22, Prop. 3.1] and [21, Prop. 2.10]. It is worth
to remark that the compactness of the shape Hessian stated in Proposition 4.9
opposes the strict coercivity d2J(Ω∗)[V,V] & ‖V‖2

H1(Σ∗)
that corresponds to the

well-posedness of the proposed shape optimization formulation of the free boundary
problem in consideration (on a related note, see [22, Rem. 3.2–3.3] and [21, Rem.
2.11]).

5. Numerical approximation. The numerical resolution to our proposed shape
optimization approach to (2) is carried out using a Sobolev gradient-based method.
The implementation is realized in line with the author’s previous work using the
finite element method, see [52, 53, 54], but with some changes which are crucial for
assessing the numerical performance of the new method over the classical Kohn-
Vogelius cost functional approach. The proposed shape optimization reformulation
can of course be solved numerically using other methods such as the level-set method
(see [51]) – an Eulerian-like type numerical scheme – employed, for instance, in
[5, 35, 42], or via a boundary element method through the concept of boundary
integral equations used in [23, 24, 25, 26, 34].

5.1. Numerical algorithm. For completeness, we give below the important de-
tails of our algorithm.

Choice of descent direction. The choice V = Vnn = −Gn, G ∈ L2(Σ), G 6≡ 0,
provides a descent direction for the cost function J(Ω) given in (10). Indeed,
in general, the inequality condition J(Ωt) = J(Ω) + t d

d εJ(Ωε)
∣∣
ε=0

+ O(t2) =

J(Ω)+t
∫
Σ
GVn dσ+O(t2) = J(Ω)−t

∫
Σ
|G|2 dσ+O(t2) < J(Ω), holds for sufficiently

small real number t > 0. However, as alluded above, we make use of the Riesz repre-
sentation of the shape gradient. More exactly, we apply an extension-regularization
technique by taking the descent direction V as the solution in H1

Γ,0(Ω) to the vari-
ational problem a(V,ϕ) = −

∫
Σ
Gn ·ϕ dσ, for all ϕ ∈ H1

Γ,0(Ω), where a is the
H1(Ω)(:= H1(Ω)d)-inner product in d-dimension, d ∈ {2, 3} (cf. eq. (38) in next
subsection). In this sense, the Sobolev gradient V [48] becomes a smoothed precon-
ditioned extension of −Gn over the entire domain Ω. For more discussion about
discrete gradient flows for shape optimization, we refer the readers to [18].

The main algorithm. The main steps of the iterative algorithm, computing the
kth domain Ωk, is summarized as follows:

1. Initilization: Choose an initial shape Ω0.
2. Iteration: For k = 0, 1, 2, . . .

2.1 Solve the state and adjoint state systems on the current domain Ωk.
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2.2 Choose tk > 0, and compute the Sobolev gradient Vk in Ωk.
2.3 Update the current domain by setting Ωk+1 = (id+tkVk)Ωk.

3. Stop Test: Repeat the Iteration until convergence.
Remark 5.1 (Step-size computation). The step size tk is computed via a back-
tracking line search procedure using the formula tk = µJ(Ωk)/|Vk|2H1(Ωk) at each
iteration, where µ > 0 is a given real number. This choice of the step size is based
on an Armijo-Goldstein-like condition for the shape optimization method, see, for
example, [54, p. 281]. In our application, however, the step size parameter µ is not
limited to the interval (0, 1) in contrast to [52, 53, 54]. The less restrictive choice of
the value for µ allows us to numerically evaluate the sensitivity of the cost functions
J(Ω) and JKV (Ω) through large deformations of the domain Ω.
Remark 5.2 (Stopping conditions). The algorithm is stopped as soon as Ωk, Σk,
and Vk satisfy the inequality condition

max

(√
a(Vk,Vk), ‖Vk‖C(Σk)d , J(Ω

k)

)
< Tol,

for some fixed small value Tol > 0. We also terminate the algorithm as soon as the
absolute difference |J(Ωk) − J(Ωk−1)| is small enough, or after a finite number of
iterations.
Remark 5.3. The convergence behavior of a gradient-based iterative scheme can
be improved by incorporating the Hessian information in the numerical procedure.
The drawback, however, of a second-order method is that, typically, it demands
additional computational burden and time to carry out the calculation, especially
when the Hessian is complicated [50, 59]. Here, we will not employ a second-order
method to numerically solve the optimization problem. The order two analysis was
performed here only to examine the stability analysis for the proposed optimization
problem.
5.2. The extension-regularization technique preserves the critical shape.
In this intermediate subsection, we issue a small result concerning the stationary
point Ω∗ of the evolving boundary Ω(t), where t > 0 (interpreted here as a “pseudo-
time” step), that evolves from an initial geometric profile Ω(0) under the pseudo flow
field Vnn (cf. [61, Sec. 5]). This flow field is related to the extension-regularization
technique used to compute the descent field at the beginning of the previous section.
Here, there will be a slight abuse of notation. In previous discussions V stands for
the deformation field that deforms the reference domain Ω using the application of
the operator Tt. In the arguments given below, we will be using the same notation
to represent an extended-regularized (normal) flow field for the evolving boundary
Σ(t) which, in some sense, related to the extension-regularization technique pre-
sented in 5.1 for the computation of the associated descent direction (i.e., in other
words, we somehow view the evolution of the free boundary Σ generated by the
approximation process as an evolving boundary problem). We emphasize that the
discussion given below does not attempt to prove the existence and/or convergence
of approximate shape solutions concerning the present shape optimization problem.
Indeed, a careful analysis along the lines of arguments used in [27, Sec. 3] (see also
[38]) is needed to address such delicate issue and actually goes beyond the scope
of the present study. Besides, some key assumptions on the admissible set and on
the functional J have to be imposed (see [27, Sec. 3]). Moreover, as in many op-
timization problems, it is important to define the notion of convergence of Ω(t) to
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the stationary point Ω∗ if one wants to view the sequence {Ω(tk)}, k = 0, 1, . . ., as
a sequence of approximations of Ω∗ in the discrete setting; see [38, Chap. 2]. For a
closely related topic concerning a finite element approximation for shape optimiza-
tion problems with mixed boundary conditions, we refer the readers to [62]. In the
sequel, the phrases ‘moving boundary’, ‘evolving boundary’, and ‘free boundary’
are used interchangeably.

To proceed, let us consider the following abstract autonomous evolving boundary
problem.

Problem 5.4. Let Ω be a bounded annular domain with C◦ regular boundaries Γ
and Σ such that Σ is exterior to the fixed (non-moving) boundary Γ. Given an
initial geometry Σ0 that is C◦ regular and a real-valued function Φ defined on Σ
(i.e., Φ( · ; Σ) : Σ → R), find a moving boundary/surface Σ(t), t > 0, with the
normal speed Vn which satisfies

Vn(x, t) = Φ(x; Σ(t)), x ∈ Σ(t), t > 0, Σ(0) = Σ0. (37)

In (37), to keep the regularity of the initial domain – which we assume to be at
least C◦ regular – during evolution, one needs the function Φ(x; Σ(t)) to also be at
least C◦ for all x ∈ Σ(t), for t > 0 (unless specified, this will be assumed in the
rest of the discussion). Given this assumption on Φ, for sufficiently small ε > 0, it
can be shown that the moving boundary Σ(t) actually maintains the C◦ regularity
throughout the short time interval [0, ε).

We next define a stationary solution to Problem 5.4 as follows.

Definition 5.5. A domain Ω∗ is said to be a stationary solution to Problem 5.4 if
Σ∗ = ∂Ω∗ \ Γ, and Φ(x; Σ∗) = 0, for all x ∈ Σ∗.

Also, in accordance with the discussion issued in the previous subsection about
the extension-regularization technique used to compute for the perturbation field,
we associate with Problem 5.4 the extended-regularized evolving boundary problem
stated as follows.

Problem 5.6. Given an annular domain Ω0 ∈ C◦ with boundary Γ ∪ Σ0 (Σ0

is exterior to Γ) and a real-valued function Φ( · ; Σ(t)) ∈ L2(Σ(t)) ∩ C1,α(Σ(t)),
α > 0, t > 0, we seek to find an evolving boundary/surface Σ(t) with initial profile
Σ(0) = Σ0 that solves the problem

−∆V +V = 0 in Ω(t),

V = 0 on Γ,

∇V · n = Φ( · ; Σ(t))n on Σ(t),

Vn = V · n on Σ(t), t > 0,

Ω(0) = Ω0.

(38)

For a domain Ω that is C2,α regular, α > 0, the (outward unit) normal vector n
is C1,α(∂Ω) smooth. Hence, for fixed t > 0 and Ω(t) ∈ C2,α, it can be proved (using,
for example, the results from [31, 44]) that the first three equations in (38) admits
a unique (classical) solution V ∈ C2,α(Ω(t)), for any given Φ( · ; Σ(t)) ∈ C1,α(Σ(t)),
α > 0. Notice here that, for fixed t, Φ( · ; Σ(t)) only needs to be C1,α(Σ(t)) regular
and Ω(t) ∈ C2,α for V to be C2,α(Ω(t)) smooth. We also remark that the evolution
of Ω(t) is essentially assumed here as perturbations of Ω0 that can also be obtained
via a diffeomorphic map which is close to the identity.
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We called equation (38) an extended-regularized evolving boundary problem be-
cause, originally in Problem 5.4, Vn is only supported on Σ(t), and, in (38), we want
not only to extend the vector Vnn in the entirety of Ω(t), for t > 0 via equation
(38)1, but also to add more regularity on the normal flow field through equation
(38)3. Meanwhile, we have equation (38)2 on Γ since we want the interior boundary
to remain fixed during evolution.

Finally, in relation to Problem 5.6, a stationary solution Ω∗ is define next.

Definition 5.7. A domain Ω∗ ∈ C◦ is said to be a stationary solution to Problem
5.6 if Σ∗ = ∂Ω∗ \ Γ and V ∈ H1

Γ,0(Ω
∗) ∩ C◦(Ω∗)7 satisfies the equation∫

Ω∗
(∇V : ∇ϕ+V ·ϕ) dx =

∫
Σ∗

Φ(·; Σ∗)n ·ϕ dσ, ∀ϕ ∈ H1
Γ,0(Ω

∗),

and V · n = 0 on Σ∗.

(39)

For a domain Ω∗ of class C0,1 and function Φ( · ; Σ) ∈ L2(Σ), the variational
problem (39) can be shown to have a weak solution V ∈ H1

Γ,0(Ω
∗) via Lax-Milgram

lemma. With the definitions given above, we will now issue the main point of this
subsection which is given in the next proposition. Here, we will tacitly assume –
for the sake of argument – that Φ vanishes within a short time interval and that we
have the convergence of the evolving domains to a stationary point Ω∗ at that time
interval without referring to a formal mathematical notion of convergence of sets.
On a related note, we point out that small and smooth perturbations of a regular
domain may be “uniquely” described by normal deformations of the boundary of
the domain, see [49].

Proposition 5.8. Let Ω∗ ∈ C◦ and Φ( · ; Σ) ∈ L2(Σ) ∩ C◦(Ω). Then, Ω∗ is a
stationary solution to Problem 5.4 if and only if Ω∗ is a stationary solution to
Problem 5.6.

Proof. Consider equation (38) over the stationary shape Ω∗ with Lipschitz boundary
∂Ω∗ = Γ∪Σ∗. For the necessity part, we assume that L2(Σ)∩C◦(Ω) 3 Φ( · ; Σ) = 0,
and we need to verify that V·n = 0 on Σ∗. To this end, we multiply the first equation
in (39) by V ∈ H1

Γ,0(Ω
∗)∩C◦(Ω∗) and then apply integration by parts – noting that

V = 0 on Γ – to obtain 0 6
∫
Ω∗ |V|2 dx = −

∫
Σ∗ ∂nV ·V dσ = −

∫
Ω∗ |∇V|2 dx 6 0.

Clearly, V = 0 in Ω∗. Moreover, because V
∣∣
Γ
= 0, then, by the maximum principle,

V ≡ 0 on Ω
∗, In particular, we have V · n = 0 on Σ∗.

For the sufficiency part, we need to prove that if V · n = 0 on Σ∗, where V
solves problem (38) on Ω∗, then Φ = 0 on Σ∗. We take ϕ = V ∈ H1

Γ,0(Ω
∗) in

(39) from which we get
∫
Ω∗ (∇V : ∇V +V ·V) dx =

∫
Σ∗ Φ( · ; Σ∗)n ·V dσ = 0.

Clearly, V ≡ 0 on Ω
∗. Going back to (39), we obtain

∫
Σ∗ Φ( · ; Σ∗)n ·ϕ dσ = 0,

for all ϕ ∈ H1
Γ,0(Ω

∗), from which we conclude that Φ = 0 on Σ∗. This proves the
assertion.

Let us look at the situation when Φ = −G in (37). In this case, Φ not only
depends on some geometric quantities on the free boundary, but also to some func-
tions which are solutions to specific equality constraints (the state and adjoint state
equations to be exact). For a domain Ω that is Ck,α regular, k ∈ N, k > 2, it can
be shown that both the state and the adjoint state systems (6) and (16), respec-
tively, admit a unique (classical) solution in the space Ck,α(Ω;Cd). In particular,

7Here we define H1
Γ,0(Ω

∗) := H1
Γ,0(Ω

∗;Rd), d ∈ {2, 3}.
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the imaginary part u2 of the state variable u is an element of the set Ck,α(Ω;Cd).
This implies that the adjoint state p is even more regular, and is in fact Ck+2,α

smooth in Ω. Meanwhile, the normal vector n to Ω ∈ C3,α is only C2,α regular,
implying that the mean curvature κ is C1,α(∂Ω) smooth. Since G consists of κ, it
appears that one even needs the initial domain Ω0 be at least C4,α regular for the
evolving domain Ω(t) to be C2,α smooth for some short time interval [0, ε). On the
other hand, considering Problem 5.6 with Φ = −G, it appears that it is enough
to assume that Ω0 ∈ C3,α for the moving domain Ω(t) to be C2,α smooth in some
short time interval [0, ε) 3 t. Indeed, in this case, Φn = −Gn ∈ C1,α(Σ(t)), and
so V ∈ C2,α(Ω(t)), for t ∈ [0, ε). Hence, it can actually be shown that the weak
solution V ∈ H1

Γ,0(Ω(t)) of (38) is also a classical solution of the problem over the
small time interval [0, ε). Therefore, Ω(t) in (38) remains C2,α smooth throughout
the short time interval [0, ε).

Although not so important, we provide additional comments about the evolving
boundaries. The evolution of the moving boundary Σ(t) due to (37) and that of
(38) through time are not the same. Indeed, only in the case that Proposition 5.8
is true we are sure that the two evolving boundaries coincide (except of course with
the initial shape). Nevertheless, a more accurate extended-regularized version of
(37) can be formulated by replacing the Neumann condition in (38) by the Dirichlet
condition V = Φ( · ; Σ(t))n on Σ(t), for t > 0. In this case, however, the regularity
of the moving boundary Σ(t) is not preserved when the evolving boundary evolves
according to the normal speed Vn = V · n. Even so, one can address the issue
to some extent by considering an approximation of the Dirichlet condition using
a Robin condition. That is, we can add more regularity to the vector Vnn by
setting β∇V + V = Φ( · ; Σ(t))n on Σ(t), for t > 0, where β > 0. Still, with this
alternative formulation, there is a trade-off (controlled by β) between the accuracy
of the evolution and the regularity of the moving boundary. Here, we do not bother
about the accuracy of the extended-regularized evolving boundary with respect
to the corresponding original one as we are only interested in extending in Ω(t)
the normal velocity vector Φn of the evolving boundary Σ(t) while adding more
regularity to it.

5.3. Numerical examples. We will now illustrate the feasibility and applicability
of the new method in solving concrete examples of the free boundary problem
(2). We first test our method in two dimensions, and carry out a comparison with
KVM (Examples 5.11–5.13). Also, since most of the previous studies only dealt
with problems in two dimensions (except in [24] and also in [34] which applies the
Newton scheme to the Dirichlet energy functional), we also put our attention on
testing CCBM to three dimensional cases (Examples 5.14–5.18). In the case of three
spatial dimensions, we let λ = −10, unless specified.
Remark 5.9 (Details of the computational setup and environment). The numer-
ical simulations conducted here are all implemented in the programming software
FreeFem++, see [39]. Every variational problem involved in the procedure is
solved using P1 finite element discretization and are solved in FreeFEM++ via
the command line problem with the default solver (sparsesolver or LU if any di-
rect sparse solver is available8). Moreover, all mesh deformations are carried out
without any kind of adaptive mesh refinement as opposed to what has been usually
done in earlier works, see [52, 53, 54]. We emphasize that, in this way, we can

8see, e.g., p. 380 of FreeFem Documentation, Release 4.8, May 16, 2022, www.freefem.org.

www.freefem.org.
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further assess the stability of CCBM in comparison with KVM. The computations
are all performed on a MacBook Pro with Apple M1 chip computer having 16GB
RAM processors.

Remark 5.10. As pointed out in Remark 5.9, we avoid the generation of a new
triangulation of the domain at every iterative step. Obviously, this is achieved by
moving not only the boundary, but also the internal nodes of the mesh triangulation
at every iteration (as mentioned earlier). By doing so, the mesh only needs to be
generated at initial iteration. In order to move the boundary and internal nodes
simultaneously, we solve the discretized version of (38) and then move the domain
in the direction of the resulting vector field scaled with the pseudo-time step size
tk (see Remark 5.1 for the computation of tk). That is, we find Vk

h ∈ P1(Ω
k
h)

d such
that it solves the equation
−∆Vk

h +Vk
h = 0 in Ωk

h, Vk
h = 0 on Γh, ∇Vk

h · nk
h = −Gknk

h on Σk
h,

where we suppose a polygonal domain Ωk
h and its triangulation Th(Ωk

h) = {Kk
l }

Ne

l=1

(Kk
l is a closed triangle for d = 2, or a closed tetrahedron for d = 3) are given, and

P1(Ω
k
h)

d denotes the Rd-valued piecewise linear function space on Th(Ωk
h). Then, we

update the domain or, equivalently, move the nodes of the mesh by defining Ωk+1
h

and Th(Ωk+1
h ) = {Kk+1

l }Ne

l=1 respectively as Ωk+1
h :=

{
x+ tkVk

h(x)
∣∣∣ x ∈ Ωk

h

}
and

Kk+1
l :=

{
x+ tkVk

h(x)
∣∣∣ x ∈ Kk

l

}
, for all k = 0, 1, . . ..

We are now ready to give our first numerical example.

Example 5.11 (Testing the accuracy of the gradient). Consider two concentric
circles centered at the origin 0 with radius r > 0 and R > r given by C(0, r) and
C(0, R), respectively. Then, problem (5) can be expressed as the PDE system

−∂2ρρu− ρ−1∂ρu = 0 for r < ρ < R, u(r) = 1, and u(R) = 0,

whose exact solution can be computed as u(ρ) = log (ρ/R)/ log (r/R). Moreover,
in this case, ∂nu(R) = 1/[R log (r/R)]. Therefore, the exterior Bernoulli FBP (2)
with Γ = {x ∈ R2 : |x| = r} and λ = 1/ [R log (r/R)], 0 < r < R, has the unique
exact free boundary solution Σ∗ = C(0, R). With this in mind, we let r = 0.5
(i.e., Γ = ΓC := C(0, 0.5)) and R∗ = 0.7, which gives us λ = −4.24573, and set
Σ0 = C(0, 1.25) as our initial guess. In this experiment, we examine the sensitivity
of the cost functions J and JKV by testing the methods with large variations. To
this end, we consider three test cases for KV by varying the step size parameter
µ: (KV)1: µ = 2.0; (KV)2: µ = 1.0; and (KV)3: µ = 0.5, while keeping µ = 2.0
for CCBM. Recall that µ dictates how large the magnitude of tk can be at every
iteration, see Remark 5.1. Moreover, we discretize the initial domain with uniform
mesh sizes and look at the effect of accuracy of the methods under different mesh
widths. Finally, we stop our algorithm as soon as the absolute difference between
consecutive cost values is less than 10−6. Figure 1 shows the histories of cost values
for KVM and CCBM, as well as the histories of Hausdorff distances dH(Σ

k,Σ∗).
A summary of Hausdorff distances, cpu-time, and cpu-time-per-iteration against
mesh sizes h = 0.2, 0.1, 0.05, 0.025, 0.0125 in the form of plots are plotted in Figure
2. Based from these results, we draw the following observations:

• JKV is less sensitive to J in terms of large variations;
• KVM tends to converge prematurely for coarse meshes unlike CCBM;
• KVM and CCBM nearly have the same convergence behavior for finer meshes;
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• KVM and CCBM almost have the same accuracy for finer meshes, but CCBM
is more accurate in general (primarily because of the second point);

• KVM and CCBM complete the iteration procedure at almost the same time,
• however, CCBM requires less computing-time-per-iteration than KVM,
• and the latter converges in less number of iterations (hence, the previous

point).
Based from these observations, it seems that, in the case of two dimensional

problems, CCBM features some merits over the KVM in terms of computational
aspects. Of course, we expect that these advantages can be exploited especially
when dealing with three dimensional problems as we can instead resort to coarse
meshes without concerning much ourselves with the accuracy of the approximation
process – at least when dealing with axisymmetric cases. Also, it appears that
we have more freedom to take large step sizes in the case of CCBM than when
applying KVM as the former is less prone to premature convergence. However, as
we already mentioned, KVM requires less number of iterations than CCBM, and
that, under small step sizes, the two methods converges to almost identical optimal
shape solutions.
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Figure 1. Histories of cost values (first row) and Hausdorff dis-
tances (second row) for Example 5.11
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Figure 2. Hausdorff distances, cpu-time, and cpu-time-per-
iteration against the mesh size h

In the next two examples, we carry out three different experiments for KVM
to further highlight the sensitivity of J in comparison with JKV in the case of
slightly more complicated geometries (i.e., with sharp corners or concave regions)
for the fixed boundary. We again test the effect of the step size parameter µ in the
approximation process. For CCBM, we fix µ to 1.0. The test experiments are as
follows: test (KV)a: µ = 1.0; test (KV)b: µ = 0.5; and test (KV)c: µ = 0.25, and we
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look at the problems where λ = −10,−9, . . . ,−1. Also, we choose C(0, 1.25) as the
initial profile Σ0 of the free boundary, and we stop the algorithm after completing
100 iterations.
Example 5.12 (An L-shape fixed boundary). Let us consider an L-shape geometry
for Γ given by the boundary of the domain D = (−0.25, 0.25)2 \ [0, 0.25]2, i.e., we
set Γ = ΓL := ∂D. A comparison between the computed free boundaries using the
KVM and CCBM for each test experiments are shown in Figure 3 (first row). In
those figures, the outermost boundary corresponds to λ = −1 while the innermost
(exterior) boundary corresponds to λ = −10. The histories of dH(Σ

k,Σ100)-values
are shown in Figure 4 while the histories of cost values are plotted in Figure 5. It
appears based on the results that CCBM almost has the same convergence behav-
ior with KVM in the case of larger values for λ, and a bit faster for the case of
smaller values of λ. It must be evident, however, that KVM tends to converge to
a stationary shape in a fewer number of iterations than CCBM, but to a less accu-
rate geometry for the free boundary. In fact, KVM converges prematurely in some
instances; see, for example, Figure 8 where the evolutions of the shapes (plotted at
every ten iterates with µ = 2.0) are illustrated in the case λ = −5. Nevertheless,
the two methods with small step sizes provide almost identical optimal solutions to
the minimization problem. Furthermore, we notice from the histories of Hausdorff
distances and cost values that J is more sensitive to large variations than JKV .
Based on these observations, we can say that CCBM has some advantages over
KVM in terms of computational performance, specifically with respect to overall
computing-time-per-iteration (see left plot in Figure 9) and accuracy when tak-
ing large deformations of the domain. However, as evident in Figures 4–5, KVM
converges in fewer iterations than CCBM.
Example 5.13 (A ribbon shape fixed boundary). Next, we consider a ribbon
shape fixed boundary similar to the one examined in [23] which is parametrized
as ΓR := {(0.45 cos θ, 0.3 sin θ(1.25+ cos 2θ))> | 0 6 θ 6 2π}. The results of the test
experiments are depicted in Figure 3 (second row). Meanwhile, the histories of the
Hausdorff distance values dH(Σ

k,Σ100) and of the cost values are shown in Figure 6
and Figure 7, respectively. Similar to the previous example, we observe from these
plots that JKV is less sensitive to large variations than J . Moreover, in some cases,
KVM tends to overshoot the approximate optimal shape unlike CCBM. Even so, as
in the case of the previous test experiments, the present algorithm with the KVM
uses fewer number of iterations to converge compared to CCBM.

The rest of our examples will focus on three dimensional cases using CCBM.
Example 5.14 (Axisymmetric case in 3D). Let us first test the method to a simple
axisymmetric 3D-case with an analytical solution. On this purpose, we consider the
spheres S(0, r) := {ξ ∈ R3 : |ξ| = r} and S(0, R) := {ξ ∈ R3 : |ξ| = R} centered
at 0 with radius r > 0 and R > r, respectively. With u(r) = 1 and u(R) = 0, the
solution to the Dirichlet problem (5) is exactly given by u(ρ) = r(R−ρ)/[ρ(R− r)],
ρ ∈ (r,R) with normal derivative ∂ρu(ρ) = −Rr/[ρ2(R − r)]. So, on the exterior
surface, we have ∂ρu(R) = −r/[R(R−r)] =: λ. Thus, problem (2) with Γ = S(0, r)
and λ = −r/[R(R − r)], 0 < r < R, has the unique exact free boundary solution
Σ∗ = S(0, R∗). For a concrete example, we let r = 0.3 and R∗ = 0.5, giving us
λ = −3, and take Σ0 = S(0, 0.6) as the initial guess. With Tol = 10−6, initial
maximum mesh size hmax = 0.1 on the surfaces, and maximum volume 0.001 for
the tetrahedra, the procedure is completed after 53 sec. The nodes on Σf have
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Figure 3. Computational results for Example 5.12 (first row) and
Example 5.13 (second row)
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Figure 4. iteration k vs distance dH(Σk,Σ100) (legend: — (KV)a
— (KV)b — (KV)c — (CCBM))
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Figure 5. iteration k vs cost values (legend: — (KV)a — (KV)b
— (KV)c — (CCBM))

mean radii of R̄ = 0.4787 which gives a 4.26% error with respect to the exact radius
R∗ = 0.5.

In the next three examples, the algorithm is terminated after 600 iterations in
addition to setting Tol = 10−8 in the stopping condition (see Remark 5.2).
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Figure 6. iteration k vs distance dH(Σk,Σ100) (legend: — (KV)a
— (KV)b — (KV)c — (CCBM))
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Figure 7. iteration k vs cost values (legend: — (KV)a — (KV)b
— (KV)c — (CCBM))

Figure 8. Evolution of shapes (plotted at every ten iterates which
were obtained with step size parameter value µ = 2.0) for Example
5.12 when λ = −7 using KVM (left-most plot) and CCBM (middle
plot), and a direct comparison with the computed optimal shapes
(right-most plot)

−10 −8 −6 −4 −2 0
λ

0.3

0.4

0.5

0.6

0.7

0.8

cp
u(
se
c)
/it
er
at
io
n (KV)a (KV)b (KV)c (CCBM)

−10 −8 −6 −4 −2 0
λ

0.20

0.25

0.30

0.35

0.40

0.45

0.50

cp
u(
se
c)
/it
er
at
io
n (KV)a (KV)b (KV)c (CCBM)

Figure 9. λ vs computational-time-per-iteration for Example 5.12
(left) and Example 5.13 (right)
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Example 5.15 (Perturbed sphere). Let us define Γ as the surface of a perturbed
sphere having strict concave regions. With Σ0 = S(0, 1.5) as the initial guess, the
results of the computation are summarized in Figure 10 (first row), including the
plots for histories of cost values and Sobolev gradient norms.

Example 5.16 (Torus). We also look at the case where the fixed surface Γ is given
by a torus and set Σ0 = S(0, 0.8) as our initial guess. The computational results
for this example are shown in Figure 10 (second row).

Example 5.17 (Four disjoint spheres). Let us also consider the case where Γ is
the union of four disjoints spheres having the same exact radius r = 0.25, and let
Σ0 = S(0, 0.9). The results for this test case are summarized in Figure 10 (third
row).

A summary of mesh details (number of boundary elements, triangles, and ver-
tices) used in the last three examples are tabulated in Table 1. The computed cost
at final iterate and over-all cpu times for the three examples are also shown in the
table.

Figure 10. Computational results for Examples 5.15–5.17

Example 5.18 (L-block figure). Finally, we consider Σ as the surface of an L-block
figure, and consider the values λ = −1,−7,−10. The results of the computations
are shown in Figure 11. The over-all cpu times for the case λ = −7 and −10 are
less than 2, 200 sec, while the iteration process was completed after 6, 200 sec for
λ = −1.
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Example 5.15 Example 5.16 Example 5.17
number of boundary elements 30,762 9,232 20,838
number of triangles 65,272 21,549 49,900
number of vertices 18,879 5,905 13,629
cost 2.92e-10 5.26e-09 4.84e-06
cpu time 14,436 s 2,212 s 9,680 s

Table 1. Mesh details and additional computational results for
Examples 5.15–5.17

λ=-1

λ=-7

λ=-10

Figure 11. Computational results for Example 5.18

6. Conclusions and future works. We have proposed here a complex coupled
boundary method in shape optimization framework as a numerical resolution to the
exterior Bernoulli problem. The shape gradient of the cost corresponding to the
formulation is computed under a mild regularity assumption on the domain, and
by using only the weak form of the equation satisfied by the material derivative
of the state problem whose existence is shown in a rigorous manner. The shape
Hessian at a critical shape is also characterized through the chain rule approach
under enough smoothness assumption on the domain. Also, by the same technique
used to derive the shape gradient, the same expression is recomputed, but now with
a weaker assumption on the regularity of the domain. The aforesaid expression is
then examined in order to study the algebraic ill-posedness of the proposed method
which is done by showing that the Riesz operator associated to the quadratic shape
Hessian is compact. Using the shape gradient information, a Sobolev gradient-based
descent scheme was formulated in order to solve the problem numerically via finite
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element method. Some numerical experiments in two dimensions are exhibited and
are compared with those obtained using the Kohn-Vogelius approach. Numerical
results showed that the new method has some advantages when compared to the
conventional KV approach since (1) it requires less overall computational-time-per-
iteration when utilized in a Sobolev gradient based algorithm – at least in the case of
the performed experiments, (2) is less prone to premature convergence under large
domain variations, and (3) provides more accurate approximation of the optimal
shape for coarser meshes. Nonetheless, in general, KVM requires less number of
iterations than CCBM for the present algorithm to converge. Even so, for small
step sizes, the optimal solutions obtained from the two methods coincide. The new
method is also tested in three dimensions, and various test cases were considered
to further illustrate the feasibility and efficiency of the proposed method. Further
application of CCBM in solving free surface problems under shape optimization
settings is the subject of our next investigation.
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7. Appendices.

7.1. Proof of Lemma 4.2.

Proof. The proof proceeds in three classical steps (sketched here) after formulating
the problem onto the fixed domain. First, we prove its weak convergence to the
material derivative followed then by its convergence in strong sense. Afterwards,
we deduce the shape derivative of the state using the identity u′ = u̇−∇u ·V.
Step 1. We recall from Lemma 3.3 the transported problem, and subtract from it
the original one to obtain (1/t)(ut−u) = 0 on Γ, and for all v ∈ V(Ω), the equation∫

Ω

At

(
∇(ut − u)

t

)
· ∇v dx+ i

∫
Σ

Bt

(
ut − u

t

)
v dσ

=

∫
Ω

(
I−At

t

)
∇u · ∇v dx+ i

∫
Σ

(
1−Bt

t

)
uv dσ + λ

∫
Σ

(
Bt − 1

t

)
v dσ.

(40)

By taking 1
t (u

t − u) ∈ V(Ω) as the test function, and using the continuity of
the maps t 7→ At and t 7→ Bt at t = 0 (see (13)), and the fact that At and Bt are
bounded for sufficiently small t > 0 (see (12)), it can be verified that∣∣∣∣∣∣∣∣∣∣∣∣ut − u

t

∣∣∣∣∣∣∣∣∣∣∣∣
V(Ω)

. max

{(∥∥∥∥At − I

t

∥∥∥∥
∞

+

∥∥∥∥Bt − 1

t

∥∥∥∥
∞

)
|||∇u|||Q, |Σ|

1/2

∥∥∥∥Bt − 1

t

∥∥∥∥
∞

}
.

Thus,
{

1
t (u

t − u)
}

is bounded in V(Ω). Therefore, the sequence is weakly con-
vergent in V(Ω) and its weak limit is the material derivative u̇ of u.
Step 2. By passing to the limit t → 0 in (40), we see that u̇ solves equation (14).
We use the said equation to prove the strong convergence in V(Ω). Indeed, setting
v = 1

t (u
t−u) =: wt ∈ V(Ω) in (40), and noting that, on Ω, we have u = 1 on Γ and∫

Ω
∇u · ∇v dx+ i

∫
Σ
uv dσ = λ

∫
Σ
v dσ, for all v ∈ V(Ω), we then get the equation∫

Ω

∇wt · ∇wt dx+ i

∫
Σ

wtwt dσ
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=

{
−
∫
Ω

(At − I)∇wt · ∇wt dx− i

∫
Σ

(Bt − 1)wtwt dσ

}
+

{∫
Ω

(
I−At

t

)
∇u · ∇wt dx+ i

∫
Σ

(
1−Bt

t

)
uwt dσ + λ

∫
Σ

(
Bt − 1

t

)
wt dσ

}
=: I1(t) + I2(t).

Using the weak convergence result for the sequence {wt} obtained in the previous
step, we easily deduce that

lim
t→0

I1(t) = 0,

lim
t→0

I2(t) = −
∫
Ω

A∇u · ∇u̇ dx− i

∫
Σ

(divΣV)uu̇ dσ + λ

∫
Σ

(divΣV)u̇ dσ.

Now, from (14) in Proposition 3.1, we conclude that I2(t) →
∫
Ω
∇u̇ · ∇u̇ dx +

i
∫
Σ
u̇u̇ dσ as t→ 0. This shows the strong convergence of ∇wt to ∇u̇ in V(Ω). The

equivalence of norms between the V(Ω)-norm and the usual H1(Ω)-norm implies
the strong convergence of wt to u̇ in V(Ω).

Step 3. In the last step, we deduce the equations satisfied by the shape derivative
of u using the identity u′ = u̇ − V · ∇u. Let us first note that u̇ ∈ V(Ω). So,
u′ = u̇−V ·∇u = 0 on Γ because V = 0 on Γ. Next, we let the trace of the normal
derivative of the (complex conjugate of the) test function v on Σ in equation (14)
be zero. Then, by expansion (19), and integration by parts, we get

−
∫
Ω

∇u̇ · ∇v dx =

∫
Ω

∆u(V · ∇v) dx+

∫
Ω

∆v(V · ∇u) dx = −
∫
Ω

∇(V · ∇u) · ∇v dx,

for any smooth function v with compact support on Ω and such that ∂nv = 0 on
Σ. Since −∆u = 0 in Ω, we immediately find that

∫
Ω
∇(u̇−V · ∇u) · ∇v dx =

−
∫
Ω
(∆u′)v dx = 0. Varying v, we obtain ∆u′ = 0 in Ω. Let us now choose

v ∈ H2(Ω) ∩ V(Ω) such that ∂nv = 0 on Σ. Applying Green’s theorem and the
tangential Green’s formula (24) to equation (14), and noting that ∂nu+ iu = λ on
Σ, we obtain∫

Σ

(∂nu
′ + iu′)v dσ = −

∫
Σ

(∇v · ∇u)Vn dσ −
∫
Σ

v [i(∂nu+ κu)− λκ]Vn dσ.

Because ∂nv = 0 on Σ, we can write∫
Σ

(∇v · ∇u)Vn dσ =

∫
Σ

(∇Σv · ∇Σu)Vn dσ = −
∫
Σ

v divΣ(Vn∇Σu) dσ,

where the second equality follows again from the tangential Green’s formula (24)
together with the fact that (Vn∇Σu) · n = 0 on Σ. Putting the computed identity
to the previous equation above leads to∫

Σ

(∂nu
′ + iu′)v dσ =

∫
Σ

v [divΣ(Vn∇Σu)− i(∂nu+ κu)Vn + λκVn] dσ.

Varying v yields the equation

∂nu
′ + iu′ = divΣ(Vn∇Σu)− i(∂nu+ κu)Vn + λκVn on Σ.

After collecting all equations for the shape derivative u′, we finally obtain (29).
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7.2. Alternative computation of the shape gradient. We give below the com-
putation of the shape gradient (15) under a C2,1 regularity assumption on the do-
main. With the given regularity, the existence of the shape derivative of the state is
guaranteed and the shape gradient of the cost is easily obtained using Hadamard’s
domain differentiation formula (27) – assuming the perturbation of Ω preserves its
regularity.

Proposition 7.1. Let Ω ∈ C2,1 and V ∈ Θ2. Then, the shape derivative of J at Ω
along V is given by dJ(Ω)[V] =

∫
Σ
GVn dσ, where G is the expression in (15).

Proof. Let us assume that Ω is of class C2,1 and V ∈ Θ2. By classical regularity
theory, u1, u2 ∈ H3(Ω) and so, we can apply formula (27) to obtain – noting that
V
∣∣
Γ
= 0 – the derivative

dJ(Ω)[V] =

∫
Ω

u2u
′
2 dx+

1

2

∫
Σ

|u2|2Vn dσ =: I1 + I2.

We focus on rewriting I1 through the adjoint method. To this end, we consider
the adjoint problem (16), multiply it by u′ ∈ V(Ω), and then apply integration by
parts to obtain ∫

Ω

∇p · ∇u′ dx+ i

∫
Σ

pu′ dσ =

∫
Ω

u2u
′ dx.

We do the same on (29) with the multiplier p ∈ V(Ω) to obtain∫
Ω

∇u′ · ∇p dx+ i

∫
Σ

u′p dσ =

∫
Σ

pΥ(u)[Vn] dσ.

The last two equations lead us to∫
Ω

u2u
′ dx =

∫
Σ

pΥ(u)[Vn] dσ.

Comparing the respective real and imaginary parts on both sides of this equation
will give us the form for I1, which, upon adding to I2 finally yield the desired
expression.
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