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Abstract The exterior Bernoulli problem is rephrased into a shape optimiza-
tion problem using a new type of objective function called the Dirichlet-data-
gap cost function which measures the !2-distance between the Dirichlet data
of two state functions. The 昀椀rst-order shape derivative of the cost function is
explicitly determined via the chain rule approach. Using the same technique,
the second-order shape derivative of the cost function at the solution of the free
boundary problem is also computed. The gradient and Hessian informations
are then used to formulate an e昀케cient second-order gradient-based descent
algorithm to numerically solve the minimization problem. The feasibility of
the proposed method is illustrated through various numerical examples.
Keywords Bernoulli problem · Domain perturbation · Free boundary · Shape
optimization · Shape derivative.

1 Introduction

In this note, we are interested in the so-called Bernoulli’s free boundary prob-
lem (FBP). The problem, which is considered as the prototype of a stationary
FBP and is called in some literature as the Alt-Ca昀昀arelli problem (see [1]),
昀椀nd their origin in the description of free surfaces for ideal 昀氀uids [37]. There
are, however, numerous other applications leading to similar formulations, for
instance, in the context of optimal design, electro chemistry and electro statics
(see [36] and also [35] for further industrial applications).
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Bernoulli problem can be classi昀椀ed into two cases, namely, the exterior
Bernoulli FBP and the interior Bernoulli FBP. Here, we focus our attention
on the former case. In the exterior problem, a bounded and connected domain
� ⊂ R2 with a 昀椀xed boundary Γ := m� and a constant _ < 0 are known or
given. The task is to 昀椀nd a bounded connected domain � ⊂ R2 with a free
boundary Σ := m�, � contains the closure of �, and an associated state function
D := D(Ω), where Ω = � \ �̄, such that the following overdetermined system of
partial di昀昀erential equations (PDEs) is satis昀椀ed:

−ΔD = 0 in Ω, D = 1 on Γ, D = 0 and mnD = _ on Σ. (1)

Here, mnD := ∇D · n denotes the normal derivative of D and n represents the
outward unit normal vector to Σ.

The presence of two boundary conditions imposed on the exterior boundary
Σ makes the problem di昀케cult to solve. Nevertheless, it is known that (1)
admits a classical solution for simply connected bounded domain Ω, for any
given constant _ < 0. In addition, the shape solution Ω

∗ is unique for bounded
convex domains � [36] and the free boundary Σ

∗ is �2,U regular (see [47,
Theorem 1.1]).

Our main intent in this work is to numerically solve (1) by performing a
novel iterative second-order gradient-based optimization procedure. Our ap-
proach relies on the method known as shape optimization (see, e.g., [22,46,71])
which is already an established tool to solve such a free boundary problem.
The main idea of the said technique is to reformulate the original problem into
an optimization problem of the form

min
Ω

�0 (Ω, D(Ω)) subject to 4(D(Ω)) = 0, (2)

where �0 denotes a suitable objective functional that depends on a domain Ω

as well as on a function D(Ω), which is the solution of a partial di昀昀erential
equation 4(D) = 0 posed on Ω.

There are di昀昀erent ways to write (1) in the form of (2). A typical approach
is to choose one of the boundary conditions on the free boundary to obtain
a well-posed state equation, and then track the remaining boundary data in
a least-squares sense. Such formulation has been carried-out in several previ-
ous investigations; see, for instance, [31,32,41,44,50,65,66]. Alternatively, one
can consider an energy-gap type cost function which consists of two auxiliary
states; one that is a solution of pure Dirichlet problem and one that satis昀椀es
a mixed Dirichlet-Neumann problem (see, e.g., [9,10,11,12,33]). The objec-
tive function used in such formulation is sometimes called the Kohn-Vogelius
cost functional since Kohn and Vogelius [53] were among the 昀椀rst who used
such a functional in the context of inverse problems. Mathematically, these
aforementioned formulations are given as follows:

Dirichlet-data-tracking approach

min
Ω

�1 (Σ) ≡ min
Ω

1

2

∫
Σ

D2
N df
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where the state function DN := DN (Ω) is the solution to the mixed Dirichlet-
Neumann problem

−ΔDN = 0 in Ω, DN = 1 on Γ, mnDN = _ on Σ; (3)

Neumann-data-tracking approach

min
Ω

�2(Σ) ≡ min
Ω

1

2

∫
Σ

(
mDD

mn
−_

)2

df

where the state function DD := DD (Ω) is the solution to the pure Dirichlet
problem

−ΔDD = 0 in Ω, DD = 1 on Γ, DD = 0 on Σ; (4)

Energy-gap type cost functional approach

min
Ω

�3 (Ω) ≡ min
Ω

1

2

∫
Ω

|∇ (DN −DD) |
2 dG

where the state functions DN and DD satisfy systems (3) and (4), respec-
tively.
In this study, one of our main objectives is to introduce yet another shape

optimization reformulation of (1) which, to the best of our knowledge, has not
been studied in any previous investigation. Similar to the cost functional �3,
we make use of a cost function consisting of two auxiliary states DN and DR:

min
Ω

� (Σ) ≡ min
Ω

1

2

∫
Σ

|DN −DR |
2 df, (5)

where the state function DN is the solution of (3) and DR := DR (Ω) satis昀椀es, for
a given strictly positive (constant) V, the following equivalent form of (1) with
a Robin boundary condition:

−ΔDR = 0 in Ω, DR = 1 on Γ, mnDR + VDR = _ on Σ. (6)

Clearly, if (D,Ω) is a solution of (1), then DN = DR = D; therefore, � (Σ) = 0. Con-
versely, if � (Σ) = 0, then DN = DR on Σ. Hence, the equation mn (DN −DR) = VDR = 0

on Σ and the assumption V > 0 implies that DR = DN = 0 on Σ. Consequently,
D = DN = DR is a solution of problem (1). We remark that, in the limiting case
as V goes on in昀椀nity, the PDE system (6) transforms into the pure Dirichlet
problem (4) (this means that DR = 0 on Σ), leading us to recover from (5) the
classical Dirichlet-data-tracking formulation of the FBP (1).

We stress that the formulations presented above can also be applied to
Poisson problems with overdetermined non-homogenous (su昀케ciently smooth)
boundary conditions. Here, however, we only inspect the free boundary prob-
lem (1) in order to simplify the discussion.

Motivation Our reason for considering the new cost functional � (Σ) stems
from several previous related works. In the study carried out in [67], we have
considered the cost functional �2 with a di昀昀erent state constraint problem.



4 Julius Fergy T. Rabago, Hideyuki Azegami

More precisely, we replaced the state variable DD with DR which is the solution
of the mixed Dirichlet-Robin problem (6). We found that such modi昀椀cation
of the problem setup actually yields more regularity in the solution of the
associated adjoint state problem. In fact, the adjoint state associated to the
shape optimization problem “minΩ

1
2
‖mnDR −_‖

2
!2 (Σ)

subject to (6)” enjoys the
same degree of regularity (depending of course on the regularity of Ω) with
that of DR. Also, we observed, through various numerical examples, that this
new state constraint yields faster and more stable convergence of the approx-
imate solution to the exact solution (both in case of the exterior and interior
Bernoulli FBP) than the classical setting “minΩ

1
2
‖mnDD − _‖2

!2 (Σ)
subject to

(4).” On the other hand, in [68], we proposed a modi昀椀cation of the energy-gap
cost functional approach for the exterior Bernoulli FBP (1). The optimization
problem we put forward in (1) utilizes a similar functional to �3, but, instead
of (4), we took DR as one of the state constraints. More precisely, we consid-
ered the problem “minΩ �4 (Ω) ≡ minΩ

1
2
|DR −DN |

2
�1 (Ω)

, subject to (3) and (6)”
(where | · |�1 (Ω) denotes the �1 (Ω)-seminorm; that is, | · |�1 (Ω) := ‖∇(·)‖!2 (Ω))
as a shape optimization reformulation of (1). We emphasize that under this
formulation, and assuming appropriate conditions on the Robin coe昀케cient V
as well as on the exterior boundary Σ, we were able to express the 昀椀rst-order
shape derivative of �4 at Ω along a given deformation 昀椀eld in terms of just
the state constraint DN. This in turn allowed us to also reduce the number of
PDE constraints to be solved when applying a second-order method to numer-
ically resolve the free boundary problem (1) (see Proposition 1 and Corollary
2 in [68]). We stress that such reduction in the number of constraints in the
optimization setup is certainly advantageous in terms of numerical aspects.
Indeed, the numerical results presented in [68] show that the proposed modi昀椀-
cation requires less computing time per iteration to numerically solve (1) than
the classical formulation “minΩ

1
2
|DD −DN |

2
�1 (Ω)

subject to (3) and (4)” (as ex-
pected). Meanwhile, in a related problem, Laurain and Privat [55] examined
a shape optimization formulation of a Bernoulli-type problem with geomet-
ric constraints. In their work, the domain Ω, which is simply connected, is
constrained to lie in the half space determined by G1 > 0. The boundary of
the solution domain is also forced to contain a segment of the hyperplane
{G1 = 0} where a non-homogeneous Dirichlet condition is imposed. Then, the
authors seek to 昀椀nd the solution of a partial di昀昀erential equation satisfying
a Dirichlet and a Neumann boundary condition simultaneously on the free
boundary. The cost function examined by the authors in [55] has the form
�5 (Ω) := ‖D2, Y −D1‖

2
!2 (Ω)

, where D2, n satis昀椀es a mixed Dirichlet-Robin bound-
ary problem while D1 is a solution of a pure Dirichlet problem. Here, D2, Y has
the property that “D2, Y → D2 as Y→ 0,” where D2 is the unique (weak) solution
of a mixed Dirichlet-Neumann problem. We point out here that, as opposed to
the formulation minimizing �4 whose 昀椀rst-order shape derivative only depends
on DN (under appropriate conditions on V and the exterior boundary Σ), the
cost function �5 actually has a 昀椀rst-order shape derivative that depends on the
solutions of four PDEs (two state problems and two adjoint state problems).



Title Suppressed Due to Excessive Length 5

Besides the above statements, we mention that minimizing �4 (Ω) over the
set of admissible domains Oad (see Section 4) of Ω is, to some extent, equivalent
to 昀椀nding the optimal shape solution to the optimization problem “minΩ � (Σ)

subject to (3) and (6),” and we explained it as follows. Firstly, for convenience,
let us introduce the notation “.”. This means that if % . &, then we can
昀椀nd some constant 2 > 0 such that % 6 2& (obviously, & & % is de昀椀ned as
% . &). Then, for an open bounded domain Ω ⊂ R2 with Lipschitz boundary
(in this study, we shall in fact assume that Ω is �2,1 regular), the inequality
‖E‖!2 (mΩ) . ‖E‖�1 (Ω) holds, for all E ∈ �1 (Ω). We note that this bound clearly
exhibits the compact embedding of �1 (Ω) in !2 (mΩ) (see [56, p. 159]) and it
actually follows from the well-known trace theorem (see, e.g., [57, Theorem
3.3.7, p. 102], [59, Theorem 5.5, p. 95]) coupled with the compact embedding
of �1/2 (mΩ) in !2 (mΩ) (cf. [69, Theorem, 2.5.5, p. 61]). Moreover, it is not hard
to see from this result that we also have the relation ‖E‖!2 (Γ) . ‖E‖�1 (Ω) . This
inequality shows that the set �1

Γ,0
(Ω) = {E ∈ �1 (Ω) : E = 0 on Γ} is strongly

closed in �1 (Ω) and, in addition, a convex set. From [19, p. 54], for instance,
we know that strongly closed convex sets are also weakly closed (see also
[17, Lemma 3.1.15, p. 119]). Hence, the weak convergence E=: ⇀ E implies
that E is in fact in the same set �1

Γ,0
(Ω). Furthermore, we note that we may

actually prove (following the proof of [43, Lemma 2.19, p. 62]) that |E |�1 (Ω) =

‖∇E‖!2 (Ω) & ‖E‖�1 (Ω) , for all E ∈ �1
Γ,0

(Ω). We note that this bound in fact
shows that the �1 (Ω)-seminorm | · |�1 (Ω) is actually equivalent to the �1 (Ω)-
norm on �1

Γ,0
(Ω). Lastly, we mention that we can also verify, possibly by way

of contradiction, that the norm

‖ · ‖�1
Γ,0

(Ω) :=
(
| · |2

�1 (Ω)
+ ‖ · ‖2

!2 (Σ)

)1/2

,

on the other hand, is equivalent to the usual Sobolev �1 (Ω)-norm. Thus, by
these results, taking E = DN − DR ∈ �1

Γ,0
(Ω), we can deduce the sequence of

inequalities

‖DN −DR‖
2
!2 (Σ)

. |DN −DR |
2
�1 (Ω)

+ ‖DN −DR‖
2
!2 (Ω)

. |DN −DR |
2
�1 (Ω)

.

It should also be recognized that the above relation is a mere consequence of
the inequality ‖DN−DR‖

2
!2 (Σ)

. ‖DN−DR‖
2
�1/2+Y (Ω)

which holds true for any Y > 0

due to the trace theorem. This observation further gives us the motivation to
consider minimizing � (Σ), subject to (3) and (6), over the set of admissible
domains for Ω to numerically solve the free boundary problem (1).

The minimization problem (5) can be carried out numerically using di昀昀er-
ent computational strategies [67]. Standard algorithms to minimize � utilizes
some gradient information when using a 昀椀rst-order method and also uses the
Hessian when applying second-order methods. So, in order for us to accom-
plish our main objective, we 昀椀rst need to carry out the sensitivity analysis of
the cost functional � (Ω) with respect to a local perturbation of the domain
Ω. Accordingly, we derive the 昀椀rst- and the second-order shape derivative of
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� through chain rule approach. This method requires, beforehand, the expres-
sions for the shape derivatives of the states DN and DR. Of course, there are
other ways to obtain the shape derivative of � such as through a technique
used in [33]. However, the method employed in [33] by the authors, which was
inspired by [25,26], restricts the results to starlike domains. Another method
could be to use only the Eulerian derivatives [22] of the states and follow [12],
or apply the so-called rearrangement method, 昀椀rst used in [51], to obtain the
shape derivative of �. We emphasize that the former approach applies not
only to starlike domains but also to more general �:,U domains. On the other
hand, the rearrangement method provides a rigorous computation of the shape
derivatives of cost functionals using only the Hölder continuity of the state
variables, bypassing the computation of the material and shape derivatives of
states (see, e.g., [10,44,50]). Further, this method requires less regularity of
the domain than in the case when applying the classical chain rule approach.
Here, we opted to apply the chain rule approach since the shape derivatives
of DN and DR are already available in the literature (see, e.g., [11] and [72], re-
spectively). In addition to these previously mentioned techniques, we remark
that the shape gradient of � can also be computed using the well-known mini-
max formulation developed in [20]. Similar to the rearrangement method, this
strategy in computing shape derivatives of cost functionals does not require
the knowledge of the shape derivative of the states as it naturally introduces
the use of adjoint states to derive the expression for the shape derivative of
the cost; see, for instance, [65,66].

The plan of the paper is as follows. In Section 2, we describe the weak for-
mulations of the state equations and brie昀氀y discuss the existence, uniqueness
and regularity of their solutions. In Section 3, we recall a few basic concepts
from shape calculus and give the shape derivatives of the states. Then, we
compute the 昀椀rst-order shape derivative of the cost � through chain rule ap-
proach followed by the computation of its corresponding second-order shape
derivative at the solution of the free boundary problem (1). Also, we shortly
discuss about the ill-posedness of the proposed shape optimization formula-
tion by inspecting the shape Hessian form at a critical shape. Meanwhile, in
Section 4, we examine the existence of optimal solution to the minimization
problem under consideration. After that, in Section 5, we describe how the
gradient and Hessian informations can be utilized in formulating an e昀케cient
boundary variation algorithm to numerically solve the present optimization
problem. Finally, we demonstrate the feasibility of the newly proposed shape
optimization approach by solving some concrete problems. Also, to illustrate
the e昀케ciency of the proposed method, we compare our numerical results with
the results obtained by the classical Dirichlet-data-tracking cost functional
approach. We end the paper with a brief conclusion given in Section 6.
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2 Preliminaries

We 昀椀rst review an essential quality of the state solutions which is vital in
guaranteeing the existence of their shape derivatives.

2.1 Weak formulation of the state equations

The respective variational formulations of the state problems (3) and (6) are
stated as follows.

Find DN ∈ �1 (Ω), with DN = 1 on Γ, such that∫
Ω

∇DN · ∇idG =

∫
Σ

_idf, ∀i ∈ �1
Γ,0 (Ω); (7)

Find DR ∈ �1 (Ω), with DR = 1 on Γ, such that∫
Ω

∇DR · ∇idG +

∫
Σ

VDRidf =

∫
Σ

_idf, ∀i ∈ �1
Γ,0 (Ω), (8)

where �1
Γ,0

(Ω) is the space of test functions in the introduction. It is well-
known that the variational equation (7) admits a unique solution in �1 (Ω),
while it can easily be veri昀椀ed (for instance, by means of Lax-Milgram theorem)
that (8) also have a unique solution in �1 (Ω) (see [39,58]).

Remark 1 We emphasize that since V > 0, then uniqueness of weak solution
DR ∈ �1 (Ω) is guaranteed for the mixed Robin-Dirichlet problem (6). More-
over, we note that we may actually consider V to be a function on Σ instead
of just being a positive constant. In this case, however, we require V := V(G)

to be at least an !∞ function on Σ (i.e., V ∈ !∞ (Σ)) and be positive almost
everywhere in the free boundary to ensure uniqueness of weak solution to (6)
(cf., e.g, [58, Lemma 7.36.3, p. 617]). In this regard, we mention here in ad-
vance that in Section 3, we will in fact consider the mean curvature of the free
boundary Σ as the function V. Evidently, V = ^ belongs to !∞ (Σ) because of
Rademacher’s theorem (recall that Ω, by assumption, is �2,1 regular). Hence,
the 昀椀rst mentioned requirement for existence of unique weak solution to (6) is
satis昀椀ed, however, the condition that ^(G) > 0 on Σ only holds for convex do-
mains. Nevertheless, this is not an issue when the domain � (whose boundary
is represented by Γ) is convex because, according to [48, Theorem 2.1] (and the
references therein), when � is convex, then so is the unique solution domain
Ω

∗ to the free boundary problem (1).

2.2 Higher regularity of the state solutions

The unique solution DN of the PDE system (3) actually possesses higher reg-
ularity if Ω is assumed to be at least �1,1 regular. In fact, the solution is also
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in �2 (Ω) in this case, and in general, if Ω is of class �:+1,1, where : is a
non-negative integer, then DN is �:+2 regular. This claim can easily be veri昀椀ed
since the 昀椀xed boundary Γ and the free boundary Σ are disjoint, (see, e.g., [10,
Theorem 29]). Analogously, the unique solution DR ∈ �1 (Ω) of (6) also have
higher regularity depending on the degree of smoothness of Ω. More precisely,
if Ω is of class �:+1,1 (again : is a non-negative integer), then DR is also an
element of �:+2 (Ω) (see, e.g., [52, Remark 3.5]). For more details about exis-
tence and uniqueness of solutions to mixed Robin-Dirichlet problems in , B,2

for bounded domains in Rd, we refer the readers to [58, Section 7.36].

3 Shape Sensitivity Analysis of the States and Cost Function

Let us consider a bounded and connected domain * ⊃ Ω and a family of
deformation 昀椀elds

Θ := {V ∈ �2,1 (*,R2) : V = 0 on m* ∪Γ}. (9)

Clearly, every V ∈ Θ forces Γ to remain invariant after a deformation since V

vanishes on Γ. Hence, Γ is a component of the boundary of any perturbation
of Ω. In this work, every admissible perturbation of the reference domain Ω

is described as follows. Given an element of Θ, we perturb Ω by means of the
so-called perturbation of the identity operator (see, e.g., [22, Section 2.5.2, p.
147] or [10]):

)C : Ω ↦−→ΩC , G ↦−→ )C (G) = G + CV(G).

For su昀케ciently small C and for each V ∈ Θ, the operator )C can be shown to be
a �2,1 di昀昀eomorphism from Ω onto its image (cf. [71]).

With the above de昀椀nition of ΩC := )C (Ω), the state solutions DNC and DRC

satisfy

−ΔDNC = 0 in ΩC , DNC = 1 on ΓC ,
dDNC

dnC
= _ on ΣC ; (10)

−ΔDRC = 0 in ΩC , DRC = 1 on ΓC ,
dDRC

dnC
+ VDRC = _ on ΣC , (11)

respectively, where nC is the unit outward normal to ΣC . Here, we can actually
drop C in ΓC because ΓC = Γ for all C. Note that for C = 0, we recover the reference
domain Ω := Ω0, with 昀椀xed boundary Γ := Γ0 and free boundary Σ := Σ0.

Next, let us recall some key de昀椀nitions from shape calculus. We say that
the function D(Ω) has a material derivative ¤D and a shape derivative D′ at zero
in the direction V if the limits

¤D = lim
C↘0

D(ΩC ) ◦)C −D(Ω)

C
, D′ = lim

C↘0

D(ΩC ) −D(Ω)

C
,

exist, respectively, where (D(ΩC ) ◦)C ) (G) = D(ΩC ) ()C (G)). These expressions are
related by

D′ = ¤D− (∇D ·V) (12)
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provided that ∇D ·V exists in some appropriate function space [22,71]. In gen-
eral, if ¤D and ∇D ·V both exist in the Sobolev space ,<,? (Ω), then D′ also
exists in that space.

3.1 Shape derivative of the states

To establish the existence of the shape derivative of �, one needs to show
that the material and shape derivatives of the states DN and DR exist and,
consequently, apply the chain rule. Apparently, the shape derivatives of DN

and DR were already obtained in [9] and [72], respectively. Their existence can
be guaranteed if Ω is assumed to be at least �2,1 regular.

Lemma 1 ([9]) Let Ω be a bounded �2,1 domain. Then, DN ∈ �3 (Ω) is shape
di昀昀erentiable with respect to the domain, and its shape derivative D′

N
∈ �1 (Ω)

is the unique solution of the mixed Dirichlet-Neumann problem


−ΔD′

N
= 0 in Ω,

D′
N
= 0 on Γ,

mnD
′
N
= divΣ (V ·n∇ΣDN) +_^V ·n on Σ,

(13)

where ^ denotes the mean curvature of Σ.

Lemma 2 ([72]) Let Ω be a bounded �2,1 domain. Then, DR ∈ �3 (Ω) is shape
di昀昀erentiable with respect to the domain, and its shape derivative D′

R
∈ �1 (Ω)

is the unique solution of the mixed Robin-Neumann problem



−ΔD′
R
= 0 in Ω,

D′
R
= 0 on Γ,

mnD
′
R
+ VD′

R
= divΣ (V ·n∇ΣDR) +_^V ·n− V(mnDR + ^DR)V ·n on Σ.

(14)

If V = ^, then for the shape derivative D′
R

of the solution of (6), it holds that
D′

R
≡ 0 when Σ is the free boundary.

3.2 First-order shape derivative of the cost function

Our objective here is to derive the shape derivative of the cost function � in
the direction of a deformation 昀椀eld V ∈Θ. We recall that, for a given functional
� :Ω→R, its directional Eulerian derivative at Ω in the direction V, if it exists,
is de昀椀ned as the limit

lim
C↘0

� (ΩC ) − � (Ω)

C
=: d� (Ω) [V] .

In addition, if the derivative d� (Ω) [V] exists for all V and the map V ↦→

d� (Ω) [V] is linear and continuous, then � is shape di昀昀erentiable at Ω, and
this mapping will be referred to as the shape gradient of � at Ω. According to
the well-known Hadamard-Zolésio structure theorem (see, e.g., [21, Theorem
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3.2 and Remark 3.1, Corollary 1]), the shape gradient of � depends only on
the normal component of V on the boundary of Ω when the domain is regular
enough.

For our proposed cost function � (Σ) given in (5), the shape derivative under
the assumption that

“V = ^ and D′R is the shape derivative of the solution of (6)
where Σ is the free boundary”

(A)

is given in the following proposition.

Proposition 1 Let Ω be of class �2,1 and V ∈ Θ. Also, let us assume that
condition (A) holds true. Then, the Dirichlet-data-gap cost functional � is
shape di昀昀erentiable with

d�A (Σ) [V] =

∫
Σ

[(
_?N +

1

2
D2

N

)
^−∇ΣDN · ∇Σ?N

]
n ·Vdf, (15)

where ?N denotes the adjoint state which is the unique solution to the PDE
system

−Δ?N = 0 in Ω, ?N = 0 on Γ, mn?N = DN on Σ, (16)

^ denotes the mean curvature of Σ and the tangential gradient ∇Σ is given by

∇Σ (·) = ∇(·) |Σ − mn (·)n.

Proof We use chain rule approach coupled with the adjoint method to obtain
the shape derivative of � given by (15). Let Ω be of class �2,1 and V ∈ Θ. Since
the state variables DN and DR are su昀케ciently regular, we can apply Hadamard’s
boundary di昀昀erentiation formula (cf. [22, Theorem 4.3, p. 486] or [46,71]):

d

dC

∫
mΩC

5 (C,f) dfC

����
C=0

=

∫
mΩ

m 5 (0,f)

mC
df +

∫
mΩ

(
m 5 (0,f)

mn
+ ^ 5 (0,f)

)
V ·ndf,

(17)
where 5 ∈ � ( [0, Y],,2, ? (*)), ? > 1, and d

dC
5 (0) exists in ,1, ? (*), to obtain

d� (Σ) [V] =

∫
Σ

(DN −DR) (D
′
N −D′R) df

+

∫
Σ

[
VDR (DN −DR) +

1

2
^(DN −DR)

2

]
V ·ndf. (18)

Here, of course, D′
N

and D′
R

satisfy (13) and (14), respectively. If D′
R

is the shape
derivative of the solution of (6) where Σ is the free boundary and V = ^, then
by Lemma 2, D′

R
≡ 0 in Ω. The expression for d� (Σ) [V] given by (18) then

simpli昀椀es to

d�A (Σ) [V] =

∫
Σ

DND
′
N df +

1

2

∫
Σ

^D2
NV ·ndf, (19)
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where we put the subscript “·A” to emphasize that condition (A) was imposed
in the computation of the shape gradient (see also comment on notation be-
low).

We stress that the representation (19) of the shape derivative � in the
direction of V at Ω is actually not useful for practical applications, especially
in the numerical realization of the minimization problem (5) because it would
require the solution of (13) for each velocity 昀椀eld V. This issue can be resolved
using the adjoint method, particularly by introducing the adjoint system (16).
Using (13) and (16), we observe, via Green’s second identity, that

∫
Σ

D′NDN df =

∫
Σ

D′Nmn?N df =

∫
Σ

?NmnD
′
N df

=

∫
Σ

?N [divΣ (V ·n∇ΣDN) +_^V ·n] df. (20)

At this point, it is useful to recall the so-called tangential Green’s formula
(see, e.g., [22, Eq. 5.27, p. 498]): let * be a bounded domain of class �1,1 and
Ω ⊂ * with boundary Γ. For V ∈ �1,1 (*,R2) and 5 ∈,2, ? (*), ? > 1, we have

∫
Γ

( 5 divΓV+∇Γ 5 ·V) df =

∫
Γ

^ 5V ·ndf, (21)

where ^ is the mean curvature of Γ. In addition, when V ·n = 0, we obviously
have ∫

Γ

5 divΓVdf = −

∫
Γ

∇Γ 5 ·Vdf.

Now, note that V ·n∇ΣDN ·n = 0. Hence, by the above identity, we have that
∫
Σ

?NdivΣ (V ·n∇ΣDN) df = −

∫
Σ

∇ΣDN · ∇Σ?NV ·ndf. (22)

Combining equations (19), (20) and (22), we get the desired result. ut

Remark 2 We recall from [50, Theorem 4.1] (with 6 = const. = _ and 5 ≡ 0) (see
also [32, Lemma 2.1]) that the shape gradient of �1 is given by

d�1 (Σ) [V] =

∫
Σ

[
m

mn

(
1

2
D2

N +_?N

)
+

(
1

2
D2

N +_?N

)
^−∇DN · ∇?N

]
n ·Vdf

=:

∫
Σ

�1n ·Vdf.

It seems not obvious, but the kernel � given in (15) only di昀昀ers by m
mn

(
1
2
D2

N

)
from �1. This can be made more clear if we apply the identity

−〈∇ΣDN,∇Σ?N〉 = −〈∇DN,∇?N〉 +
mDN

mn

m?N

mn
= −〈∇DN,∇?N〉 +_

m?N

mn
(23)
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to (15). Thus, in addition, we can actually write the shape gradient of � equiv-
alently as follows

d�A (Σ) [V] =

∫
Σ

[(
_?N +

1

2
D2

N

)
^− 〈∇DN,∇?N〉 +_

m?N

mn

]
n ·Vdf. (24)

Notation Throughout the rest of the discussion, we shall denote the shape
gradient of � in the direction of V at Ω obtained under condition (A) as d�A

and its corresponding kernel by �A; i.e.,

�A :=

(
_?N +

1

2
D2

N

)
^− 〈∇DN,∇?N〉 +_

m?N

mn
(25)

(cf. Proposition 1). Meanwhile, the expression d� simply refers to the shape
gradient of � obtained without imposing assumption (A). More precisely, the
expression for d� is given by equation (18):

d� (Σ) [V] =

∫
Σ

[
FF′ +

(
VDRF +

1

2
^F2

)
V ·n

]
df, (26)

where we use the notation F = DN −DR and F′
= D′

N
−D′

R
for simplicity.

Before going to the next subsection, let us also express d� (Σ) [V] in another
form through the adjoint method. For this purpose, let us consider two har-
monic functions ΞN and ΞR that both vanish on Γ, and such that mnΞN = F and
mnΞR+ VΞR =F on Σ. Then, by Green’s second identity together with equations
(13) and (14), we have∫

Σ

FF′ df =

∫
Σ

[
D′NF−D′R (mnΞR + VΞR)

]
df =

∫
Σ

[
D′NF−ΞR (mnD

′
R + VD

′
R)
]
df

=

∫
Σ

ΞN divΣ (V ·n∇ΣDN) df

−

∫
Σ

ΞR {divΣ (V ·n∇ΣDR) − V(mnDR + ^DR)V ·n}df

=: J1 − J2.

Note that the integral
∫
Σ
E divΣ (V ·n∇ΣD) df, for any D, E ∈ �3 (Ω), can be ex-

pressed as∫
Σ

E divΣ (V ·n∇ΣD) df = −

∫
Σ

(∇ΣD · ∇ΣE)V ·ndf =

∫
Σ

(mnDmnE−∇D · ∇E)V ·ndf

via (21) and because V ·n∇ΣD = 0. Hence, we have

J1 − J2 =

∫
Σ

{∇ΣDR · ∇ΣΞR −∇ΣDN · ∇ΣΞN + VΞR [_+ (^− V)DR]}V ·ndf

=

∫
Σ

[∇DR · ∇ΞR −∇DN · ∇ΞN +_F− (_− VDR) (F− VΞR)]V ·ndf

+

∫
Σ

{VΞR [_+ (^− V)DR]}V ·ndf.

Inserting the above expression to (26), we arrive at the following result.



Title Suppressed Due to Excessive Length 13

Proposition 2 Let Ω be of class �2,1 and V ∈ Θ. Then, � is shape di昀昀erentiable
with d� (Σ) [V] =

∫
Σ
�n ·Vdf where

� := ∇DR · ∇ΞR −∇DN · ∇ΞN +_(DN −DR) − (_− VDR) (DN −DR − VΞR)

+ VΞR [_+ (^− V)DR] + VDR (DN −DR) +
1

2
^(DN −DR)

2, (27)

and the quantities ΞN and ΞN are the respective solutions to the following
adjoint systems

−ΔΞN = 0 in Ω, ΞN = 0 on Γ, mnΞN = DN −DR on Σ; (28)
−ΔΞR = 0 in Ω, ΞR = 0 on Γ, mnΞR + VΞR = DN −DR on Σ. (29)

Remark 3 Again, similar to what has been pointed out in the proof of Propo-
sition 1, we remark that the main reason for rewriting the shape gradient
d� (Σ) [V] given in (26) into d� (Σ) [V] =

∫
Σ
�n ·Vdf is to avoid the compu-

tations of solutions to the boundary value problems (13) and (14) for each
velocity 昀椀eld V which are impractical to use in an iterative procedure.

As an immediate consequence of Proposition 2, we have the following optimal-
ity result.

Corollary 1 Let the domain Ω
∗ be such that D = D(Ω∗) satis昀椀es the overdeter-

mined boundary value problem (1); i.e., it holds that

D = DR = DN on Ω
∗
.

Then, the domain Ω
∗ ful昀椀ls the necessary optimality condition

d� (Σ∗) [V] = 0 for all V ∈ Θ.

In addition, of course, it also holds that d�A (Σ
∗) [V] = 0 for all V ∈ Θ.

Proof At the shape solution Ω = Ω
∗ of the Bernoulli problem (1), DN = 0 on

Σ
∗. Hence, ∇DN = (mnDN)n on Σ and it follows that ∇DN ·g = 0 on Σ

∗. Moreover,
we see that ΞN ≡ 0 and ΞR ≡ 0 (and also ?N ≡ 0) in Ω

∗. Thus, � given by (27)
is zero (so is �A given by (25)), which implies the assertion. ut

In the next section, we shall compute the second-order shape derivative of
� at Ω in the direction of two vector 昀椀elds from Θ. We 昀椀rst treat the case
when condition (A) is imposed during the calculation of the shape derivative
followed by the case when it is disregarded (see Subsection 3.4).
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3.3 Second-order shape derivative of the cost function

Let us now compute the shape Hessian of � at Ω in the direction of two vector
昀椀elds V,W ∈ Θ. Due to standard regularity theory for elliptic equations, we
know that the �3 (Ω) regularity of DN provides the same regularity �3 (Ω) to
?N. Hence, for su昀케ciently small B, it is clear that the derivative d�A (ΩB (W)) [V]

of � (under assumption (A)) at ΩB (W) ⊂* is well-de昀椀ned. Our next goal is to
昀椀nd an expression for the limit

lim
B↘0

d�A (ΩB (W)) [V] −d�A (Ω) [V]

B
=: d2�A (Σ) [V,W],

where

d�A (ΩB (W)) [V] =

∫
ΣB

�ABnB ·VdfB ,

�AB =

(
_?NB +

1

2
D2

NB

)
^B − 〈∇DNB ,∇?NB〉 +_

m?NB

mnB
. (30)

Here, ΣB := ΣB (W) denotes the free boundary of the perturbed domain ΩB :=

ΩB (W) obtained via the deformation 昀椀eld W ∈ Θ and DNB ∈ �
3 (ΩB) is the

unique (weak) solution of the state system (3) on Ω̄ = Ω̄B. On the other hand,
^B = divΣB

nB, and nB and gB respectively denote the unit outward normal and
unit tangent vectors on ΣB.

Accordingly, if, for all V and W in Θ, d2� (Σ) [V,W] exists and is bilinear
and continuous with respect to V and W, then � is said to be twice shape
di昀昀erentiable at Ω. In this case, the map (V,W) ↦→ d2� (Σ) [V,W] is called
the shape Hessian of � at Ω in the V,W direction. For an admissible domain
Ω, it can be shown that the shape Hessian has its support on mΩ and it is
independent on the tangential component of W on the boundary. However, the
exact expression for the shape Hessian, in general, consists of the tangential
component of V. This means, basically, that the shape Hessian is generally
not symmetric (see, e.g., [22, Chapter 9, Section 6]). Even so, at the optimal
shape solution Ω

∗ of �, it can be proved that only the normal components of V

and W contributes to the shape Hessian. Here, we focus our attention on this
situation since we are only interested in the expression for the shape Hessian
of � at the solution Ω

∗ of the exterior Bernoulli free boundary problem (1).

Proposition 3 Let Ω be of class �2,1, V,W ∈ Θ, and V be the mean curvature
of Σ. Then, the shape Hessian of � at Ω

∗ is given by

d2�A (Σ
∗) [V,W] =

∫
Σ∗

_^?′N,n ·Vdf, (31)

where ?′
N,

denotes the shape derivative of the adjoint state ?N in the direction
of W satisfying the PDE system

−Δ?′N, = 0 in Ω
∗, ?′N, = 0 on Γ, mn?

′
N, = D′N, +_W ·n on Σ

∗, (32)

where D′
N,

denotes the shape derivative of DN in the direction of W.
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Proof In the proof, we denote the shape derivative of i in the direction W by
i′ (i.e., i′ = i′

,
) for simplicity. Let NB = NB (W) be a smooth extension of nB

(see, e.g, [22, Equation (4.37), p. 491]). Using (17) with 5 (B,f) = �ABnB ·V =

�ABNB ·V (�AB is given by (30)), and V replaced by W, we get

d2�A (Σ) [V,W] =

∫
Σ

(
�′

AN+�AN
′
)
·Vdf

+

∫
Σ

{
m�A

mn
(N ·V) +�A

m (N ·V)

mn
+ ^�AN ·V

}
n ·Wdf. (33)

By Corollary 1, we know that �A = 0 on Σ
∗. Hence, noting that N|Σ = n, we

obtain
d2�A (Σ

∗) [V,W] =

∫
Σ∗

{
�′

An ·V+
m�A

mn
(n ·V)n ·W

}
df. (34)

Here, because ?N ≡ 0, and DN = 0 and mnDN = _ on Σ
∗, �′

A
|Σ∗ is given by

�′
A |Σ∗ =

{
(_?′N +DND

′
N)^ +

(
_?N +

1

2
D2

N

)
^′

− 〈∇D′N,∇?N〉 − 〈∇DN,∇?
′
N〉 +_(∇?

′
N ·n+∇?N ·n′)

}��
Σ∗

= _^?′N.

On the other hand, we note that, for i,k ∈ �3 (Ω), ∇(∇i · ∇k) ·n = (∇2i∇k +

∇2k∇i) ·n. This identity holds true because the Hessian ∇2i of i is symmetric.
Hence, the term mn�A vanishes on Σ

∗ because

mn�A |Σ∗ =

{
(_mn?N +DNmnDN)^ +

(
_?N +

1

2
D2

N

)
mn^

− (∇2DN∇?N +∇2?N∇DN) ·n +_∇2?Nn ·n
}��
Σ∗

= 0.

Thus, we have
d2�A (Σ

∗) [V,W] =

∫
Σ∗

_^?′N,n ·Vdf,

where ?′
N,

satis昀椀es the PDE system (32), proving the proposition. ut

In view of the previous proposition, we see that in order to evaluate the shape
Hessian of �, we 昀椀rst need to compute the solution ?′

N,
of (32) (although

the derivation of this set of equations follows standard techniques issued, for
example, in [71], we provide it in the appendix for the sake of completeness; see
Proposition A.1) which depends on D′

N,
and hence to the perturbation 昀椀eld

W. In terms of numerical aspect, this step is quite problematic to implement
in an iterative procedure because it would require the solution of (32) for
each deformation 昀椀eld W at every iteration. To resolve the issue, we can again
apply the adjoint method (see Remark 4 in Section 3.4) as done in the proof
of Proposition 1. Before we do this, let us 昀椀rst examine the symmetry of the
shape Hessian d2� (Σ∗) of � with respect to the velocity 昀椀elds V and W.
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3.4 Symmetricity of the Shape Hessian at a Critical Shape

Here, let us derive the shape Hessian d2� (Σ∗) [V,W], but in a slightly di昀昀erent
fashion, of � without imposing assumption (A) in expressing its shape gradient
(see expression (26)). We will show that, in this case, the corresponding ex-
pression for the shape Hessian is symmetric with respect to V and W. Again,
we denote F = DN −DR and let NB = NB (W) again be a smooth extension of nB.
Then, � (Σ) = 1

2

∫
Σ
|F |2 df and from (17), we obtain

d� (Σ) [V] =

∫
Σ

{FF′
+ +6V ·n}df,

where 6 = F∇F ·n+ 1
2
^F2. Furthermore, we get

d2� (Σ) [V,W]

=

∫
Σ

{F′
,F

′
+ +FF′′

+, + [mnFF
′
+ +FmnF

′
+ + ^FF′

+ ]W ·n}df

+

∫
Σ

{6′,V ·N+6V ·N′
, + [mn6V ·N+6mn (V ·N) + ^6V ·N]W ·n}df, (35)

where F′′
+,

denotes the shape derivative of F along the directions of V and W

(applied consecutively) and 6′
,

= F′
,
∇F ·N+F∇F′

,
·N+F∇F ·N′

,
+ 1

2
^′
,
F2 +

^FF′
,

. Now, according to Corollary 1, we have F ≡ 0 and 6 ≡ 0 at Σ = Σ
∗

which also gives us 6′
,

≡ 0 on Σ
∗. Therefore, d2� (Σ∗) [V,W] =

∫
Σ∗ F

′
+
F′
,

df.
Meanwhile, for V = ^, we know that D′

R
≡ 0 on Ω̄

∗ by Lemma 2. Thus, we
obtain

d2� (Σ∗) [V,W] =

∫
Σ∗

D′N+D
′
N, df, (36)

which clearly shows the symmetry (with respect to the deformation 昀椀elds V

and W) of the shape Hessian at a critical shape.
Let us now write (36) in its equivalent form using the adjoint method. For

this purpose, we will denote the corresponding adjoint of D′
N+

and D′
N,

by Φ,

and Φ+ , respectively. (The choice of subscripts for these adjoints will be made
clear below.)

Clearly, both Φ, and Φ+ are harmonic functions and both vanishes on Γ.
Meanwhile, on Σ

∗, we take mnΦ, = D′
N,

and mnΦ+ = D′
N+

, so that (via Green’s
second identity) we obtain the following equalities∫

Σ∗

D′N+D
′
N, df =

∫
Σ∗

D′N+mnΦ, df =

∫
Σ∗

Φ,mnD
′
N+ df =

∫
Σ∗

Φ, (_^V ·n) df

=

∫
Σ∗

D′N,mnΦ+ df =

∫
Σ∗

Φ+mnD
′
N, df =

∫
Σ∗

Φ+ (_^W ·n) df.

Consequently, the adjoint states Φ, and Φ+ satisfy the PDE systems

−ΔΦ, = 0 in Ω
∗, Φ, = 0 on Γ, mnΦ, = D′N, on Σ

∗; (37)
−ΔΦ+ = 0 in Ω

∗, Φ+ = 0 on Γ, mnΦ+ = D′N+ on Σ
∗, (38)
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respectively. Hence, we conclude that (36) can also be expressed as

d2� (Σ∗) [V,W] =

∫
Σ∗

_^Φ,V ·ndf =

∫
Σ∗

_^Φ+W ·ndf, (39)

where Φ, and Φ+ satisfy (37) and (38), respectively. Evidently, this shows
that, at the optimal shape solution Ω

∗ of �, only the normal components of V

and W contributes to the shape Hessian.

Remark 4 We emphasize that the shape Hessian d2�A (Σ
∗) [V,W] =

∫
Σ∗ _^?

′
N,

n ·Vdf

given in Proposition 3 is also impractical to use in numerical calculation be-
cause an appropriate choice for the deformation 昀椀eld W is di昀케cult to determine
directly from the given boundary integral (see Section 5). To circumvent this
di昀케culty, we again apply the adjoint method. First, we let Ψ be harmonic on
Ω such that it vanishes on Γ. Letting mnΨ = _^V ·n on Σ, we get (via Green’s
second identity and equation (32)) the following equalities

∫
Σ
_^?′

N,
n ·Vdf =∫

Σ
?′

N,
mnΨdf =

∫
Σ
Ψmn?

′
N,

df =

∫
Σ
(ΨD′

N,
+_Ψ)n ·Wdf. Next, we let another

function Π to be harmonic on Ω such that Π = 0 on Γ. Also, we let mnΠ = Ψ,
so that (via Green’s second identity) we have

∫
Σ
ΨD′

N,
df =

∫
Σ
mnΠD

′
N,

df =∫
Σ
ΠmnD

′
N,

df =

∫
Σ
_^Πn ·Wdf. Summarizing these results we can therefore

write the shape Hessian d2�A (Σ
∗) [V,W] as

d2�A (Σ
∗) [V,W] =

∫
Σ∗

_^?′N,n ·Vdf =

∫
Σ∗

_(Ψ+_^Π)n ·Wdf, (40)

where Ψ and Π satisfy the following PDE systems

−ΔΨ = 0 in Ω
∗, Ψ = 0 on Γ, mnΨ = _^V ·n on Σ

∗; (41)
−ΔΠ = 0 in Ω

∗, Π = 0 on Γ, mnΠ = Ψ on Σ
∗, (42)

respectively. Here, we notice that Ψ ≡ D′
N+

on Ω̄
∗. Hence, looking back to

equation (38), we 昀椀nd that Φ+ is exactly equal to Π satisfying (42) which
means that we may actually write the shape Hessian d2� (Σ∗) [V,W] given in
(39) as

d2� (Σ∗) [V,W] =

∫
Σ∗

_^Πn ·Wdf. (43)

Remark 5 In (35), we notice the dependence of the shape Hessian d2� (Σ) [V,W]

(for Ω di昀昀erent from the optimal domain Ω
∗) to the shape derivative ^′

,
of

the mean curvature ^ along W ∈ Θ appearing on 6′
,

. The explicit form of ^′
,

can be shown to be given by (see [22,71])

^′, = trace
{
�
[
(�Wn ·n)n− (�W)>n

]
−�n�W

}
−∇^ ·W.

Clearly, this expression consists of a second-order tangential derivative of the
perturbation 昀椀eld W, and this derivative actually exists due to our assumption
that Ω is of class �2,1 [22,71]. From this observation, we deduce that the shape
Hessian de昀椀nes a continuous bilinear form

d2� (Σ) : H
1 (Σ) ×H

1 (Σ) → R;
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that is, |d2� (Σ) [V,W] | . ‖V‖H1 (Σ) ‖W‖H1 (Σ) . Here, the notation H
1 (·) denotes

the Sobolev space H
1 (·) := {u := (D1, D2) : D1, D2 ∈ �1 (·)} and is equipped with

the norm ‖u‖2
H1 ( ·)

= ‖D1‖
2
�1 ( ·)

+ ‖D2‖
2
�1 ( ·)

. Similar de昀椀nition is also given to the
H

1
Γ,0

(·)-space.

In view of the previous remark, it is natural to ask whether it is true that
d2� (Σ∗) [V,V] & ‖V‖2

H1 (Σ∗ )
. This question actually refers to the stability of a

local minimizer Ω
∗ of �. In relation to this, we recall from [23,24] (a result

regarding su昀케cient second order conditions) that a local minimizer Ω∗ is stable
if and only if the shape Hessian d2� (Σ∗) is strictly coercive in its corresponding
energy space H

1 (Σ∗). Unfortunately, this kind of strict coercivity cannot be
established for the shape Hessian d2� (Σ∗) of �. Nevertheless, we shall show in
the next subsection that su昀케cient condition can be derived to obtain strict
coercivity in a weaker space. We note that the derived coercivity criterion is
exactly the same as in the case of the shape Hessian d2�8 of the cost functional
�8, 8 = 1,2,3,4, as shown in [31,32,33,68], respectively. It is worth remarking
that, among these cost functions, only the shape Hessian d2�2 (Σ

∗) of �2 is
H

1 (Σ∗)-coercive under the derived coercivity criterion (see [31, Proposition
2.12]).

For the sake of comparison, let us also compute the shape Hessian of the
cost functional �1(Σ) at Σ = Σ

∗. From Remark 2, we know that the gradient
of �1 (Σ) only di昀昀ers by the addition of the integral

∫
Σ
(DN∇DN ·n)n ·Vdf =:∫

Σ
61n ·Vdf from the shape gradient of � (Σ). Computing the shape derivative

of 61 at Ω = Ω
∗ along the deformation 昀椀eld W, we get 6′

1,
|Σ∗ = D′

N,
(∇DN ·

N) +DN (∇D
′
N,

·N+∇DN ·N′
,
) |Σ∗ = _D′

N,
. Meanwhile, we have ∇(DN∇DN ·n) ·n =

(∇DN · n)2 + DN [(∇
2DN)n] · n = _2 on Σ

∗. Hence, from (34) with � replaced by
61, together with equation (31) in Proposition 3, we get the 昀椀nal expression
for the shape Hessian of �1 at Ω = Ω

∗ (cf. [32, Equation (21)]):

Proposition 4 Let Ω be of class �2,1 and V,W ∈ Θ. Then, the shape Hessian
of �1 at Ω

∗ is given by

d2�1 (Σ
∗) [V,W] =

∫
Σ∗

{
_(^?′N, +D′N, )n ·V+_2 (n ·V)n ·W

}
df.

Here, we mention that the above expression was also computed in [32] but
through shape calculus for star shape domains, hence, we refer the readers to
the aforementioned reference for comparison.

Meanwhile, following Remark 4, we can also write d2�1 (Σ
∗) [V,W] in terms

of appropriate adjoint states. To do this, we let Υ be harmonic in Ω and be zero
on Γ. Moreover, we let mnΥ = _V ·n on Σ, so that by Green’s second identity
we have,

∫
Σ
D′

N,
(_n ·V) df =

∫
Σ
D′

N,
mnΥdf =

∫
Σ
ΥmnD

′
N,

df =

∫
Σ
_^Υn ·Wdf.

Hence, using the results from Remark 4, we therefore have the following equiv-
alent expression for d2�1 (Σ

∗) [V,W]:

d2�1 (Σ
∗) [V,W] =

∫
Σ∗

{_2^Π +_^Υ+_Ψ+_2 (n ·V)}n ·Wdf,
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where the adjoint states Ψ and Π satisfy the boundary value problems (41)
and (42), respectively, while Υ is the unique solution to the PDE system

−ΔΥ = 0 in Ω
∗, Υ = 0 on Γ, mnΥ = _V ·n on Σ

∗. (44)

Here, it is worth to stress out that the shape Hessian d2�1 (Σ
∗) [V,W] depends

on the solutions of three boundary value problems as opposed to the case of
d2�A (Σ

∗) [V,W] which depends only on the solutions of two PDE systems. In
terms of numerical aspects, this means that we need to solve an additional
variational problem in order to evaluate the descent direction for a gradient-
based descent algorithm.

3.5 Coercivity of the Shape Hessian at a Critical Shape

Let us now determine which weaker space of H
1(Σ∗) does the shape Hessian

d2� (Σ∗) is strictly coercive. To do this, we use the method already used in [28]
(see also [31,32,33,68]). We start by introducing the following operators which
are linear continuous as a multiplier by a smooth function (see [68, Section
3.4]):

L : H
1/2 (Σ∗) → �1/2 (Σ∗), LV := _+=;

M : �1/2 (Σ∗) → �1/2 (Σ∗), ME := ^E.

Here, += := V ·n and ^ is, of course, the mean curvature of Σ∗. The continuity
of these operators follows from the following result.
Lemma 3 Let Ω ⊂ R2 be a bounded Lipschitz domain with boundary Γ := mΩ.
Then, the map E ↦→ qE is continuous in �1/2 (Γ) for any E ∈ �1/2 (Γ) and q ∈

�0,1 (Γ).

Proof Recall that the fractional Sobolev space �1/2 (Γ) (the trace space for
�1 (Ω)) is equipped with the norm

‖E‖1/2,2 = ‖E‖!2 (Γ) + |E |1/2,2,Γ, |E |1/2,2,Γ =

(∫
Γ

∫
Γ

|E(G) − E(H) |2

|G− H |2
dG dH

)1/2

.

Let q be a Lipschitz function. Then, we have the inequality

|q(G)E(G) −q(H)E(H) | . ‖q‖∞ |E(G) − E(H) | + |E(H) | |G− H |.

Hence, |qE |1/2,2,Γ can be estimated as follows

|qE |1/2,2,Γ =

(∫
Γ

∫
Γ

|q(G)E(G) −q(H)E(H) |2

|G− H |2
dG dH

)1/2

. ‖q‖∞ |E |1/2,2,Γ +

(∫
Γ

∫
Γ

|E(H) |2 3G 3H

)1/2

. ‖q‖∞ |E |1/2,2,Γ + |Γ |
1/2‖E‖!2 (Γ) .

Because ‖qE‖!2 (Γ) 6 ‖q‖∞‖E‖!2 (Γ) , then the assertion is proved. ut
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In addition to the operators introduced above, let us also de昀椀ne the map S as
the Steklov-Poincaré operator on Σ

∗ which is de昀椀ned by (see [72])

S : �1/2 (Σ∗) → �−1/2 (Σ∗), S(Φ) :=
mΨ

mn

����
Σ∗

, (45)

where Ψ ∈ �1 (Ω∗) satis昀椀es

−ΔΨ = 0 in Ω
∗, Ψ = 0 on Γ, Ψ = Φ on Σ

∗.

The operator S, also called the Dirichlet-to-Neumann map, is �1/2 (Σ∗)-
coercive (see, e.g., [33, Lemma 2] or [31, Lem. 2.9]). Its inverse R called the
Neumann-to-Dirichlet map is de昀椀ned by

R : �−1/2(Σ∗) → �1/2 (Σ∗), R

(
mΨ

mn

)
:= Φ |Σ∗ ,

where Φ ∈ �1(Ω∗) satis昀椀es

−ΔΦ = 0 in Ω
∗, Φ = 0 on Γ, mnΦ = mnΨ on Σ

∗.

Now, using the operators L, M, R, and denoting the !2 (Σ∗)-inner product by
(·, ·)!2 (Σ∗ ) , we can write (31) as

d2�A (Ω
∗) [V,W] = (MLV,R(LW+R(MLW)))!2 (Σ∗ ) .

By the continuity of the maps L and M, and the bijectivity of R, we deduce
that the shape Hessian d2�A at Ω

∗ is L
2 (Σ∗)-coercive (whenever ^ is non-

negative) and we state this result formally as follows.
Proposition 5 For Σ

∗ with non-negative mean curvature ^, the shape Hessian
d2�A at Ω

∗ is L
2 (Σ∗)-coercive; i.e.,

d2�A (Σ
∗) [V,V] & ‖V‖2

L2 (Σ∗ )
.

The above result also means that the minimization problem “minΩ � (Σ) sub-
ject to (3) and (6)” (with condition (A) imposed in computing the gradient) is
(algebraically) ill-posed. We further discuss this notion of ill-posedness (in the
case of the present shape optimization formulation) brie昀氀y as follows. As al-
ready mentioned in the previous subsection, the shape optimization problem is
well-posed if its local minimum is stable; that is, if the shape Hessian d2�A (Σ

∗)

is strictly coercive in its energy space H
1 (Σ∗) (i.e., d2�A (Σ

∗) [V,V] & ‖V‖2
H1 (Σ∗ )

).
If, on the other hand, the positivity of the shape Hessian at Σ

∗ only holds on
a weaker (Sobolev) space, then the shape optimization problem is said to be
(algebraically) ill-posed (cf. [30,32]). This means, in particular, that tracking
the Dirichlet data in the !2-norm is not su昀케cient, and as strongly assumed
by the authors in [34], they have to be tracked relative to �1. This aforemen-
tioned lack of coercivity is known from other PDE-constrained optimal control
problems as the so-called two-norm discrepancy (see, e.g., [30] and the refer-
ences therein) and this concept of norm discrepancy under shape optimization
framework was 昀椀rst observed in [23,24,25,27], among others.
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Remark 6 In case of the cost functional �4(Ω) =
1
2
|DN − DR |

2
�1 (Ω)

examined in
[68], the shape Hessian is likewise a continuous bilinear form, i.e., d2�4(Ω) :

H
1 (Σ) ×H

1 (Σ) →R. This result is primarily due to the fact that the computed
expression for d2�4 (Ω) also consists of the shape derivative ^′ of the mean
curvature ^. Also, using the operators introduced above, the shape Hessian
d2�4 at Ω

∗ was shown to be expressible as

d2�4 (Ω
∗) [V,W] = (MLV,R(M+S)LW)!2 (Σ∗ ) ,

which is H
1/2 (Σ∗)-coercive provided that Σ

∗ has non-negative mean curvature
^.

Remark 7 Similarly, we have that d2�1 (Ω) : H
1 (Σ) ×H

1 (Σ) → R and using the
operators introduced above, we may write the shape Hessian of �1 at Ω = Ω

∗

given in Proposition 4 as follows:

d2�1 (Ω
∗) [V,W] = (R(M +S)LV,R(M+S)LW)!2 (Σ∗ ) ,

This expression is also H
1/2 (Σ∗)-coercive (i.e., d2�1 (Σ

∗) [V,V] & ‖V‖2
H1/2 (Σ∗ )

)
provided that Σ

∗ has non-negative mean curvature ^.
On the other hand, in case of the shape Hessian d2� (Σ∗) [V,W], we deduce

(via the continuity of the maps L and M, and the bijectivity of R) that

d2� (Σ∗) [V,V] = ‖R(MLV)‖2
!2 (Σ∗ )

∼ ‖MLV‖2
�−1 (Σ∗ )

,

whenever ^ is non-negative. Here, the notation “% ∼ &” means that “% . &
and % & &.” Hence, the positivity of d2� (Σ∗) holds only in the weaker space
L

2 (Σ∗).

4 Existence of optimal domains of the shape optimization problem

Before going to the numerical treatment of the proposed shape optimization
reformulation “minΩ � (Σ) subject to (3) and (6)” (or equivalently, “minΩ � (Σ)

subject to (7) and (8)”) of (1) and for completeness, let us 昀椀rst address the
question of existence of optimal solution to the said problem. On the other
hand, as regards to the existence of solution to the exterior Bernoulli FBP (1),
we refer the readers to [1].

To carry out our present task, we use the results established in [68] regard-
ing the continuity of the state problems with respect to domain. We begin by
rewriting the weak formulations (7) and (8) of (3) and (6), respectively, as
follows:

Find IN = DN −DN0 ∈ �
1
Γ,0

(Ω) such that
∫
Ω

∇IN · ∇idG +

∫
Ω

∇DN0 · ∇idG−

∫
Σ

_idf = 0, ∀i ∈ �1
Γ,0 (Ω); (46)
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昀椀nd IR = DR −DR0 ∈ �
1
Γ,0

(Ω) such that∫
Ω

∇IR · ∇idG +

∫
Ω

∇DR0 · ∇idG +

∫
Σ

VIRidf−

∫
Σ

_idf = 0, ∀i ∈ �1
Γ,0 (Ω).

(47)
In above equations, DN0 and DR0 are two 昀椀xed functions in �1 (*) such that
DN0 = DR0 = 1 on Γ, and DR0 = 0 on Σ. Given the unique solvability of (46) and
(47) in �1 (Ω), we de昀椀ne the map Ω ↦→ (IN, IR) = (IN (Ω), IR (Ω)) and denote its
graph by

ℱ = {(Ω, IN (Ω), IR (Ω)) : Ω ∈ Oad and IN (Ω), IR (Ω) satis昀椀es (46)–(47) on Ω}.

Hence, the problem “minΩ � (Σ) subject to (7) and (8)” is equivalent to
the problem of 昀椀nding a solution (Ω, IN (Ω), IR (Ω)) that minimizes � (Ω) =

� (Ω, IN (Ω), IR (Ω)) on ℱ. Such minimization problem is usually solved by en-
dowing the set ℱ with a topology for which ℱ is compact and � is lower
semi-continuous. For this purpose, we follow the ideas developed in [43] and
the ones furnished in [13,42].

Let us now characterize the set of admissible domains Oad and then give an
appropriate topology on it. In the previous section, we assume a �2,1 regularity
for the domain Ω to guarantee the existence of the shape derivatives of the
states and to establish the shape Hessian of �, for the existence proof of optimal
solution to the problem{

Find (Ω∗, IN (Ω
∗), IR (Ω

∗)) ∈ℱ such that
� (Ω∗, IN (Ω

∗), IR (Ω
∗)) 6 � (Ω, IN (Ω), IR (Ω)), ∀(Ω, IN (Ω), IR (Ω)) ∈ℱ,

(48)
it is enough to assume that Ω has a �1,1 smooth free boundary Σ (cf. [68]).
Hence, we let Σ be parametrized by a vector function q ∈ �1,1 (R,R2) (i.e.,
Σ = Σ(q) = {q = (q1 (C), q2 (C)) : C ∈ R}) where, in addition, q is assume to possess
the following properties:
(P1) q is injective on (0,1] and is 1-periodic;
(P2) there exist positive constants 20, 21, 22 and 23 such that

|q(C) | 6 20, 21 6 |q
′ (C) | 6 22, for all C ∈ (0,1), |q′′ (C) | 6 23, a. e. in C ∈ (0,1);

(P3) Ω = Ω(q) ⊂ *, * is a 昀椀xed, connected, bounded open subset of R2;
(P4) there is a positive constant W such that dist(Γ,Σ(q)) > W.
If q satis昀椀es the above conditions, then we say that q is in Uad. The set of
admissible domains Oad we consider here is now given as follows

Oad = {Ω = Ω(q) ⊂ * : q ∈ Vad}, (49)

where Vad is a compact subset of Uad. An example of Vad is the set {q ∈ Uad :

|q′′ (C) −q′′ (B) | . |C− B |, C, B ∈ (0,1]} which is compact in �1,1 (R,R2). In addition
to (49), we shall also consider the larger set

Õad = {Ω = Ω(q) ⊂ * : q ∈ Uad}.
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The set * in assumption (P3) and the one introduced in Section 3 are not
necessarily the same set. However, we point out that in (P3), we are assuming
that all admissible domains Ω(q) are contained in the hold-all domain * in
the same manner that the universal set * in equation (9) holds all the possible
deformations of the reference domain Ω. Also, we assume that* is large enough
that it contains the optimal domain Ω

∗ that solves the exterior Bernoulli FBP
(1). Here, we are in fact requiring that dist(Σ(q), m*) > 0, for all q ∈ Uad, and
dist(Σ∗, m*) > 0. In this way, we can say that the shape optimization problem
“minΩ � (Σ) subject to (7) and (8)” is indeed equivalent to the free boundary
problem (1). Meanwhile, in view of (49), we see that every admissible domain
Ω(q) is a uniformly open set in R2 and therefore satisfy the well-known uniform
cone property (cf. [46]). Moreover, as a consequence, these admissible domains
satisfy a very important extension property. More precisely, for every : > 1,
? > 1 and domain Ω ∈ Õad, there exists an extension operator

�Ω :, :, ? (Ω) →, :, ? (*) (50)

such that ‖�ΩD‖,:,? (*) 6 �‖D‖,:,? (Ω) , where � is a positive constant inde-
pendent of the domain Ω (see [18]). Using these properties, we can ensure a
uniform extension D̃ ∈ �1 (*) from Ω to * of every function D ∈ �1 (Ω). In the
discussion that follows, we will use this result to 昀椀nally de昀椀ne the topology we
shall work with.

Let us 昀椀rst de昀椀ne the convergence of a sequence {q=} ⊂ Uad by

q= → q⇐⇒ q= → q and q′= → q′ uniformly on [0,1], (51)

i.e., if and only if q= → q in the �1-topology. We can then de昀椀ne the conver-
gence of a sequence of domains {Ω=} := {Ω(q=)} ⊂ Õad by

Ω= →Ω⇐⇒ q= → q. (52)

Meanwhile, we de昀椀ne the convergence of a sequence {IN=} of solutions of (46)
on Ω= to the solution of (46) on Ω as follows

IN= → IN ⇐⇒ ĨN= → ĨN weakly in �1 (*). (53)

Similarly, the convergence of a sequence {IR=} of solutions of (47) on Ω= to
the solution of (47) on Ω is de昀椀ne

IR= → IR ⇐⇒ ĨR= → ĨR weakly in �1 (*). (54)

In (53) and (54), the extensions Ĩ8 , Ĩ8=, 8 = N,R, are de昀椀ned as �ΩIi, �Ω=
I8=,

8 = N,R, respectively, where �Ω is of course the extension operator (50).
Finally, the topology we introduce on ℱ is the one induced by the conver-

gence de昀椀ned by

(Ω=, IN=, IR=) → (Ω, IN, IR) ⇐⇒




q= → q,
IN= → IN,
IR= → IR.

(55)

We now state the main result of this section.
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Theorem 1 The minimization problem (48) admits a solution in ℱ.

As stated before, the existence proof is reduced to proving the compactness of
ℱ and the lower semi-continuity of �. Regarding the former problem, we note
that the convergence q=→ q follows immediately from the compactness of Vad

and the Arzelà-Ascoli theorem, hence, the compactness of ℱ with respect to
the convergence (55) is already guaranteed. This means that we only need
to show the continuity of the state problems (3) and (6) with respect to the
domain in order to complete the proof of compactness of ℱ. The proof of this
continuity is not straightforward but has already been done in [68] using the
tools established in [14,15], so we simply state the result as follows.

Proposition 6 ([68]) With the convergence of a sequence of domains given
in (52), we let {(q=, IN=, IR=)} be a sequence in ℱ where IN= := IN (q=) and
IR= := IR (q=) are the weak solutions of (46) and (47) on Ω= := Ω(q=) ⊂ Oad,
respectively. Then, there exists a subsequence {(q: , IN: , IR:)} and elements
q ∈ Vad and IN, IR ∈ �1 (*) such that

q: → q, ĨN: ⇀ IN in �1 (*), ĨR: ⇀ IR in �1 (*),

where IN = IN (q) = ĨN |Ω(q) and IR = IR (q) = ĨR |Ω(q) are the unique solutions of
equations (46) and (47) on Ω := Ω(q), respectively.

In the proof of the above proposition, three essential estimates were utilized.
The 昀椀rst one is a result regarding the uniform Poincaré inequality proved in
[15] (see, particularly, Corollary 3(ii)). The second one concerns about the
uniform continuity of the trace operator with respect to the domain (see [13,
Theorem 4]), and the last auxiliary result is about a uniform extension of
the state variables from Ω= to * such that their respective �1 (*)-norms are
bounded above by a constant positive number (see 昀椀rst part of the proof of
Proposition 6 given in [68]). For completeness, we recall them as follows:

Lemma 4 Let q ∈ Vad and Ω(q),Ω= :=Ω(q=) ∈ Õad. Then, the following results
hold.
(i) For every D ∈ �1

Γ,0
(Ω), we have the estimate ‖D‖!2 (Ω) . |D |�1 (Ω) .

(ii) For all real number @ such that 1
2
< @ 6 1 and functions D ∈ �1 (*), we have

‖D‖!2 (Σ (q) ) . ‖D‖�@ (*) ,

where ‖ · ‖�@ (*) denotes the �@ (*)-norm.
(iii) There exists a uniform extension ĨR= (respectively ĨN=) of IR= (respectively

IN=) from Ω= to * and a constant �R > 0 independent of = such that
‖ ĨR=‖�1 (*) 6 �R (respectively ‖ ĨN=‖�1 (*) 6 �N, where �N > 0 is constant).

In relation to the second statement of the above lemma, we note that due
to assumption (P3) and the uniform cone property of the domain Ω(q) ∈ Õad,
the norm of the trace map tr : �1

0
(*) → !2 (Σ(q)) can actually be bounded

uniformly with respect to Ω(q) ∈ Oad; see [59]. On the other hand, we mention
that the proof of Lemma 4(iii) given in [68] uses the 昀椀rst two estimates (i) and
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(ii). Note that the third part of the lemma already guarantees the existence of
a subsequence of {ĨR=} (respectively {ĨN=}) which weakly converges in �1 (*)

to a limit denoted by ĨR (respectively ĨN). Hence, the proof of Proposition 6
is completed by showing that the restriction of ĨR (respectively ĨN) in Ω(q)

coincides with the unique solution of (47) (respectively (46)). Because of the
basic role Lemma 4(iii) plays in the proof of the lower-semicontinuity of �, we
provide its proof below.

Proof (Proof of Lemma 4(iii)) Throughout the proof we use the notation (·)= :=

(·) (q=). From a famous paper of Chenais [18], we know that the solution IR=
of (47) on Ω= admits an extension ĨR= in �1(*) such that

‖ ĨR=‖�1 (*) . ‖IR=‖�1 (Ω= )
.

So, to establish our desired result, we need to prove that ‖IR=‖�1 (Ω= )
is

bounded with respect to =. In view of (8), taking i = IR= ∈ �
1
Γ,0

(Ω=), we have∫
Ω=

|∇IR= |
2 dG +

∫
Σ=

V |IR= |
2 df = −

∫
Ω=

∇DR0 · ∇IR= dG +

∫
Σ=

_IR= df.

This yields the estimate

|IR= |
2
�1 (Ω= )

6 |DR0 |�1 (*) |IR= |�1 (Ω= )
+ |_ | |* |1/2‖IR=‖!2 (Σ= )

. (56)

Next, we show that ‖IR=‖!2 (Σ= )
can be bounded by |IR= |�1 (Ω= )

. This is where
we apply the 昀椀rst two parts of the lemma (i.e., Lemma 4(i) and (ii)) to obtain

‖IR=‖!2 (Σ= )
. ‖ ĨR=‖�1 (*) . ‖IR=‖�1 (Ω= )

. |IR= |�1 (Ω= )
.

Going back to (56), we get

|IR= |�1 (Ω= )
. ‖DR0‖�1 (*) + |_ | |* |1/2.

Applying Lemma 4(i) once more, we obtain

‖IR=‖�1 (Ω= )
. ‖DR0‖�1 (*) + |_ | |* |1/2,

which establishes the boundedness of {‖ ĨR=‖�1 (*) }. The same line of argument
can be used to prove that there exists a uniform extension ĨN= of IN= from Ω=

to * and a constant �N > 0 independent of = such that ‖ ĨN=‖�1 (*) 6 �N. (In
fact, taking V = 0 in above proof easily veri昀椀es this statement.) ut

Having recalled the above results, we now proceed on the second part of the
proof of Theorem 1 by proving the next result.

Proposition 7 The cost functional

� (Σ) = � (Ω, DN (Ω), DR (Ω)) =
1

2

∫
Σ

|DN (Ω) −DR (Ω) |
2 df

is lower semi-continuous on ℱ in the topology induced by (55).



26 Julius Fergy T. Rabago, Hideyuki Azegami

To prove the above proposition, we will exploit the parametrization q of Σ.
Also, its properties stated in assumption (P3) will be used implicitly many
times in the proof. The following result, which is a consequence of Lemma
4(ii) (see [13, Corollary 2], and also [14, Corollary 1]), will also be central to
the proof of Proposition 7 given below.

Lemma 5 ([13,14]) Let q ∈Uad and {q=} ⊂Uad be a sequence such that q=→ q

in the �1 ( [0,1],R2)-norm. Then, for any D ∈ �1 (*), we have lim=→∞ D ◦ q= =

D ◦q in !2 ( [0,1]).

Proof (Proof of Proposition 7) Let {(Ω=, DN=, DR=)} be a sequence in ℱ, Ω= :=

Ω(q=), and assume that (Ω=, DN=, DR=) → (Ω, DN, DR) as = → ∞, where Ω :=

Ω(q) and the triple (Ω, DN, DR) is in ℱ. For convenience, we let F= = DN= −

DR= (recalling that F = DN −DR) and their extensions in �1 (*) by F̃= and F̃,
respectively. Here, we emphasize that F = F̃ |Ω is in �1

Γ,0
(Ω) which is essentially

due to the boundedness of the trace operator. Moreover, for any D ∈ �1
Γ,0

(*),
the restriction D |Ω=

is in �1
Γ,0

(Ω=). We have

2|� (Σ(q=) − � (Σ(q)) |

=

����
∫
Σ (q= )

|F= |
2 df−

∫
Σ (q)

|F |2 df

����
6

����
∫ 1

0

[
| (F= ◦q=) (C) |

2 |q′= (C) | − |(F ◦q) (C) |2 |q′ (C) |
]
dC

����
6

����
∫ 1

0

[
(F= ◦q=)

2 − (F ◦q)2
]
|q′= | dC

����+
����
∫ 1

0

(F ◦q)2 ( |q′= | − |q′ |) dC

����
=: I1 + I2.

We 昀椀rst look for an estimate for the second integral I2. For this purpose, we
apply the estimates in Lemma 4 and the compactness of the injection of �1 (*)

into �@ (*) for 1
2
< @ < 1, to obtain

I2 . sup
[0,1]

|q′= −q
′ | ‖F‖2

!2 (Σ (q) )
. sup

[0,1]

|q′= −q
′ | ‖F̃‖2

�1 (*)
. sup

[0,1]

|q′= −q
′ |.

Clearly, using the uniform convergence of q= → q in [0,1] (see (51)), we get
the limit lim=→∞ I2 = 0.

On the other hand, to get an estimate for the 昀椀rst integral I1, we 昀椀rst apply
the identity 02 − 12

= (0− 1)2 +21(0− 1) to obtain

I1 6

����
∫ 1

0

(F= ◦q= −F ◦q)2 |q′= | dC

����+2

����
∫ 1

0

(F ◦q) (F= ◦q= −F ◦q) |q′= | dC

����
=: I11 +2I12.
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For I12, we have the estimate

I12 6

����
∫ 1

0

(F ◦q) (F= ◦q= −F ◦q=) |q
′
= | dC

����+
����
∫ 1

0

(F ◦q) (F ◦q= −F ◦q) |q′= | dC

����
. ‖F‖!2 (Σ)

(
‖F= −F‖!2 (Σ= )

+ ‖F ◦q= −F ◦q‖!2 ( [0,1] )

)
. ‖F̃= − F̃‖�@ (*) + ‖F ◦q= −F ◦q‖!2 ( [0,1] ) .

On the other hand, for I11, we have

I11 6

����
∫ 1

0

(F= ◦q= −F ◦q=)
2 |q′= | dC

����+2

����
∫ 1

0

(F= ◦q= −F ◦q=) (F ◦q= −F ◦q) |q′= | dC

����
+

����
∫ 1

0

(F ◦q= −F ◦q)2 |q′= | dC

����
. ‖F= −F‖

2
!2 (Σ= )

+ ‖F= −F‖
2
!2 (Σ= )

(‖F‖!2 (Σ= )
+ ‖F‖!2 (Σ) ) + ‖F ◦q= −F ◦q‖!2 ( [0,1] )

. ‖F̃= − F̃‖�@ (*) + ‖F ◦q= −F ◦q‖!2 ( [0,1] ) .

The above estimates were obtained using the inequalities in Lemma 4. Com-
bining them, we arrive at

I1 . ‖F̃= − F̃‖�@ (*) + ‖F ◦q= −F ◦q‖!2 ( [0,1] ) .

Applying Lemma 5, and again using the compactness of the injection of
�1 (*) into �@ (*) for 1

2
< @ < 1, the convergences F̃= ⇀ F̃ in �1 (*)-

weak and q′= → q′ uniformly in [0,1] (see Proposition 6), we obtain
lim=→∞ I1 = 0. Thus, lim=→∞ |� (Σ(q=) −� (Σ(q)) | = 0. Consequently, we 昀椀nd that
lim=→∞ � (Ω=, DN=, DR=) = � (Ω, DN, DR); that is, � is continuous, and in particu-
lar, lower semi-continuous. ut

To conclude this section, let us formally provide the proof of Theorem 1 using
Proposition 6 and Proposition 7.

Proof (Proof of Theorem 1) Let (Ω=, IN=, IR=), Ω= = Ω(q=), be a minimizing
sequence for the cost function �; that is, (Ω=, IN=, IR=) is such that

lim
=→∞

� (Ω=, IN=, IR=) = inf{� (Ω, IN, IR) : (Ω, IN, IR) ∈ℱ}.

From Proposition 6, there exists a subsequence (Ω: , IN: , IR:) and an element
Ω = Ω(q) ∈ Oad such that Ω: →Ω (i.e., q: → q uniformly in the �1 topology),
ĨN: ⇀ ĨN, ĨR: ⇀ ĨR in �1 (*), and the functions ĨN |Ω and ĨR |Ω are the unique
weak solutions to (46) and (47) in Ω, respectively. Using these, together with
the continuity of � proved in Proposition 7, we conclude that (by virtue of [43,
Theorem 2.10])

� (Ω, ĨN |Ω, ĨR |Ω) = lim
:→∞

� (Ω: , IN: , IR:) = inf{� (Ω, IN, IR) : (Ω, IN, IR) ∈ℱ}.

ut
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Remark 8 It is worth remarking that in [32], the authors did not tackle the
question of existence of optimal solution of the shape optimization problem
examined in their paper which is the Poisson case of (1) with a regular Dirichlet
and Neumann data on the 昀椀xed boundary and free boundary, respectively.
Nevertheless, the authors tacitly supposed the existence of optimal domains
and assumed that it is su昀케ciently regular to accomplish their objectives. We
mention that, with the appropriate modi昀椀cation on the proof of Theorem 1,
the existence analysis for the shape optimization problem studied in [32] can
be carried out in a similar fashion (see [13]).

5 Numerical Algorithm and Examples

Here, using the gradient and Hessian informations, we will formulate a bound-
ary variation algorithm to numerically solve the minimization problem (5). We
shall use a Lagrangian-like method to carry out the numerical realization of the
problem in contrast to the one applied in [12,44,50] which is an Eulerian-like
type method known as level-set method (see [64]). Of course, our approach is
also di昀昀erent from [31,32,33] which employs the concept of boundary integral
equations and were then solved by boundary element methods. Furthermore,
there is another numerical method which was recently proposed in [40] that
employs the notion of conformal mapping method to solve the FBP (1). This
solution method was recently developed by Haddar and Kress in [40] and re-
lates the Bernoulli problem in the context of inverse problems. Much more
recently, another method was also introduced by Kress in [54] in an attempt
to improve the use of boundary integral equations for numerically solving the
Bernoulli problem. In terms of numerical performance, he demonstrated that
his recently proposed method inspired by Tre昀昀tz’ integral equation method [73]
is more robust and wider applicable than that of [40]. We mention here that
Tre昀昀tz’ approach, in principle, can be considered as a so-called trial method
(see, e.g., [72]) which is also a prominent numerical method for solving free
boundary value problems such as the Bernoulli problem.

5.1 Numerical Algorithm

In the following discussion, we give the details of the numerical algorithm we
use to solve some concrete numerical examples of (5).

5.1.1 The Sobolev gradient method

Let us denote by Ω: the shape of the domain at the :th iteration. Then, at the
(: +1)th iteration, the shape Ω can be updated as Ω:+1 := ΩC:+1

= (I2 + C:V)Ω,
where C: > 0 is some small step size parameter and V represents the descent
deformation 昀椀eld V: at the :th iterate. In perturbing the domain Ω, we may
take V|Σ = −�n as the descent direction. However, this choice of the descent
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direction may cause undesirable oscillations on the free boundary of the shape
solution Ω

∗. To avoid such phenomena, we compute the descent direction via
the so-called �1 gradient method [6]; that is, we take V as the unique solution
in H

1
Γ,0

(Ω) of the variational problem
∫
Ω

(∇V : ∇>+V ·>) dG = −

∫
Σ

�n ·>df, ∀> ∈ H
1
Γ,0(Ω). (57)

In this sense, the deformation 昀椀eld V, also called in some literature as a Sobolev
gradient (see, e.g., [60]), provides a smooth extension of �n over the entire
domain Ω, which not only smoothes the boundary [5] but also provides a pre-
conditioning of the descent direction. The method of regularizing the descent
direction using (57) is similar to the idea behind the so-called traction method
introduced and popularized in [2,3,4,5].

On the other hand, we note that the kernel � given in (15) depends on
the mean curvature of Σ. This means that we 昀椀rst need to calculate ^ in
order to determine V. In this investigation, we evaluate this expression by 昀椀rst
creating a smooth extension of n using the idea of the �1 gradient method and
then calculate ^ as the divergence of that smooth extension. This technique
is possible because, by Proposition 5.4.8 of [46, p. 218] (see also [38, Lemma
16.1, p. 390]), we know that, for a domain Ω of class �2, there exists a unitary
�1 extension ñ of n such that the mean curvature may be de昀椀ned as

^ = divΣn = div ñ.

Hence, based on this idea, we may numerically compute ^ via the equation
^ = divN, where N is the smoothed extension of n satisfying the equation

∫
Ω

∇N : ∇>dG +

∫
Σ

N ·>df =

∫
Σ

n ·>df, ∀> ∈ H
1 (Ω). (58)

5.1.2 Step Size

Let us now turn our attention to the computation of the step size to be used
in our algorithm. It is worth mentioning that the choice for C: can be decided
in many ways. Here, we shall update C: ∈ (0, Y] (where Y > 0 is some su昀케ciently
small real number) by following a heuristic approach inspired by the Armijo-
Goldstein line search strategy similar to the one o昀昀ered in [50], but for level-
set methods. Given the choice of descent direction V|Σ = −�n (this means,
basically, that 0(·, ·) in equation (60) below is the usual inner product in !2 (Σ))
and the de昀椀nition of the domain ΩY, we know that

� (ΣY) ' � (Σ0) + Yd� (Σ0) [V] = � (Σ0) − Y‖�‖2
!2 (Σ0 )

(< � (Σ0)).

The requirement � (ΣY) = (1− U)� (Σ0) for some U ∈ (0,1) then suggests the
choice Y = U� (Σ0)/‖�‖2

!2 (Σ0 )
. However, since we are regularizing V via (57), we
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need to replace the !2-norm of � appearing in the denominator of the previous
formula with the H

1 (Ω)-norm of V, and then 昀椀nally de昀椀ne the step size C: as

C: = U� (Σ:)/‖V‖2
H1 (Ω)

. (59)

We further explain the above formula as follows. In general, we may in fact
consider the variational equation

0 (V,>) = − 〈�n,>〉!2 (Σ) , ∀> ∈ X, (60)

where 0(·, ·) is some bounded coercive bilinear form on an appropriate space X,
to obtain a regularization of the descent direction −�n (see, e.g., [5, Section
6.3]). Then, using (60) and the requirement that the relation � (ΣY) = (1−

U)� (Σ0) = � (Σ0) + Y 〈�n,V〉!2 (Σ) holds for some U ∈ (0,1), we end up with the
equation

Y = −U
� (Σ0)

〈�n,V〉!2 (Σ)

= U
� (Σ0)

0 (V,V)
,

for any V ∈ H
1
Γ,0

(Ω). Hence, at each iteration, we may choose, for a 昀椀xed U,
the step size parameter C: as C: = U� (Σ:)/0 (V,V) . This formula for C: clearly
provides a natural choice for the magnitude of the step size when the descent
direction V is regularized using equation (60). Nevertheless, as investigated
in [67] through various numerical experiments, it is possible to change the
denominator 0 (V,V) in the formula for C: to get a better step size. In fact, by
changing the H

1 (Ω)-norm in (59) by either the H
1
Γ,0

(Ω)- or the L
2 (Σ)-norm,

for instance, we can speed up the convergence of the algorithm given below, as
exhibited in [67]. Indeed, this claim can easily be supported by the fact that
the sequence of inequalities ‖V‖−2

H1 (Ω)
. ‖V‖−2

H1
Γ,0

(Ω)
. ‖V‖−2

L2 (Ω)
obviously holds.

Now, with U ∈ (0,1) 昀椀xed, the step size will be decided according to the fol-
lowing rule: we take C: as in (59) whenever there is a decrease in the computed
cost value from the previous to the next iteration loop (i.e., if � (Σ:+1) 6 � (Σ:)).
Otherwise, if the cost value increases, we reduce the step size and go backward:
the next iteration is initialized with the previous shape Ω: . We also reduce
the step size C: if reversed triangles are detected within the mesh update.

5.1.3 The Boundary Variation Algorithm (First-Order Method)

The main steps required for the computation of the :th domain is summarized
as follows:

Step 1 Fix the step size parameter and choose an initial shape Ω0.
Step 2 Solve the state equations and their corresponding adjoint state systems

on Ω: . Also, solve the variational problem (58) on Ω: .
Step 3 Using the shape gradient, compute the descent direction V: via (57)

and the step size C: by (59).
Step 4 Using V: and C: , perturb the current domain by Ω:+1 = (I2 + C:V:)Ω: .
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Finally, to complete the above steps, we need to specify the stopping condition.
Here, we terminate the algorithm as soon as the inequality condition

� (Σ:)/� (Σ0) < [, (61)

is satis昀椀ed for some su昀케ciently small real number [ > 0 or if the algorithm al-
ready completed a speci昀椀ed (maximum) computing time. It worth mentioning
that a typical stopping criterion is to 昀椀nd that whether the shape gradients
in some suitable norm are small enough. However, since we use the continu-
ous shape gradients, it is hopeless for us to expect very small gradient norm
because of numerical discretization errors. In addition, because we will be com-
paring our proposed method with that of the classical Dirichlet-data-tracking
approach and since this method uses a di昀昀erent cost function, a normalization
of the cost histories with the initial cost value that corresponds to each method
seems more appropriate to our case.

We shall refer to the above sequence of procedures with d�A given by (15)
as the gradient as Algorithm A.1. On the other hand, when using the full
shape gradient d� given in Proposition 2 in Step 3, the above steps will be
referred to as Algorithm B.1.

5.1.4 Incorporating the Shape Hessian Information in the Numerical
Procedure

We remark that, with the help of the shape Hessian information, we can obvi-
ously improve the convergence of the numerical method given in the previous
section in terms of the number of iterations required to complete the itera-
tion scheme (see, e.g., [28,68,72]). However, the drawback of a second-order
method is that, in most cases, it demands additional computational burden
and time to carry out the task. In this section, we will formulate a second-
order optimization algorithm to solve the minimization problem (5) following
an idea 昀椀rst proposed by the second-author in [7] (see also [8, Problem 4.2, Eq.
(29)]). Particularly, we use a variant of the so-called �1 Newton (or Sobolev
Newton) method which utilizes the Hessian information to compute the de-
scent direction. The basic idea of this method is that it incorporates the shape
Hessian in obtaining a regularized descent direction for the algorithm similar
to equation (60) (see Remark 9 below). In our case, however, we propose to
use only the shape Hessian information at the solution of the FBP (1) (i.e.,
we use (40)).

To do the task, we de昀椀ne the descent direction W ∈ H
1
Γ,0

(Ω) as the unique
solution of the variational equation∫

Ω

(∇W : ∇>+W ·>) dG = −

∫
Σ

(� +�∗ [V])n ·>df, ∀> ∈ H
1
Γ,0 (Ω), (62)

where �, as before, is the kernel of the shape gradient while �∗ [V], in this case,
denotes only the kernel of the shape Hessian at the solution of the FBP (1),
i.e.,

∫
Σ∗ �

∗ [V]n ·Wdf := d2� (Σ∗) [V,W] (cf. (43)). In case of the shape gradient
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computed with assumption (A), the corresponding notation is �∗
A
[V]. In terms

of the adjoint states, these kernels of the shape Hessians are exactly given by

�∗ [V] = _^Π [V] and �∗
A [V] = _(Ψ[V] +_^Π [V]), (63)

respectively. Here, of course, Ψ and Π satisfy equations (41) and (42), respec-
tively. In above expressions, we added the notation (·) [V] to emphasize that
the expression it is attached to is dependent to the deformation 昀椀eld V.

Now, the main steps to compute the :th domain Ω: are essentially the
same as that given in Section 5.1.3. However, in order to take into account the
procedure in computing W, we divide the third step of the original algorithm
as follows:

Step 3.1 Using the shape gradient, compute the descent direction V: via (57).
Step 3.2 Compute Ψ and Π by solving the PDE systems (41) and (42) at

Ω = Ω: .
Step 3.3 Using the shape gradient and the shape Hessian, compute the descent

direction W: using (62).

Moreover, in Step 4 of the original algorithm, we replace V: with the new
deformation 昀椀eld W: ; that is, we perturb the :th domain by Ω:+1 = (I2 +

C:W:)Ω: . Here, the step size C: can still chosen on the basis of the formula
given in (59). However, in our experience, this formula for the step size does
not give much improvement in terms of convergence speed for the second-order
shape optimization algorithm. To exploit the advantage of utilizing the shape
Hessian information, an appropriate step size formula has to be used to achieve
at least a superlinear (or even quadratic) convergence rate for the algorithm
(see Remark 10 below).

Remark 9 We also remark that the computed boundary integral expression
(33) with �A replaced by � in the proof of Proposition 3, in general, can be
further written into the following form

d2� (Σ) [V,W] =

∫
Σ

[
�′
,+n + (mn� + ^�)+n,n −� +� (�V),n

]
df,

where  = vΣ · (�Σn)wΣ +n · (�Σv)wΣ +n · (�Σw)vΣ, +n := V · n for V ∈ Θ, v =

V|Σ, v = vΣ + Enn := (v · g)g + (v ·n)n and �Σ denotes the tangential di昀昀erential
operator called the tangential Jacobian matrix given as �Σv=�V|Σ−(�Vn)n>

(see, e.g., [22, Eq. (5.2), p. 495]). Evidently, the above expression for the shape
Hessian is composed of symmetric and non-symmetric terms with respect to
the deformation 昀椀elds V and W [63]. This lack of symmetry and complexity
in form of the shape Hessian provides much di昀케culty for its utilization and
numerical implementation ([62,70]). Nevertheless, as proposed by Simon in
[70], one can still utilize the shape Hessian in an optimization procedure in
a much simpler way by dropping the non-symmetrical part of the Hessian
(see, e.g., [49]), allowing one to obtain a second order expansion of the form
� (Σ) + d� (Σ) [V] + d2� (Σ) [V,V] of � (Σ) with respect to the descent direction
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V. Note that the necessary optimality condition give rise to the variational
formulation of the Newton equation

d2� (Σ) [V,W] = −d� (Σ) [V], ∀V ∈ H
1
Γ,0 (Ω),

whose solution W may be used as a descent direction in a gradient-based
descent algorithm (cf. equation in Step 3 of [43, Section 4.1.1, Algorithm 4.1,
p. 131]). Following this idea, and employing a smoothing technique such as
(60), we arrive at equation (62) which gives us a new regularized descent
direction W.

Remark 10 In addition to the previous remark, and as also noted by Simon in
[70] (see his remark in Section 2.1), we mention that the velocity of gradient
methods (such as Algorithm A.1) can be improved by choosing the step size as
the negative ratio between the shape gradient over the shape Hessian. For ex-
ample, the :th approximation of Ω0 can be computed as Ω:+1 = (I2 + C

5

:
V:)Ω:

where C 5
:
= −d� (Σ:) [V:]/d

2� (Σ:) [V: ,V:]. Here, the step generated by the for-
mula for C 5 is commonly called as the (full) Newton step (see, e.g., [61, Section
3.3]).

In our case, since we are using regularized descent directions, the above
idea is, in a sense, equivalent to taking C: as a scalar multiple of the ratio of
the square of the H

1 (Ω)-norm of V over the squared H
1 (Ω)-norm of W. Indeed,

from a similar proposition issued in Subsection 5.1.2, we can naturally take

C: = Ũ‖V‖2
H1 (Ω: )

/‖W‖2
H1 (Ω: )

, (64)

for a 昀椀xed Ũ ∈ (0,1], as the :th step size of the second-order optimization
algorithm proposed in Subsection 5.1.4.

In (64), we introduced the step size parameter Ũ simply to control the mag-
nitude of the descent step during each iteration. We recall that, in most op-
timization problems, the introduction of a step size parameter to Newton’s
method is primarily due to the fact that the method is quite sensitive if the
initial guess is too bad. Common strategies to globalize the method is to intro-
duce a line search strategy or to work with the so-called trust region methods
(see, e.g., Section 3.4 and Chapter 4 of [61]). In practice, the former strategy
is accomplished by scaling the Newton’s step by some coe昀케cient 0 < Ũ 6 1 in
every iteration (as we have done in (64)). Taking Ũ = 1 obviously amounts to
a full Newton step and choosing Ũ < 1 yields the so-called damped Newton
method (see, e.g., [16, Section 9.5.2, p. 487]) which has an increased conver-
gence radius (this, however, does not work well in general), and also has a
reduced convergence order (not quadratically anymore). Nevertheless, when
the approximant is judged to be near to a solution, Ũ = 1 is taken and the
convergence would be as good as for the standard (or pure) Newton’s method.

Here, we opted to apply a line search method in our proposed second-order
(shape optimization) algorithm to address two main issues when taking the
full Newton step. Firstly, we notice that, in some situations, choosing a full
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Newton step is not necessarily the best strategy to start the approximation
procedure, especially if the initial guess is far from the (optimal shape) solu-
tion. Secondly, we observe that the full Newton step is sometimes too large
that the cost functions become insensitive with respect to geometric perturba-
tions, occasionally causing the algorithm to overshoot or converge prematurely
to a less optimal solution (see Example 5.2.4). On the other hand, although
the step size parameter Ũ can be made at most equal to the unit value when
the approximant is estimated to be close to the optimal solution, we only 昀椀xed
Ũ to be of constant value (6 1) throughout the iteration process. Nevertheless,
a backtracking procedure as in Subsection 5.1.2 will still be employed in the
algorithm, meaning that the maximum step size at each iteration of the algo-
rithm is only bounded above by a fraction (determined by the value of Ũ) of
the full Newton step.

Despite the fact that the idea is already known in the literature, we em-
phasize that the formula for the step size given by (64) is, to the best of
our knowledge, novel to this work. We shall refer to the modi昀椀cations of Algo-
rithm A.1 and Algorithm B.1, exploiting the shape Hessian informations given
in (63) and the new step size formula for C: , as Algorithm A.2 and Algorithm
B.2, respectively. Also, for the sake of comparison, we will also run our pro-
pose iterative procedures using the classical Dirichlet-data-tracking approach
in solving the numerical examples in the next section. We will refer to these
procedures as Algorithm C.1 for the 昀椀rst-order method (with shape gradient
d�1 in Remark 2) and Algorithm C.2 for the second-order method (with shape
Hessian d2�1 given in Proposition 4). Regarding the latter method, it is worth
to mention that a second-order shape optimization method that utilizes the
Dirichlet-data-tracking cost functional �1 in Lagrangian-like method has not
been done yet in previous numerical investigations. Hence, this paper is the
昀椀rst to investigate the feasibility and e昀케ciency of employing the said formu-
lation in a second-order shape optimization (昀椀nite element based solution)
procedure for solving the exterior Bernoulli FBP (1).

5.2 Numerical Examples

The test cases we give below are all performed in two-dimension using the pro-
gramming software FreeFEM++ (see [45]). All weak formulations described
in previous sections are solved using P2 昀椀nite element discretization where the
number of discretization points on the free and 昀椀xed boundaries are initially
set to #ext×#int = 120×100 discretization points. Meanwhile, we use the built-
in function movemesh of FreeFEM++ in perturbing the reference domain Ω

during the optimization process. In addition, we use the function adaptmesh
with minimum edge size ℎmin and maximum edge size ℎmax during mesh adap-
tion to re昀椀ne and avoid the degeneracy of the triangles in the meshes. In all
examples, we set ℎmin = 1/80 and ℎmax = 1/40 except for the third problem
where we take ℎmin = 1/10 and ℎmax = 1/5. Moreover, we terminate the itera-
tions as soon as � (Σ:+1)/� (Σ0) < 10−8 or if the algorithm already runs for 60
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seconds of computing time. Furthermore, in all examples we give below, the
Robin coe昀케cient V is, of course, chosen to be equal to ^ (the mean curvature of
the free boundary) in Algorithm A.1 and Algorithm A.2, while for Algorithm
B.1 and Algorithm B.2 we take V = 100. All computations are carried out on
a 1.6 GHz Intel Core i5 Macintosh computer with 4GB RAM processors.

5.2.1 Example 1: Axisymmetric case

We 昀椀rst consider a simple axisymmetric case. Given that � (0, A) and � (0, ')

are the circles centered at the origin with radius A > 0 and ' > A, respectively,
the pure Dirichlet problem (problem (4))

−
m2D

md2
−

1

d

mD

md
= 0 for A < d < ', D(A) = 1, and D(') = 0,

has the exact solution D(d) = log (d/')/log (A/'). In this case, mnD(') =

1/[' log (A/')]. Hence, the exterior Bernoulli FBP (1) with

Γ = {G ∈ R2 : |G | = A} and _ =
1

' log
(
A
'

) , 0 < A < ', (65)

has the unique exact free boundary solution Σ
∗
=� (0, '). Moreover, the explicit

expression DD satisfying (4) on Ωd (the annular domain with inner radius A
and outer radius d centered at the origin) is given by

DD (Ωd) =
log |G | − log d

logA − log d
.

Similarly, for the mixed Dirichlet-Neumann problem (3) with assumptions
given by (65), the explicit expression for its solution DN is given by

DN (Ωd) = _d log

(
|G |

A

)
+1.

Meanwhile, for the mixed Dirichlet-Robin problem (6) with 昀椀xed V > 0 and _
in (65), the PDE system

−
m2D

md2
−

1

d

mD

md
= 0 for A < d < ', D(A) = 1, and mnD(') + VD(') = _,

has the solution D = DR (Ωd) explicitly given by

DR (Ωd) =
1+_d log

(
|G |
A

)
− Vd log

(
|G |
d

)
1− Vd log

(
A
d

) .
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Thus, when the free boundary is given by Σd = {G : |G | = d}, the exact values
of the functionals �1, �2, �3, �4 and � are given by the following expressions:

�1 (Σd) =
1

2

∫
Σd

D2
N df = cd

(
1−_d log

(
A

d

))2

,

�2 (Σd) =
1

2

∫
Σd

(
mDD

mn
−_

)2

df =
c

d
(
log

(
A
d

))2

(
1−_d log

(
A

d

))2

,

�3 (Ωd) =
1

2

∫
Ωd

|∇ (DN −DD) |
2 dG =

c

log
( d
A

) (1−_d log

(
A

d

))2

,

�4 (Ωd) =
1

2

∫
Ωd

|∇ (DN −DR) |
2 dG =

c

log
( d
A

) ©­­«
Vd log

(
A
d

)
1− Vd log

(
A
d

) ª®®¬

2 (
1−_d log

(
A

d

))2

,

� (Σd) =
1

2

∫
Σd

|DN −DR |
2 df = cd

©­­«
Vd log

(
A
d

)
1− Vd log

(
A
d

) ª®®¬

2 (
1−_d log

(
A

d

))2

.

Figure 1 shows that the algorithms using �1, �2, �3, �4 and � are not equivalent.

Fig. 1: Variation of the cost functionals �1, �2, �3, �4 and � with respect to d

Next, we evaluate the e昀케ciency of the 昀椀rst-order shape optimization meth-
ods presented in the previous sections (i.e., Algorithm A.1, Algorithm B.1 and
Algorithm C.1) in solving a concrete example of the present test problem. For
this purpose, we let A = 0.3 and ' = 0.5 (hence, '∗

= 0.5), giving us _ = −3.9152.
We choose the circle centered at the origin with radius 0.6 as our initial guess



Title Suppressed Due to Excessive Length 37

(i.e., we take Σ0 = � (0,0.6)). The results of the convergence tests using Al-
gorithm A.1, Algorithm B.1 and Algorithm C.1 for values of U = 0.1,0.3,0.5

are depicted in Figure 2. This includes the histories of mean radii shown in
Fig. 2(a), the histories of relative errors n: = |'̄: −'

∗ | shown in Fig. 2(b), and
the histories of cost values (normalized with its initial value) plotted on log-
arithmic scale in Fig. 2(c). In these 昀椀gures, the ‘:th mean radii,’ denoted by
'̄: , means the average distance from the origin of the nodes on the exterior
boundary of the :th domain Ω: , and Σ: denotes the :th approximation of the
optimal free boundary Σ

∗. In all cases, the computed values of the cost func-
tions at Σ that correspond to each algorithm, where  denotes the optimal
termination index (i.e.,  := min{: ∈ N0 : stopping condition is satis昀椀ed}), are
all found to be of magnitude less than 10−6. Furthermore, the computed rela-
tive errors n: in all cases are of magnitude of order 10−4. Meanwhile, we notice
from Figure 2(a) that our proposed formulation coupled with our present nu-
merical scheme with U = 0.3 solves the solution of the test problem as fast as
the Kohn-Vogelius formulation (combined with the level-set method) used in
[12] in terms of the number of iterations required to complete its corresponding
iteration process. In fact, our proposed method with the step size parameter
U set to 0.5 is even faster than the said approach used by Ben Abda et al. in
[12]. On the other hand, it is evident from the shown 昀椀gures that Algorithm
B.1 posseses faster convergence rate than Algorithm C.1. Hence, our proposed
method (without, of course, imposing condition (A)) is more e昀케cient than
the classical Dirichlet-data-tracking approach, at least in solving the present
case problem. In contrary, however, Algorithm A.1 (in which condition (A) is
assumed) converges to the solution of the test problem slower than Algorithm
C.1.

Now, we resolve the test problem using Algorithm A.2, Algorithm B.2 and
Algorithm C.2. The computational results obtained from these second-order
shape optimization methods are shown in Figure 3. Looking at the graphs
depicted in the said 昀椀gure, it seems that our proposed method, with or without
condition (A) (respectively, Algorithm A.2, and Algorithm B.2) is faster than
the second-order Dirichlet-data-tracking approach (i.e., Algorithm C.2). In
this case, however, Algorithm B.2 and Algorithm C.2 were ran with Ũ = 0.3

while we used the full Newton step (i.e., Ũ = 1) for Algorithm A.2. Again, the
computed 昀椀nal cost values, in all cases, are of magnitude less than 10−6 and
the absolute errors at the 昀椀nal iterate n are all found to be of magnitude of
order 10−4. Notice from the left most plot in Figure 3 that the 昀椀rst iterate of
Algorithm A.2 already overshoots the solution. Even so, the second iterate is
already close enough to the optimal solution as evident in the said plot.

In the next two examples, we further examine the e昀昀ect of imposing condi-
tion (A) in the shape optimization process. This time we consider two concrete
problems that have non-trivial 昀椀xed boundaries. Also, due to the limitation
of the proposed shape optimization method coupled with condition (A) (see
Remark 1), we only consider cases wherein the optimal shape solution are
nearly convex. More precisely, for the 昀椀rst problem, we consider the case when
the 昀椀xed boundary has a shape like an inverted letter T. On the other hand,
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(a) Histories of Mean Radii

(b) Histories of Error Values

(c) Histories of Cost Values

Fig. 2: Histories of (a) mean radii, (b) error values and (c) cost values of Exam-
ple 5.2.1 for values of U = 0.1,0.3,0.5 (left, middle and right plots, respectively)
using the gradient based algorithms A.1, B.1 and C.1

Fig. 3: Histories of mean radii (left plot), error values (mid plot) and cost
values (right plot) for Example 5.2.1 using the second-order shape optimization
algorithms A.2, B.2 and C.2

for the second case problem, we consider a 昀椀xed boundary that has two dis-
joint components similar to the one examined in [54]. In these cases, since the
exact optimal free boundaries are di昀케cult to solve analytically, we simply as-
sume Σ

∗ as the 昀椀nal free boundary computed using 昀椀ner meshes and at longer
computing times.
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5.2.2 Example 2: An inverted T-shaped 昀椀xed boundary

Next, we consider Γ = m( as the boundary of the T-shape

( := ((−3/8,3/8) × (−1/4,0)) ∪ ((−1/8,1/8) × [0,1/4)),

and let _ = −10. We solve the present problem using algorithms A.1, B.1, A.2,
and B.2. For the 昀椀rst-order methods, we take U = 0.1 while for the second-
order algorithms, we choose Ũ = 0.9. The results of the computations are
shown in Figure 4. Here, the evolution of the free boundaries with initial
pro昀椀le Σ0 = � (0,0.6) are illustrated in Figure 4(a). Observe from these 昀椀gures
that the evolution of the free boundaries are clearly di昀昀erent from each other
(as expected), especially when the approximant is closing to the optimal free
boundary. Meanwhile, a comparison between the histories of cost values and
histories of Hausdor昀昀 distances between the :th approximation and the (ap-
proximate) optimal free boundaries (here, we denote by dH (Σ: ,Σ

∗)) obtained
from the four algorithms are shown in Figure 4(b) and Figure 4(c), respectively.
Looking at these 昀椀gures, it seems that Algorithm B.1 is converging faster than
Algorithm A.1 at 昀椀rst few iterations, but then the condition is reversed after 12
iterations. Meanwhile, comparing their corresponding second-order methods,
it appears that Algorithm A.2 and Algorithm B.2 are comparable in terms
of convergence speed. On the other hand, the second-order methods are obvi-
ously much faster than the 昀椀rst-order methods as expected. In these numerical
tests, the computed cost values are all found to be of magnitude of order 10−4.
Furthermore, the calculated Hausdor昀昀 distances between the 昀椀nal free bound-
aries obtained from the four algorithms (including the approximate optimal
free boundary) are found to be of order 10−3. This means that the computed
昀椀nal free boundaries are almost identical.

5.2.3 Example 3: A domain with 昀椀xed boundary having two disjoint
components

For the third example, we look at one of the test problems studied in [54].
Particularly, we let _ = −1.5 and de昀椀ne the 昀椀xed boundary Γ as the union of
two disjoint kite-shaped 昀椀gures which are parametrically de昀椀ned as follows:

Γ
1
= {(1+0.7cos\ −0.4cos2\, sin\)>,0 6 \ 6 2c},

Γ
2
= {(−2+ cos\ +0.4cos2\,0.5+0.7sin\)>,0 6 \ 6 2c}.

Here, the initial guess Σ0 for the free boundary is taken to be the circle
� (0,5.0). In addition, we again choose U = 0.1 and Ũ = 0.9 in the 昀椀rst- and
second-order methods. The results of the computations using algorithms A.1,
B.1, A.2, and B.2 are shown in Figure 5. In particular, Figure 5(a) shows
the evolutions of the free boundaries obtained using the four algorithms while
the remaining plots, Figure 5(b) and Figure 5(c), illustrate the histories of
cost values and Hausdor昀昀 distances dH (Σ: ,Σ

∗), respectively. In this problem,
it appears that Algorithm B.1 is completely much faster than Algorithm A.1
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(a) Evolution of the free boundaries generated by gradient methods (left) and by Newton
methods (right)

(b) Histories of cost values

(c) Histories of Hausdor昀昀 distances

Fig. 4: Computational results of Example 5.2.2 using algorithms A.1, B.1, A.2
and B.2

as oppose to the previous problem. However, we notice a similar convergence
behavior on the second-order methods as in the previous example. More pre-
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cisely, it seems that Algorithm B.2 converges faster that Algorithm A.2 as the
approximant gets closer to the optimal free boundary. Meanwhile, as in the
previous example, the computed cost values are all found to be of magnitude
of order 10−4, and the computed 昀椀nal free boundaries are almost identical with
each other (i.e., their Hausdor昀昀 distances are computed to be of order 10−3).

In the last two examples presented above, the computed 昀椀nal free bound-
aries are found to be nearly convex. To complete our numerical investigation,
we need to consider another example wherein the optimal free boundary is
clearly non-convex. For this purpose, however, we focus on comparing our
proposed method with that of the classical Dirichlet-tracking approach (not-
ing, of course, that condition (A) is not appropriate to take into account in
solving this new last and 昀椀nal case problem).

5.2.4 Example 4: A dumb-bell like shape 昀椀xed boundary

We consider Γ = m� as the boundary of a dumbbell-like domain � similar to
the one examined by Eppler and Harbrecht in [29] which has the following
parametrization

� := {(0.45cos\,0.3sin\ (1.25+ cos2\))>,0 6 \ 6 2c},

and take _ = −10. For this problem, we again choose the circle � (0,0.6) as
the geometric pro昀椀le of the initial free boundary Σ0. Moreover, we let U = 0.3

as the step-size parameter for the 昀椀rst-order methods and take Ũ = 0.8 for the
second-order algorithms. The computational results using algorithms B.1, C.1,
B.2, and C.2 are summarized in Figure 6. Looking at Figure 6(a), it is evident
that the free boundaries evolve di昀昀erently from each algorithm. In particular,
referring to the results of the 昀椀rst-order methods shown in the other plots
(Figure 6(b) and Figure 6(c)), it seems that our proposed method is somewhat
faster than the classical Dirichlet-data-tracking approach. Regarding second-
order methods, however, it looks like that the classical approach is converging
faster than the Dirichlet-data-gap tracking formulation. In fact, as early as
the second iterate, the classical Dirichlet-data-tracking approach was already
able to detect the non-convexity of the optimal free boundary. Nevertheless,
as the approximants get closer to the optimal free boundary, we observe that
the proposed method then converge faster than the classical approach (at
least based on the right plot depicted in Figure 6(c)). Even so, the computed
optimal free boundary obtained from the two formulations are almost identical
as evident in Figure 6(d) (in fact, the computed Hausdor昀昀 distance between
the computed 昀椀nal free boundaries obtained from the two formulations has
magnitude of order 10−3). Lastly, in all cases, the computed cost values are
all found to be of magnitude of order 10−5 or lower. However, as we see in the
right plot in Figure 6(b), it seems that the cost functional � is less sensitive
than the Dirichlet-data-tracking cost functional �1 in this example. We further
explain this property of the cost function below, giving emphasis on the notion
of ill-posedness of the proposed formulation “minΩ � (Σ) subject to (7) and (8)”
discussed in Subsection 3.5.
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(a) Evolution of the free boundaries generated by gradient methods (left) and by Newton
methods (right)

(b) Histories of cost values

(c) Histories of Hausdor昀昀 distances

Fig. 5: Computational results of Example 5.2.3 using algorithms A.1, B.1, A.2
and B.2
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(a) Evolution of the free boundaries generated by gradient methods (left) and by Newton
methods (right)

(b) Histories of cost values

(c) Histories of Hausdor昀昀 distances

(d) Computed free boundaries obtained via gradient methods (left) and via Newton methods
(right)

Fig. 6: Computational results of Example 5.2.4 using algorithms B.1, C.1, B.2
and C.2
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Sensitivity of the cost functionals � and �1. We conclude our numerical
example by discussing the e昀昀ect of the step size parameter Ũ in the ‘sensitiv-
ity property’ of the cost functionals � and �1. As pointed out at the end of
subsection 5.1.4, the main purpose of introducing a step size parameter in our
second-order methods is to control the magnitude of the step size (i.e., to limit
the maximum step) at every iteration. Recall that, at the :th iterate, we only
accept the step size C: only if it provides a decrease in the cost value (i.e., if
� (Σ:+1) 6 � (Σ:)); otherwise, we do a backtracking procedure. In our numerical
experiments, we observe that taking a full Newton step at every iterate is not
a good strategy at all because the cost functional � (as well as �1) seems to be
insensitive with respect to large geometric perturbations. For illustration, we
refer to Figure 7(a) where we logarithmically plot the histories of cost values
obtained from resolving the present case problem using Algorithm B.2 and Al-
gorithm C.2 with the full Newton step C: = ‖V‖2

H1 (Ω: )
/‖W‖2

H1 (Ω: )
(i.e., Ũ = 1.0).

Noticeably, several adjacent iterations di昀昀er only with very small values (and
almost insigni昀椀cant). Hence, the non-uniform sensitivity of the cost with re-
spect to the descent directions. This observation can actually be viewed as a
validation to our 昀椀ndings that the present formulation is algebraically ill-posed
(see Proposition 5 and Remark 7). That is, in this case, the ill-posedness of the
present optimization formulation could also mean that larger deformations in
the domains may have little e昀昀ect on the cost functional. On the other hand,
the evolution of the free boundaries with the full Newton step are shown in
Figure 7(b) while a comparison between the computed free boundaries using
the two second-order algorithms is depicted in Figure 7(c). In the latter 昀椀gure,
the di昀昀erence between the two computed geometries is clearly discernible and,
in this case, the 昀椀nal free boundary computed through the classical approach
(i.e., Algorithm C.2) is more accurate than the one obtained via the proposed
method (i.e., Algorithm B.2). Meanwhile, scaling the (full) Newton steps by
a factor of Ũ = 0.2 at every iteration (in both Algorithm B.2 and Algorithm
C.2) lead to the computational results shown in Figure 8. The 昀椀gure shows, in
particular, the histories of cost values and Hausdor昀昀 distances both plotted in
Figure 8(a) (left and right plot, respectively). Referring, in particular, to the
left plot shown in Figure 8(a), it is clear that the costs � and �1 are decreasing
almost uniformly from the initial to their respective 昀椀nal values. However, it
is apparent from the 昀椀gure that the cost � is more sensitive (and therefore
has higher convergence behavior) than �1. In fact, because the number of it-
erations required by Algorithm B.2 to reach the optimal free boundary is less
than that of Algorithm C.2 (as evident in the right graph plotted in Figure
8(a)), we can conclude that the proposed method is indeed much faster than
the classical Dirichlet-data-tracking approach. This observation is, of course,
also evident from the evolution of the free boundaries shown in Figure 8(b)
wherein we recognized a big di昀昀erence on how the two algorithms actually
develop the initial free boundary into an optimal one. We mention here that
we also ran the two algorithms using several other values for Ũ between zero
and the unit value (to solve the present case problem), and, as in the previ-
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ous cases, we found that the proposed method is, in general, faster that the
classical approach of minimizing the Dirichlet-data-tracking cost functional.
Nevertheless, the cost function � becomes more insensitive than �1 as the step
size parameter Ũ increases in value.

6 Conclusion

We presented a second-order shape optimization algorithm for solving the ex-
terior Bernoulli free boundary problem using a new boundary cost functional
which measures the !2-gap at the free boundary of two auxiliary states, one
of which is a solution of a mixed Dirichlet-Neumann problem and the other of
which satis昀椀es a mixed Dirichlet-Robin problem. The novelty of the present
investigation is the utilization of the shape Hessian information at the solution
of the free boundary problem in the iterative scheme formulated to numeri-
cally solve the minimization problem. Numerical results revealed that the 昀椀rst-
and second-order shape optimization methods put forward in this study is, in
general, faster than the classical approach of tracking the Dirichlet data in !2

sense. Thus, in this investigation, the robustness of the proposed method was
shown not only theoretically but also numerically.
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A Shape Derivative of the Adjoint State ?N

Let us 昀椀rst introduce some notations and present some properties of the operator )C (see
Section 3) that will be useful to our analysis. For C ∈ (0, Y) (Y > 0 su昀케ciently small), the trans-
formation )C is invertible and )C , )−1

C ∈�
1 (R2,R2 ) (see, e.g., [10, Lemma 11]). In addition, the

Jacobian matrix of the transformation )C =)C (V) associated with the velocity 昀椀eld V denoted
by det �)C (-) is strictly positive. Here, we shall use the notations (�)C )

−1 and (�)C )
−> to

denote the inverse and inverse transpose of the Jacobian matrix �)C , respectively. Also, for
convenience, we write �C = det �)C (-) (�)

−1
C ) (�)C )

−> and FC = det �)C (-) | (�)C )
−>

n | which
represent the Jacobian matrix of )C with respect to the boundary mΩ.

The following lemma, whose proof can be found in [22,71], will also be essential to our
analysis.

Lemma A.1 Let V be a 昀椀xed vector 昀椀eld in Θ (see (9)) and � = (−C0, C0 ), with C0 > 0 su昀케ciently
small. Then, the following regularity properties of )C hold

(i) C ↦→ det �)C (-) ∈ �
1 (�,� (Ω̄) )

(iii) C ↦→ FC ∈ �
1 (�,� (Σ) )

(v) d

dC
FC |C=0 = F

′ (0) = divΣV

(ii) C ↦→ �C ∈ �
1 (�,�1 (Ω̄) )

(iv) limC↘0FC = 1

(vi) d

dC
�C |C=0 = �

′ (0),

where �′ (0) = (divV)I2 − (�V+ (�V)> ) and the limits de昀椀ning the derivatives at C = 0 exist
uniformly in G ∈ Ω̄.
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(a) Histories of cost values

(b) Evolution of the free boundaries using Algorithm B.2 (left) and Algorithm C.2 (right)

(c) Computed free boundaries

Fig. 7: Computational results of Example 5.2.4 using Algorithm B.2 and Al-
gorithm C.2 with the full Newton step (i.e., Ũ = 1.)
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(a) Histories of cost values (left) and Hausdor昀昀 distances (right)

(b) Evolution of the free boundaries

Fig. 8: Computational results of Example 5.2.4 using Algorithm B.2 and Al-
gorithm C.2 with the scaled full Newton step (i.e., Ũ = 0.2)

Before we derive the shape derivative of ?N, and for completeness, let us 昀椀rst prove the
unique solvability of the adjoint problem on the perturbed domain ΩC .

Lemma A.2 For any C > 0 su昀케ciently small, the variational problem: 昀椀nd ?C
N
∈ �1 (Ω) such

that ?C
N
= 0 on Γ and

∫

Ω

�C∇?
C
N · ∇i dG −

∫

Σ

FCD
C
Ni df = 0, ∀i ∈ �1

Γ,0 (Ω) . (66)

admits a unique solution ?C
N

in �1 (Ω).

Proof We 昀椀rst note that the variational problem being examined is obtained from the
problem: 昀椀nd ?NC ∈ �

1 (ΩC ) such that ?NC = 0 on Γ and
∫

ΩC

∇?NC · ∇i dGC −

∫

ΣC

DNC i dfC = 0, ∀i ∈ �1
Γ,0 (ΩC ) , (67)

via the application of domain and boundary transformation formulas (see, e.g., [71, Propo-
sition 2.46–2.47]). In fact, the functions qC : ΩC → R and qC : Ω→ R are related through the
equation qC = qC ◦)C . Hence, if ?NC solves the variational equation (67), then ?C

N
= ?NC ◦)C
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satis昀椀es (66). In addition, the boundary condition ?C
N
= ?NC ◦)C = 0 on Γ implies that ?C

N
is

actually in �1
Γ,0

(Ω).
Now, consider the bilinear form 1C ( ·, · ) : H

1
Γ,0

(Ω) → R de昀椀ned by

1C (q
C , i) =

∫

Ω

�C∇q
C · ∇i dG, ∀qC , i ∈ �1

Γ,0 (Ω) . (68)

Note that, as a consequence of Lemma A.1, �C is bounded. Hence, it is clear that 1C ( ·, · )
is continuous because |1C (q

C , i) | =

�

�

�

∫

Ω
�C∇q

C · ∇i dG

�

�

� . ‖�C ‖!∞ (Ω) ‖q
C ‖�1 (Ω) |i |�1 (Ω) . More-

over, 1C ( ·, · ) is coercive. Indeed, from the fact that �C → I uniformly on Ω̄ as C→ 0, we know
that there exist su昀케ciently small values for C > 0 such that ‖�C − I‖!∞ (Ω) < 1. So, we have

1C (q
C , qC ) =

∫

Ω

�C∇q
C · ∇qC dG =

�

�

�

�

∫

Ω

(�C − I)∇qC · ∇qC + |∇qC |2 dG

�

�

�

�

> ‖∇qC ‖2

!2 (Ω)
− ‖�C − I‖!∞ (Ω) ‖∇q

C ‖2

!2 (Ω)

& |∇qC |2
�1 (Ω)

.

Next, we consider the functional l :�1
Γ,0

(Ω) →R de昀椀ned by 〈l, i〉 =
∫

Σ
FCD

C
N
i df. Evidently,

this functional is continuous because of the boundedness of |FC |∞ and due to the sequence
of inequalities

�

�

�

�

∫

Σ

FCD
C
Ni df

�

�

�

�

. |FC |∞ ‖DCN ‖!2 (Σ) ‖i ‖!2 (Σ) . |FC |∞ ‖DCN ‖�1 (Ω) |i |�1 (Ω) .

Thus, by Lax-Milgram theorem, the function ?C
N

, vanishing on Γ, is the unique solution to
the variational equation (66) in �1 (Ω). This proves the lemma. ut

Proposition A.1 Let Ω be a bounded �2,1 domain. The shape derivative of the adjoint state
variable ?N ∈ �3 (Ω) at Ω = Ω

∗ satisfying the mixed Dirichlet-Neumann problem (16) is a
solution to the following mixed boundary value problem:

−Δ?′N, = 0 in Ω
∗, ?′N, = 0 on Γ, mn?

′
N, = D′N, +_W · n on Σ

∗.

Proof The proof mainly contains two parts; we 昀椀rst prove the existence of the material
derivative of ?N, then we formally proceed on the derivation of its shape derivative.

Step 1. Existence of the material derivative of ?N. The variational formulation of (16)
on the reference domain Ω is given as follows: 昀椀nd ?N ∈ �1

Γ,0
(Ω) such that

∫

Ω

∇?N · ∇i dG −

∫

Σ

DNi df = 0, ∀i ∈ �1
Γ,0 (Ω) . (69)

Subtracting (66) with C = 0 from the case where C > 0, for all i ∈ �1
Γ,0

(Ω), we obtain
∫

Ω

{�C∇?
C
N − ∇?CN +∇?CN − ∇?N} · ∇i dG −

∫

Σ

{FCD
C
N − DCN +DCN − DN}i df = 0.

Hence, we have a unique solution ?C
N
− ?N ∈ �1

Γ,0
(Ω) to the variational equation

∫

Ω

∇(?CN − ?N ) · ∇i dG = −

∫

Ω

(�C − I)∇?CN · ∇i dG +

∫

Σ

(FC − 1)DCNi df +

∫

Σ

(DCN − DN )i df,

(70)
for all i ∈ �1

Γ,0
(Ω). We note that ∇?C

N
is uniformly bounded in !2 (Ω;R2 ) and we have the

convergence ∇?C
N
→ ∇?N also in that space. Indeed, using the boundedness of ‖�C ‖!∞ (Ω)

from below, we get the estimate

‖∇?CN ‖2

!2 (Ω)
.

∫

Ω

�C∇?
C
N · ∇?CN dG =

∫

Σ

FCD
C
N?

C
N df . |FC |∞ ‖DCN ‖�1 (Ω) ‖ ?

C
N ‖!2 (Ω) .
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Because DC
N

is uniformly bounded in �1 (Ω) (cf. [10, Theorem 23], see also [50, Proposi-
tion 3.1]), the uniform boundedness of ∇?C

N
in !2 (Ω;R2 ) immediately follows, and so the

convergence ∇?C
N
→ ∇?N in !2 (Ω;R2 ). Next, we divide both sides of (70) by C and denote

qC := 1
C
(?C

N
− ?N ) to obtain

∫

Ω

∇qC · ∇i dG = −

∫

Ω

(

�C − I

C

)

∇?CN · ∇i dG +

∫

Σ

(

FC − 1

C

)

DCNi df +

∫

Σ

(

DC
N
− DN

C

)

i df,

for all i ∈ �1
Γ,0

(Ω). We choose a sequence {C= } such that C= → 0 as =→∞. Our goal is to
show that the limit lim=→∞ q

C exists. Using the boundedness of 1
C=

(�C − I) and 1
C=

(FC − 1)

in !∞, we deduce that ∇?
C=
N

is bounded in !2 (Ω;R2 ), and thus the boundedness of qC= in
�1

Γ,0
(Ω). Hence, we can extract a subsequence, which we still denote by {C= }, such that

lim=→∞ C= = 0. Moreover, there exists an element q of �1
Γ,0

(Ω) such that qC= ⇀ q weakly in
�1

Γ,0
(Ω). From the convergences ∇?

C=
N

→ ∇?N in !2 (Ω;R2 ) and DC=
N

→ DN in !2 (Σ), together
with Lemma A.1(v)–(vi), we get

∫

Ω

∇q · ∇i dG = −

∫

Ω

�∇?N · ∇i dG +

∫

Σ

DNidivΣWdf +

∫

Σ

¤DNi df,

for all i ∈ �1
Γ,0

(Ω), where ¤DN = limC↘0
1
C
(DC

N
−DN ) which is exactly the material derivative of

DN at C = 0 in the direction W. This function exists and is actually an element of �1
Γ,0

(Ω)

as shown, for example, in [9]. Hence, the above equation admits a unique solution in �1 (Ω)

and we deduce that qC= ⇀ q for any sequence {C= }. This implies the strong convergence of
qC= to q in !2 (Σ). Now, taking i = qC= ∈ �1

Γ,0
(Ω), we obtain

lim
C=→0

|qC= |2
�1 (Ω)

= − lim
C=→0

{∫

Ω

(

�(C= ) − I

C=

)

∇?
C=
N

· ∇qC= dG

}

+ lim
C=→0

{∫

Σ

(

F (C= ) − 1

C=

)

D
C=
N
qC= df

}

+ lim
C=→0

{

∫

Σ

(

D
C=
N

− DN

C=

)

qC= df

}

= −

∫

Ω

�∇?N · ∇qdG +

∫

Σ

DNqdivΣWdf +

∫

Σ

¤DNqdf = |q |�1 (Ω) .

The norm convergence and the weak convergence of qC= in �1
Γ,0

(Ω) implies the strong
convergence of qC= to q ∈ �1

Γ,0
(Ω). This guarantees the existence of the material derivative

of ?N.
Step 2. Computing the shape derivative of ?N at Ω = Ω

∗ along the deformation 昀椀eld W.
From the previous step, we showed the existence of the material derivative of ?N in �1

Γ,0
(Ω).

Denoting this derivative by ¤?N, we know that it satis昀椀es the variational equation
∫

Ω

∇ ¤?N · ∇i dG = −

∫

Ω

�∇?N · ∇i dG +

∫

Σ

DNidivΣWdf +

∫

Σ

¤DNi df, ∀i ∈ �1
Γ,0 (Ω) . (71)

In addition, it is clear that ¤?N = 0 on Γ. Applying Green’s formula to the above variational
form, we get

−

∫

Ω

iΔ ¤?N dG +

∫

Σ

imn ¤?N df =

∫

Ω

idiv(�∇?N ) dG −

∫

Σ

i�mn?N df

+

∫

Σ

DNidivΣWdf +

∫

Σ

¤DNi df, ∀i ∈ �1
Γ,0 (Ω) .

First, let us choose i ∈ �1
0
(Ω). Then, we have −

∫

Ω
iΔ ¤?N dG =

∫

Ω
idiv(�∇?N ) dG. Since,

�1
0
(Ω) is dense in !2 (Ω), we obtain −Δ ¤?N = div(�∇?N ) in Ω. Next, we choose i ∈ �1

Γ,0
(Ω)

such that i is arbitrary in Σ. This gives us
∫

Σ

imn ¤?N df = −

∫

Σ

i�mn?N df +

∫

Σ

DNidivΣWdf +

∫

Σ

¤DNi df.
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Because the traces of functions in �1
Γ,0

(Ω) are dense in !2 (Σ), we arrive at mn ¤?N =

−�mn?N +DNdivΣW+ ¤DN on Σ. Summarizing these results, we see that ¤?N satis昀椀es the follow-
ing boundary value problem:

−Δ ¤?N = div(�∇?N ) in Ω, ¤?N = 0 on Γ, mn ¤?N = −�mn?N +DNdivΣW+ ¤DN on Σ.

From above equations, and due to the fact that W vanishes on Γ, we immediately obtain
(in view of the identity (12)) ?′

N
= ¤?N −W · ∇?N = 0 on Γ. Now, we consider i ∈ �2 (Ω). Note

that for �1,1 domain, we have that DN ∈ �2 (Ω) (see [10, Theorem 29] and also [50]). Hence,
DN ∈ �3/2 (Σ) which, in turn, means that ?N ∈ �2 (Ω) by standard elliptic regularity theory.
Given this regularity of ?N and since −Δ?N = 0 in Ω, we can therefore write −

∫

Ω
�∇?N · ∇i dG

as follows (see [50, Lemma 4.1])

−

∫

Ω

�∇?N · ∇i dG =

∫

Ω

∇(W · ∇?N ) · ∇i dG +

∫

Σ

mn?N (W · ∇i) df −

∫

Σ

(∇?N · ∇i)W · ndf,

(72)

for all i ∈ �2 (Ω). Hence, using the identity (12), we have the equation
∫

Ω

∇ ¤?N · ∇i dG =

∫

Ω

∇?′N · ∇i dG +

∫

Ω

∇(W · ∇?N ) · ∇i dG, ∀i ∈ �1
Γ,0 (Ω) .

Combining this equation with (71) and (72) yields
∫

Ω

∇(W · ∇?N ) · ∇i dG +

∫

Σ

mn?N (W · ∇i) df −

∫

Σ

(∇?N · ∇i)W · ndf +

∫

Σ

DNidivΣWdf +

∫

Σ

¤DNi df

=

∫

Ω

∇?′N · ∇i dG +

∫

Ω

∇(W · ∇?N ) · ∇i dG, ∀i ∈ �2 ∩�1
Γ,0 (Ω) .

Applying Green’s formula on the right side of the above equation we arrive at

−

∫

Ω

iΔ?′N dG +

∫

Σ

imn?
′
N df =

∫

Σ

mn?N (W · ∇i) df −

∫

Σ

(∇?N · ∇i)W · ndf

+

∫

Σ

DNidivΣWdf +

∫

Σ

¤DNi df, ∀i ∈ �2 ∩�1
Γ,0 (Ω) .

Now, we choose i ∈ �∞
0
(Ω). This leads us to −Δ?′

N
= 0 in Ω. Moreover, we get

∫

Σ

imn?
′
N df =

∫

Σ

(DNW− ∇?NW · n) · ∇i df +

∫

Σ

DNidivΣWdf +

∫

Σ

¤DNi df.

Observe that (DNW−∇?NW ·n) ·n = 0. Hence, we can replace ∇i |Σ by the tangential gradient
∇Σi. Using the tangential Green’s formula (see equation 21) thrice, noting that W ·n∇Σ ?N ·

n = 0, and then using the relation ¤DN = D′
N
+W · ∇DN, we obtain

∫

Σ

imn?
′
N df =

∫

Σ

idivΣ (∇?NW · n) df +

∫

Σ

¤DNi df

=

∫

Σ

i^ (∇?NW · n) · ndf −

∫

Σ

(∇Σi · ∇?N )W · ndf +

∫

Σ

¤DNi df

=

∫

Σ

i^DNW · ndf −

∫

Σ

(∇Σi · ∇Σ ?N )W · ndf +

∫

Σ

¤DNi df

=

∫

Σ

i^DNW · ndf +

∫

Σ

idivΣ (∇Σ ?NW · n) df +

∫

Σ

(D′N +W · ∇DN )i df,

for all i ∈ �2∩�1
Γ,0

(Ω). Since the trace of functions from �2 (Ω) is dense in !2 (Σ), we deduce
the boundary condition on for ?′

N
given by mn?

′
N
= divΣ (∇Σ ?NW ·n) + ^DNW ·n+D′

N
+W · ∇DN.

Summarizing these results, and letting Ω = Ω
∗, we get

−Δ?′N = 0 in Ω
∗, ?′N = 0 on Γ, mn?

′
N = D′N +_W · n on Σ

∗,

as desired. ut
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It is worth remarking that the existence of the shape derivative ?′
N

of ?N can only be justi昀椀ed
if DN is �3-regular. Hence, we require that Ω be at least of class �2,1 so that DN (as well as
DR) is in �3 (Ω) (see, e.g., [10, Theorem 29]).
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