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Abstract We propose a new shape optimization formulation of the Bernoulli problem by

tracking the Neumann data. The associated state problem is an equivalent formulation of

the Bernoulli problem with a Robin condition. We devise an iterative procedure based on

a Lagrangian-like approach to numerically solve the minimization problem. The proposed

scheme involves the knowledge of the shape gradient which is established through the min-

imax formulation. We illustrate the feasibility of the proposed method and highlight its ad-

vantage over the classical setting of tracking the Neumann data through several numerical

examples.

Keywords Bernoulli problem · Domain perturbation · Free boundary · Lagrangian method ·

Minimax formulation · Shape optimization · Shape derivative.

1 Introduction

The Bernoulli problem is considered as a prototype of a stationary free boundary problem. It

models different physical phenomena such as electrochemical machining [1], potential flow

in fluid mechanics [2], tumor growth [3], optimal insulation [4], heat flow [5] and many

more. For other industrial applications and further details on the physical background of

these type of problems, interested readers may consult [6,7] and the references therein.

In general, the Bernoulli problem concerns about the problem of finding a connected

domain wherein an associated function is harmonic. A part of the boundary is known and

the other one is determined by a set of overdetermined boundary conditions for the state.

If the free boundary component is strictly exterior to the fixed part of the boundary, the

problem is called exterior Bernoulli problem and interior Bernoulli problem otherwise.
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In this work, we aim to solve the Bernoulli problem under shape optimization settings.

We focus on the exterior problem but the same analysis also applies for the interior case.

The exterior Bernoulli free boundary problem can be stated as follows: given a bounded

and connected domain A ⊂ R2 with a fixed boundary Γ := ∂A and a constant λ < 0, one

needs to find a bounded connected domain B ⊂ R2 with a free boundary Σ := ∂B, containing

the closure of A, and an associated state function u := u(Ω), where Ω = B \ Ā, satisfying the

system

−∆u = 0 in Ω, u = 1 on Γ, u = 0 and ∂nu = λ on Σ. (1)

Here, ∂nu := ∇u · n denotes the normal derivative of u and n is the outward unit normal

vector to the free boundary Σ. To write the overdetermined boundary value problem (1) into

a shape optimization problem: find (u,Ω) such that

J (Σ) =min
Σ̃

J (Σ̃) = 0, (2)

we propose to track the Neumann data in a least-squares sense:

J (Σ) =
1

2

∫

Σ

(∂nu− λ)2 ds, (3)

where the state solution u satisfies, for a fixed β > 0, the following equivalent form of (1)

with a Robin boundary condition:

−∆u = 0 in Ω, u = 1 on Γ, ∂nu+ βu = λ on Σ. (4)

Note that when (u,Ω) is the solution of (1), J (Σ) = 0 since ∂nu = λ on Σ. On the other hand,

when J (Σ) = 0, we get from (4) the equation −βu = ∂nu− λ = 0. Since β > 0, we obtain

u = 0 on Σ, and thus the overdetermined system (1).

Other reformulations of (1) into shape optimization problems are also possible and have

already been extensively studied in previous investigations (see [8,9,10,11,12,13,14,15,16,

17,18,19]. In [11] (see also [19]), the authors considered a shape optimization formulation

of a slightly general problem similar to (1) with λ ∈ R using the same objective functional

(3). However, the state variable u is subject to the pure Dirichlet problem:

−∆u = 0 in Ω, u = g on Γ, u = 0 on Σ, (5)

where g ∈ H3/2(Σ).

To numerically solve (1) via formulation (3)–(4), one needs to solve the minimization

problem (2). This requires the expression for the first-order shape derivative or shape gradi-

ent of J which, in the case of the problem setting (3) and (5), was established in [11] through

rearrangement method. This technique introduced in [20] provides a rigorous computation

of the shape gradient and allows one to characterize its form without recourse to the chain-

rule approach [21], thereby bypassing the computation of the material and shape derivative

of the states. In [19], the shape optimization formulation (3) and (5) of (1) was re-examined

by Bacani and the first author. In particular, the shape derivative of J was computed through

minimax formulation in the spirit of [22]. Similar to the rearrangement method, the afore-

mentioned strategy in computing the gradient does not involve the shape derivative of the

state u as it naturally introduces the use of an adjoint state variable. The rearrangement

method, however, has some sort of an advantage over the minimax formulation in comput-

ing the shape derivative of J via the problem setting (3) and (5). Particularly, under the very

mild C1,1 regularity assumption on the boundary of Ω, Haslinger et al. [11] were able to

characterize the shape derivative of J by successfully applying the rearrangement method.
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On the other hand, the authors in [19] require Ω to be of class C2,1 to established the expres-

sion for the shape gradient of J. This higher regularity of the domain, however, permits one

to use Hadamard’s domain and boundary differentiation formulas and a classical identity

to obtain the boundary integral expression for the shape gradient of J. In addition, a C2,1

regularity of the boundary of Ω actually guarantees the existence of the shape gradient as it

secures sufficient smoothness for the associated state and adjoint state of the problem (see

[19, Remark 2]).

As mentioned above, the shape optimization formulation studied in [11] avoids the com-

putation of the material derivative of the states which in turn requires the introduction of an

appropriate adjoint state system. The corresponding adjoint state for the formulation setting

(3) and (5) (with g ≡ 1) of the Bernoulli problem, however, only enjoys one regularity less

compared to that of the state variable u satisfying the state equation (5). In fact, for C1,1

domain Ω, the state variable u is H2 regular, while its corresponding adjoint state (here we

denote by p) is only in H1(Ω). This motivates us to consider (3) with the newly proposed

state equation (4). Given this new state equation associated with (3), the corresponding ad-

joint state now possesess the same regularity with that of u, for each of a particular class of

Ck,1 (k > 1) domainΩ. In general, for a Ck,1 domainΩ, the solution u ∈ H1(Ω) to (4) and its

corresponding adjoint p ∈ H1(Ω) satisfying (10) are both in Hk+1(Ω). This higher regularity

of the adjoint state, combined with a specific choice of the parameter β, actually provides

more stability for the iterative scheme we use here to solve the Bernoulli problem (1). This

makes the new formulation more practical for numerically solving the said problem.

The main contribution of the present study is the formulation of a novel Lagrangian-like

approach for the numerical realization of (1) by means of the shape optimization formulation

(2)–(4). We point out that a similar method was recently used in [19] to numerically solve

the exterior Bernoulli problem (1) but with the classical state problem formulation (5). We

announce in advance that the proposed formulation not only exhibits faster convergence to

the optimal solution but also provides stable approximation of the optimal shape. We support

these claims with various numerical examples that are reported in the last part of the paper.

The plan for the rest of the paper is as follows. In Section 2, we recall some basic tools

from shape optimization which can be used to calculate the shape derivative of the cost func-

tional. Then, we derive the boundary expression for the shape gradient of the cost using the

minimax formulation. In Section 3, we give a similar result for the interior Bernoulli prob-

lem both for the case of the classical setting and the proposed formulation without proofs.

In Section 4, we describe how the computed shape gradient can be utilized to formulate an

efficient iterative procedure to numerically solve the Bernoulli problem. In Section 5, we

highlight the advantage of the proposed formulation over the classical setting for both of the

exterior and interior case by giving out several numerical examples.

2 Shape Derivative of the Cost Functional

We first recall the concept of the velocity (or speed) method which will be used to cal-

culate the shape derivative of J. Let D
k (Rd,Rd), d > 2, be the space of k-times contin-

uously differentiable functions with compact support contained in Rd , and let V ∈ Ek :=

C([0, ε);Dk (Rd,Rd)), for some integer k > 2 and a small real number ε > 0. The field

V(t)(x) =V(t, x), x ∈ Rd , generates the transformations Tt (V)(X ) :=Tt (X ) = x(t; X ), t ≥ 0,

X ∈ Rd , through the differential equation

d

dt
x(t; X ) = V(t, x(t; X )), x(0; X ) = X, (6)
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with the initial value X given. We denote the “transformed domain” Tt (V)(Ω) at t > 0 by

Ωt (V), or simply Ωt =: Tt (Ω).

For t ∈ (0, ε), the transformation Tt is invertible and Tt,T
−1
t ∈ D

1(R2,R2) (see, e.g.,

[16, Lemma 11]). In addition, the quantity det DTt (X ) is strictly positive, where DTt (X )

is the Jacobian matrix of the transformation Tt = Tt (V) associated with the velocity field

V. Here, and in what follows, the notations (DTt )
−1 and (DTt )

−> denote the inverse and

inverse transpose of the Jacobian matrix DTt , respectively. Furthermore, for convenience,

the notations A(t) = det DTt (X )(DT−1
t )(DTt )

−> and w(t) = det DTt (X ) |(DTt )
−>

n| referred

to as the Jacobian matrix of Tt with respect to the boundary ∂Ω will be used in the paper.

In this study, the evolutions of the domain Ω, which are all contained in a larger set

U ⊂ R2 (bounded and connected), also of class C2,1, are described using time-independent

velocity fields such that an admissible deformation field V forces Γ to remain invariant; that

is, we choose

V ∈ Θ := {V ∈ Ck,1(Ω,R2) : V|Γ∪∂U = 0}. (7)

The next two lemmas, whose proofs can be found in [21,23], will be essential to our

analysis.

Lemma 1 For a function ϕ ∈W
1,1

loc
(R2) and V ∈ Θ, the following formulas hold

(i) ∇(ϕ◦Tt ) = (DTt )
>(∇ϕ) ◦Tt ,

(ii)
d

dt
(ϕ◦Tt ) = (∇ϕ ·V(t)) ◦Tt ,

(iii)
d

dt
(ϕ◦T−1

t ) = −(∇ϕ ·V(t)) ◦T−1
t ,

(iv)
d

dt
det DTt = [divV(t)]◦Tt det DTt

Lemma 2 Consider a fixed vector field V ∈ Θ and let I = (−t0, t0) with t0 > 0 sufficiently

small. Then, the following regularity properties of the transformation Tt hold

(i) t 7→ det DTt (X ) ∈ C1(I,C(Ω̄))

(iii) t 7→ w(t) ∈ C1(I,C(Σ))

(v)
d

dt
w(t) |t=0 = w

′(0) = divΣV

(ii) t 7→ A(t) ∈ C1(I,C1(Ω̄))

(iv) limt↘0 w(t) = 1

(vi)
d

dt
A(t) |t=0 = A′(0),

where A′(0) = (divV)I2− (DV+ (DV)>) and the limits defining the derivatives at t = 0 exist

uniformly in x ∈ Ω̄.

Now given a functional J : Ω→ R, we say that it has a directional Eulerian derivative

at Ω in the direction V if the limit

lim
t↘0

J (Ωt )− J (Ω)

t
=: dJ (Ω)[V]

exists. In addition, if the map V 7→ dJ (Ω)[V] is linear and continuous, then J is shape

differentiable at Ω, and this mapping will be referred to as the shape gradient of J at Ω.

Now, looking at the definition of Θ in (7), it suffices to take k = 1 and use rearrangement

method to compute the expression for the shape gradient of J as done in [11]. However,

since we wish to apply the minimax formulation [22] in computing the shape gradient, we

take k = 2. This in turn will simplify the derivation of the boundary expression for the shape

derivative of J as we shall demonstrate in the proof of the following proposition.
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Proposition 1 Let Ω be a C2,1 bounded domain. Then, the shape derivative of J along a

deformation field V ∈ Θ is given by

dJ (Σ)[V] =

∫

Σ

G V ·nds (8)

where

G = ∇u · ∇p+ (βu− λ)∂np+ βp∂nu+ (∂nu− λ)
∂2u

∂n2

+ κ
[
(βu− λ)p+ 1

2
(∂nu− λ)2

]
,

(9)

and the adjoint state p satisfies the PDE system

−∆p = 0 in Ω, p = 0 on Γ, ∂np+ βp = −(∂nu− λ) on Σ. (10)

If we choose β to be the mean curvature κ of Σ, i.e., β = κ, the kernel G simplifies to

G = ∇u · ∇p− κ(u− p)∂nu+ (∂nu− λ)
∂2u

∂n2
+

κ

2
(∂nu− λ)2 . (11)

In addition, at the shape solution Ω∗ of the Bernoulli problem (1) wherein it holds that

∂nu = λ on Σ∗, we have the necessary optimality condition

dJ (Σ∗)[V] = 0 for all V ∈ Θ.

Proof As alluded in Introduction, we shall establish the expression for the shape gradient of

J through the minimax formulation. To this end, the proof will be accomplished in several

steps.

Step 1: Construction of the appropriate functional. We consider the following functional

composed of the objective function and the weak formulation of the state system (over the

perturbed domain Ωt ) with the introduction of a Lagrange multiplier to penalize the extra

constraint on the fixed boundary:

G(t, ϕ,ψ) =

∫

Ωt

∇ϕ · ∇ψ dxt +

∫

Σt

[
(βϕ− λ)ψ+

1

2
(∂nϕ− λ)2

]
dst +

∫

Γt

(ϕ−1)∂nψ dst .

In above expression for G, one can actually drop t in Γt since Γ is invariant during deforma-

tion (i.e., Γt = Γ for all t).

One can easily check that, at t = 0,

J (Σ) = min
ϕ∈H1 (Ω)

max
ψ∈V (Ω)

G(0, ϕ,ψ)

since

max
ψ∈V (Ω)

G(0, ϕ,ψ) =



1

2

∫

Σ

(∂nu− λ)2 ds if ϕ = u,

+∞ otherwise.

In addition, one can also show that the functional G(0, ϕ,ψ) is convex continuous with re-

spect to ϕ and concave continuous with respect to ψ. Hence, according to [24], the functional

admits a saddle point (u, p) provided that the pair (u, p) satisfies the variational forms of the

systems (4) and (10):
∫

Ω

∇u · ∇ψ dx+ β

∫

Σ

uψ ds =

∫

Σ

λψ ds, ∀ψ ∈ V (Ω), u ∈ H1(Ω), u|Γ = 1, (12)

∫

Ω

∇p · ∇ϕdx+ β

∫

Σ

pϕds = −

∫

Σ

(∂nu− λ)ϕds, ∀ϕ ∈ V (Ω), p ∈ V (Ω). (13)
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Here, the space of test functions V (Ω) is given by the Hilbert space

V (Ω) = {v ∈ H1(Ω) : v |Γ = 0}

endowed with the norm

‖v‖2V (Ω) =

∫

Ω

|∇v |2 dx+

∫

Σ

|v |2 ds.

The said saddle point is unique due to the unique solvability of (12) and (13). A similar

analysis also holds on the transformed domain Ωt . In fact, we have the equality

J (Σt ) = min
ϕ∈H1 (Ωt )

max
ψ∈V (Ωt )

G(t, ϕ,ψ). (14)

The corresponding saddle point of G(t, ϕ,ψ), (ut, pt ), for non-zero small t, is characterized

by the same weak forms (12) and (13), only that the integrals are defined over Ωt with test

functions from V (Ωt ).

Step 2: Getting rid of the time-dependence of the function spaces. Our aim is to get the

derivative of the minimax functional G(t, ϕ,ψ) with respect to the parameter t > 0 through

the application of Theorem 1 due to Correa and Seeger [25] (see Appendix). However, the

function spaces appearing in the minimax in (14) depend on the parameter t. To get around

this difficulty, we make use of the function space parametrization technique put forward in

[21]. That is, we parametrize the functions in H1(Ωt ) (resp. V (Ωt )) by elements of H1(Ω)

(resp. V (Ω)) using the map

ϕ 7→ ϕ◦T−1
t : H1(Ω)→ H1(Ωt ) (resp. V (Ω)→ V (Ωt )).

This parametrization does not change the values of the saddle points. Thus, we have a new

functional G(t, ϕ ◦T−1
t ,ψ ◦T−1

t ) with the same saddle point for G(t, ϕ,ψ). We rewrite the

resulting functional and the systems characterizing its saddle points into their respective

equivalent forms via domain and boundary transformations. Particularly, we have

G̃(t, ϕ,ψ) :=

∫

Ω

A(t)∇ϕ · ∇ψ dx+

∫

Γ

(ϕ−1)∂nψ ds

+

∫

Σ

w(t)

[
(βϕ− λ)ψ+

1

2
(∂nϕ− λ)2

]
ds,

where the saddle point (ut, pt ) ∈ H1(Ω) ×V (Ω) of this new functional is characterized by

the systems

∫

Ω

A(t)∇ut · ∇ψ dx+ β

∫

Σ

w(t)utψ ds =

∫

Σ

w(t)λψ ds, ∀ψ ∈ V (Ω), ut |Γ = 1, (15)

∫

Ω

A(t)∇pt · ∇ϕdx+ β

∫

Σ

w(t)ptϕds = −

∫

Σ

w(t)(∂nut − λ)ϕds, ∀ϕ ∈ V (Ω). (16)

In the expression for G̃(t, ϕ,ψ), we have used the fact that const . ◦Tt = const ., and

Tt (x) = x and w(t) = 1 on Γt = Γ.

Step 3: Verifying the four assumptions of Theorem 1. To get the shape derivative of J

along a deformation field V, we evaluate the limit

lim
t↘0

(

min
ϕ∈H1 (Ω)

max
ψ∈V (Ω)

G(t, ϕ◦T−1
t ,ψ ◦T−1

t )−G(0, ϕ,ψ)

t

)

.
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To do this, we apply Theorem 1. But first, we need to verify its four assumptions.

We let V ∈ Θ and choose a sufficiently small number ε > 0, such that, for all t ∈ [0, ε],

there exist some constants α1, α2, β1 and β2 satisfying 0 < α1 6 α2, 0 < β1 6 β2 and such

that α1 |ξ |
2
6 A(t)ξ · ξ 6 α2 |ξ |

2, for all ξ ∈ R2 and β1 6 w(t) 6 β2 (cf. [16]). We define the

sets

X (t) :=


xt ∈ H1(Ω) : sup
y∈V (Ω)

G̃(t, xt, y) = inf
x∈H1 (Ω)

sup
y∈V (Ω)

G̃(t, x, y)

,

Y (t) :=

y
t ∈ V (Ω) : inf

x∈H1 (Ω)
G̃(t, x, yt ) = sup

y∈V (Ω)

inf
x∈H1 (Ω)

G̃(t, x, y)

.

The functions ut and pt satisfy the inequality G(t,ut,ψ) 6 G(t,ut, pt ) 6 G(t, ϕ, pt ). Hence,

it is evident that X (t) and Y (t) are non-empty, since, in particular, we have X (t) = {ut } and

Y (t) = {pt }. Thus, we get

∀t ∈ [0, ε] : S(t) := X (t)×Y (t) = {ut, pt } , ∅.

This shows that condition (H1) is satisfied.

To verify condition (H2), we compute the derivative of G̃(t, ϕ,ψ) with respect to t > 0:

∂tG̃(t, ϕ,ψ) =

∫

Ω

A′(t)∇ϕ · ∇ψ dx+

∫

Σ

w
′(t)

[
(βϕ− λ)ψ+

1

2
(∂nϕ− λ)2

]
ds.

Since V ∈ D
1(R2,R2) and the maps t 7→ DTt are continuous in [0, ε] (see Lemma 2), the

partial derivative ∂tG̃(t, ϕ,ψ) exists everywhere in [0, ε]. Hence, (H2) is satisfied.

To check (H3)(i) and (H4)(i), we first show the boundedness of (ut, pt ). We take ψ = ut

in (15). With the choice of ε, we can use the bounds for A(t) and w(t) to get the estimate

min{α1, β β1}‖u
t ‖2V (Ω) 6 α2 |λ | |Σ |

1/2‖ut ‖L2 (Σ) .

Since the norm ‖ · ‖V (Ω) is equivalent to the usual H1 Sobolev norm, there exist some con-

stants c1,c2 > 0 such

‖ut ‖H1 (Ω) 6
c2α2

c1 min{α1, β β1}
|λ | |Σ |1/2.

Applying the same technique, we can also show that pt is bounded.

Next we show the continuity of the pair (ut, pt ). To prove the continuity of ut , we sub-

tract in (15) at t > 0, t = 0 and let ψ = ut −u to obtain

‖ut −u‖2V (Ω) =

∫

Ω

(A(t)− I2)∇ut · ∇(ut −u) dx+

∫

Σ

(λ ◦Ttw(t)− λ)(ut −u) ds

− β

∫

Σ

ut (w(t)−1)(ut −u) ds

6 |A(t)− I2 | ‖u
t ‖H1 (Ω) ‖u

t −u‖L2 (Ω) + ‖λ ◦Ttw(t)− λ‖L2 (Σ) ‖u
t −u‖L2 (Σ)

+ β |w(t)−1| ‖ut ‖L2 (Σ) ‖u
t −u‖L2 (Ω) .

Using the boundedness of ut and the equivalence of the norms ‖ · ‖V (Ω) and ‖ · ‖H1 (Ω) , we

get the bound

‖ut −u‖H1 (Ω) 6 c3

(

|A(t)− I2 |+ ‖λ ◦Ttw(t)− λ‖L2 (Σ) + |w(t)−1|
)
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for some constant c3 > 0. Hence, ut → u in H1(Ω) because A(t) − I2 → 0, w(t) → 1 and

λ ◦Tt → λ as t → 0 (Lemma 2). With the use of a classical regularity theorem [26] and

standard arguments, we can show that ut is also bounded in H2(Ω) since ut is in H2(Ω).

This implies the continuity of ut in H2(Ω), and thus verifies (H3)(i) for H2(Ω)-strong. Using

a similar argument, we can also show that pt → p strongly in H1(Ω) as t → 0. Moreover,

since ut ∈ H2(Ω), ∂nut −λ ∈ H1/2(Σ). By regularity theorem, pt is also in H2(Ω) and so the

continuity of pt in H2(Ω). Hence, condition (H4)(i) is true for the H2(Ω)-strong topology.

Finally, conditions (H3)(ii) and (H4)(ii) are easily verified by the strong continuity of

the maps (t, ϕ) 7→ ∂tG̃(t, ϕ,ψ) and (t,ψ) 7→ ∂tG̃(t, ϕ,ψ).

Consequently, we have verified all assumptions of Theorem 1 from which we conclude

that following equation holds

dJ (Σ)[V] = ∂tG̃(t,u, p) |t=0

=

∫

Ω

A′(0)∇u · ∇pdx+

∫

Σ

w
′(0)

[
(βu− λ)p+

1

2
(∂nu− λ)2

]
ds, (17)

where A′(0) = (divV)I2 − (DV+ (DV)>) and w
′(0) = divΣV (see Lemma 2), and (u, p) ∈

H1(Ω)×H1(Ω) is the unique solution pair to systems (4) and (10).

Step 4: Characterization of the shape gradient in terms of just a boundary expression.

It can be checked without difficulty that the map V 7→ dJ (Σ)[V] : D
1(R2,R2)→ R is linear

and continuous. Then, according to Hadamard-Zolésio structure theorem [21], there exists,

for a C2,1 domain Ω, a scalar distribution G (Σ) ∈ D
1(Σ) such that dJ (Σ)[V] = 〈G (Σ),V ·n〉.

Now we further characterize this boundary expression as follows. Firstly, we note that

for a C2,1 domain Ω, the unique solution pair to (4) and (10) possesses more regularity. In

fact, u and p are elements of H3(Ω) for Ω of class C2,1 (cf. [27]). This aforementioned

regularity allows us to use Hadamard’s domain and boundary differentiation formulas (cf.

[21, Thm. 4.3, p. 486]):

d

dt

∫

Ωt

f (t, x) dxt =

∫

Ωt

∂ f

∂t
(t, x) dxt +

∫

∂Ωt

f (t, x)V(t) ·ndst

d

dt

∫

∂Ωt

f (t, s) dst =

∫

∂Ωt

∂ f

∂t
(t, s) dst +

∫

∂Ωt

(

∂ f

∂n
(t, s)+ κ f (t, s)

)

V(t) ·ndst

to evaluate the partial derivative ∂tG(t, ϕ◦T−1
t ,ψ ◦T−1

t ) at t = 0. That is, we have

∂tG(t, ϕ◦T−1
t ,ψ ◦T−1

t ) |t=0

=

∫

Ω

(∇ϕ̇ · ∇ψ+∇ϕ · ∇ψ̇) dx+

∫

Σ

[
(βϕ− λ)ψ̇+ βϕ̇ψ+ (∂nϕ− λ) ∂nϕ̇

]
ds

+

∫

Σ

∇ϕ · ∇ψV ·nds+

∫

Σ

∂n

[
(βϕ− λ)ψ+

1

2
(∂nϕ− λ)2

]
V ·nds

+

∫

Σ

κ

[
(βϕ− λ)ψ+

1

2
(∂nϕ− λ)2

]
ds,

where (see Lemma 1)

ϕ̇ =
d

dt
ϕ◦T−1

t

�����t=0

= −∇ϕ ·V ∈ H1(Ω), ψ̇ =
d

dt
ψ ◦T−1

t

�����t=0

= −∇ψ ·V ∈ H1(Ω).
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Substituting (ϕ,ψ) by (u, p), we see that the first and second integral vanish due to (12) with

ψ = −∇p ·V and (13) with ϕ = −∇u ·V. Accordingly, we get

dJ (Σ)[V] =

∫

Σ

G V ·nds

where

G = ∇u · ∇p+ (βu− λ)∂np+ βp∂nu+ (∂nu− λ)
∂2u

∂n2
+ κ

[
(βu− λ)p+

1

2
(∂nu− λ)2

]
,

as desired.

If we take β = κ, (9) simplifies to

G = ∇u · ∇p− κ(u− p)∂nu+ (∂nu− λ)
∂2u

∂n2
+

κ

2
(∂nu− λ)2 .

Moreover, if Ω∗ is such that u = u(Ω∗) is the solution to the Bernoulli problem (1), i.e., it

holds that ∂nu = λ on Σ∗, then p = p(Ω∗) is identically equal to zero. Hence, G = 0 on Σ∗,

and this implies that dJ (Σ)[V] =
∫

Σ
(0)V ·nds = 0.

Evidently, the computed shape gradient of J under the proposed formulation differs from

the classical one (see [11, Thm. 3.1]). We recall that the cost function J with state variable

u satisfying (5) (with g ≡ 1) has the shape derivative given by

dJ (Σ)[V] =

∫

Σ

G0V ·nds := −

∫

Σ

[
∂nu∂np+ κ

(

1

2
p2
+ λp

) ]
V ·nds,

where the adjoint state p satisfies

−∆p = 0 in Ω, p = 0 on Γ, p = ∂nu− λ on Σ. (18)

3 Interior Bernoulli Problem

Given a bounded domain A⊂ R2 with boundary Γ and a constant λ > 0, the interior Bernoulli

problem consists in finding a bounded domain B ⊂ Ā with boundary Σ and a function u

defined on Ω = A\ B̄ such that

−∆u = 0 in Ω, u = 0 on Γ, u = 1 and ∂nu = λ on Σ, (19)

where n is the interior unit normal to Σ.

The interior Bernoulli problem (19) can be rephrased into various shape optimization

setting and one way to do this is to track the Neumann data similar to that of [11] for the

exterior case. More precisely, one could consider the minimization problem (2) where the

cost function J is given by (3) but with state constraint

−∆u = 0 in Ω, u = 0 on Γ, u = 1 on Σ. (20)

In this case, the shape derivative of J is given as follows.
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Proposition 2 Let Ω be a C2,1 bounded domain. Then, the shape derivative of the cost

function J (Σ) (subject to (20)) along a deformation field V ∈ Θ is given by

dJ (Σ)[V] =

∫

Σ

G1V ·nds,

where

G1 = ∇u · ∇p+ ∂nu∂np+ p∂np+ (u−1)
∂2p

∂n2
+ κ

[
(u−1)∂np+

1

2
p2

]
,

and p is the corresponding adjoint state variable satisfying the same system (18).

Obviously, one could also consider a reformulation of (19) similar to our proposed method

by constructing an associated state problem with Robin condition. Instead of (18), one may

opt to use the state equation

−∆u = 0 in Ω, u = 0 on Γ, ∂nu+ βu = λ + β on Σ, (21)

where β > 0. With this new state equation, the shape gradient of J has now a different

structure as evident in the following result.

Proposition 3 Let Ω be a C2,1 bounded domain. Then, the shape derivative of the cost

function J (Σ) (subject to (21)) along a deformation field V ∈ Θ is given by

dJ (Σ)[V] =

∫

Σ

G2V ·nds,

where

G2 = ∇u · ∇p+ ∂np(βu− λ − β)+ βp∂nu+ (∂nu− λ)
∂2u

∂n2

+ κ
[
p(βu− λ − β)+ 1

2
(∂nu− λ)2

]
,

and p denotes the adjoint state satisfying the same system (10).

If β = κ, the kernel G2 simplifies to

G2 = ∇u · ∇p− ∂nu∂np+ (∂nu− λ)
∂2u

∂n2
+

κ

2
(∂nu− λ)2 .

We omit the proofs of these two propositions since they are similar to that of Proposition 1.

4 Numerical Approximation

To the best of our knowledge, there are at least three different computational strategies for

the numerical resolution of the Bernoulli problem (1). The first one is the fixed-point ap-

proach wherein a sequence of elliptic problems are solved in a sequence of converging

domains with one of the conditions on the free boundary omitted, and then the remaining

boundary condition is used to update the free boundary (see [28,29]). This approach does

not require any gradient information in contrast to the second approach which considers an

equivalent shape optimization formulation of the problem (see, e.g., [9,10,11,15,18,19]).

Another strategy, built from the theory of complex analysis, is the use of conformal map-

ping method. This solution method was recently developed by Haddar and Kress in [30]

which relates the Bernoulli problem in the context of inverse problems. In a more recent

study, another method was also introduced by Kress in [31] in an attempt to improve the

use of boundary integral equations for numerically solving the Bernoulli problem. In terms
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of numerical performance, it was revealed in [31] that this recently proposed method in-

spired by Trefftz’ integral equation method [32] is more robust and wider applicable than

that of [30]. We mention that Trefftz’ approach, in principle, can be considered as a so-called

trial method which is also a prominent numerical method for solving free boundary value

problems such as the Bernoulli problem (see [8,33,34,35]).

In this paper, we use a classical gradient scheme for the numerical realization of the

proposed method by means of a Lagrangian-like method. It consists in adopting an iterative

procedure that decreases the value of the cost functional J at each iteration. One could also

use an Eulerian-like approach such as the level-set method that was applied, for instance,

in [15,20]. Alternatively, one could also apply a variant of Newton’s method to numerically

solved the minimization problem. This method, however, also requires the knowledge of the

shape Hessian of J which is considerably more difficult to obtain and utilize (see, e.g., [36,

37], and the references cited therein).

4.1 A Gradient-type Algorithm

Let us denote by Ωk and Σk the shapes of the domain and the free (exterior) boundary at the

k th iteration, respectively. A descent direction for the algorithm can be found by defining

V = −G n. (22)

and then we can update the shape Ω as Ωk+1 := Ωtk+1
= (I2 + tkV)Ω, where the step size

parameter tk is such that tk ∈ (0, ε] for some small real number ε > 0. However, direct

application of (22) may caused oscillations on the boundary of the approximate solution. To

avoid such phenomena, we take the descent direction V ∈ [V (Ω)]2 as the unique solution of

the variational problem
∫

Ω

∇V : ∇ϕ dx+

∫

Σ

β(V ·n)n ·ϕ ds = −

∫

Σ

G n ·ϕ ds, ∀ϕ ∈ [V (Ω)]2. (23)

The resulting vector field V (also known in the literature as Sobolev gradient [38]) ob-

tained through (23) now provides a smooth extension of G n over the entire domain Ω which

not only smoothes the boundary (see [39,40]) but also preconditions the descent direction.

Equation (23) is actually a variant of the so-called H1 gradient method [41] which, on the

other hand, was inspired by the idea of the traction method [39,42,43,44].

The main steps required for the computation of the k th domain are given as follows:

Algorithm

Step 1. Choose an initial shape Ω0;

Step 2. compute the solutions u and p of problems (4) and (10) on Ωk ;

Step 3. evaluate the descent direction Vk using (23);

Step 4. set Ωk+1 = (I2 + tkVk )Ωk , where tk is a positive scalar.

Note that, in view of (9) and (23), the computation of the descent direction V in Step

3 demands the evaluation of the mean curvature κ of Σ. We recall from [45, Prop. 5.4.8, p.

218] that, for a domain Ω of C2 class, the mean curvature can be defined as

κ = divΣn = divN,

where N is any (unitary) extension of n that is of class C1. Following this idea, we can

therefore calculate κ by evaluating the expression divN, where N is the unique element in

[H1(Ω)]2 of the variational equation
∫

Ω

∇N : ∇ϕ dx+

∫

Σ

N ·ϕ ds =

∫

Σ

n ·ϕ ds, ∀ϕ ∈ [H1(Ω)]2.
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Furthermore, notice in (9) that the kernel G also involves the computation of the second-

derivative ∂2u/∂n
2. In the classical approach (formulation (3) and (5)), this can be simplified

as −∂2u/∂n
2
= κ∂u/∂n since ∆u = ∆Σu+ κ∂u/∂n+∂2u/∂n

2 and u|Σ = 0 (see equation (5)).

However, in our proposed numerical procedure, we calculate ∂2u/∂n
2 using a similar idea

in computing κ; i.e., we evaluate ∂2u/∂n
2 by computing the normal derivative of a smooth

extension of ∂nu. We mention here that, to the best of our knowledge, such method for

numerically computing a second order normal derivative is also novel to our work.

4.2 Step Size

The choice of the step size parameter tk is not an easy task. Too large, the algorithm is

unstable; too small, the rate of convergence is insignificant. In updating tk ∈ (0, ε], where

ε > 0 is some sufficiently small real number, the following heuristic which is inspired by the

Armijo-Goldstein line search strategy (cf. [10]) will be employed. In view of (22) and the

definition of the domain Ωε , we have J (Σε ) ' J (Σ0) + εdJ (Σ0)[V] = J (Σ0) − ε‖G ‖2
L2 (Σ0)

.

The requirement J (Σε ) = (1− α)J (Σ0) for some α ∈ (0,1) then suggests the choice ε =

αJ (Σ0)/‖G ‖2
L2 (Σ0)

. However, since we are regularizing in Step 3 the descent direction V for

the present algorithm using equation (23), we replace the L2-norm of G appearing in the

denominator of the previous formula with ‖V‖2
X2 , and then finally define the step size tk as

tk = αJ (Σk )/‖V‖2
X2 . (24)

Here, the function space X is either the space H1(Ωk ), V (Ωk ) or L2(Σk ).

We further explain the above formula as follows. First we note that, in general, we could

regularize the descent direction V using the variational equation

W (V,ϕ) = −〈G,ϕ〉, ∀ϕ ∈ [V (Ω)]2, (25)

whereW (·, ·) is some bounded coercive bilinear form on an appropriate space X (see, e.g.,

[39, Sec. 6.3]). Then, from (25) and the requirement that the relation

J (Σε ) = (1−α)J (Σ0) = J (Σ0)+ ε 〈G,V〉

holds for some α ∈ (0,1), we get the equation ε = −αJ (Σ0)/〈G,V〉 = αJ (Σ0)/W (V,V),

for any V ∈ [V (Ω)]2. Hence, at each iteration, we may choose, for a fixed α, the step size

parameter tk as

tk = αJ (Σk )/W (V,V) .

The above formula for tk clearly provides a natural choice for the magnitude of the step size

when the descent direction V is regularized through equation (25). However, we alter here

the choice of norm in (24) (while using (23) for preconditioning the descent direction) so as

not to make the ratio between the cost and the norm of the descent direction V very small.

Now, with α ∈ (0,1) fixed, the step size will be decided in the following fashion: we

take tk as in (24) whenever there is a decrease in the computed cost value from the previous

to the next iteration loop (i.e., if J (Σk+1) 6 J (Σk )). Otherwise, if the cost value increases,

we reduce the step size (exactly by half) and go backward: the next iteration is initialized

with the previous shape Ωk . We also reduce the step size tk if reversed triangles are detected

within the mesh update.
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4.3 Stopping Criterion

A typical stopping criterion for gradient-type algorithm is to find that whether the shape

gradients in some suitable norm are small enough. However, since we use the continuous

shape gradients, it is hopeless for us to expect very small gradient norm because of numerical

discretization errors. Another option, however, is to use the inequality condition

|J (Σk+1)− J (Σk ) | < Tol (26)

as a stopping rule, where Tol > 0 is a predetermined small tolerance value. Even so, be-

cause we want to compare our proposed formulation with that of the classical Neumann-

data tracking approach, the proper choice for Tol in (26) may be different for each of the

two formulations. Because of these issue, we need to consider a stopping rule that is inde-

pendent of the cost or the gradient value. In this regard, the most reasonable choice would

be to use the computing time (i.e., the maximum number of seconds before timing out) as

the stopping condition. Note that we could also stop the iteration process with a predeter-

mined maximum number of iterations. However, since the step size tk is chosen on the basis

of formula (24), the total number of iterations the algorithm needed to process in order to

obtain good enough approximation of the optimal shape solution (given that α and X are

fixed) may differ greatly from each formulation. Nevertheless, we emphasize that we could

still utilize the inequality condition given in (26) to choose an optimal iteration number that

provides reasonable approximation of the optimal solution. This can be done by first running

the algorithm for a certain amount of time and then examine afterwards the convergence his-

tory of the cost function (or possibly the history of Hausdorff distances between the k th and

final computed shape) to decide for the best choice of the tolerance value. The index k that

satisfies the condition (26) with the chosen value for Tol can then be regarded as the optimal

iteration number when the said stopping rule is applied.

To end this section, we mention that we also apply the same algorithm presented above

when using the Neumann-data tracking approach with only a few modifications. We replace

in Step 2 of the algorithm the adjoint state problem (10) with the PDE system (18) and the

descent direction is computed with G replaced by G0.

5 Numerical Tests

Now we illustrate the feasibility of the proposed algorithm through various numerical ex-

amples. At this juncture, we mention that the existence of solutions for the exterior problem

can be established by means of sub- and supersolutions [46] or through variational methods

in the context of shape optimization [47]. The question of uniqueness of solutions, on the

other hand, can be guaranteed for convex domains in the case of exterior problems (see [48])

which is not true, however, for the interior problem. In fact, the interior case need not have a

solution for every domain A and for every positive constant λ > 0. Nevertheless, at least one

solution exists for the more general case of p-Laplacian when A is a convex domain with

smooth (at least C1) boundary and λ is not less than the Bernoulli constant λ∗(Ω) > 0 (see

[49]). Still, uniqueness of solution holds for the interior case when λ = λ∗(Ω) [50].

The numerical simulations are carried out in two-dimension using the programming

software FREEFEM++ (see [51]). We use a P2 finite element discretization to solve the state

problem (4), the adjoint state problem (10) and all other variational equations involve in the

iterative procedure. In all numerical experiments conducted here, the number of discretiza-

tion points on the free and fixed boundaries are initially set to Next = 120 and Nint = 100,
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respectively. Meanwhile, we utilize the function movemesh of FREEFEM++ in deforming

the shape of the domain at each step and use the function adaptmesh to refine and avoid the

degeneracy of the triangles in the meshes. During mesh adaptation, the maximum edge size

of the mesh is taken equal to hmax. All computations are carried out on a 1.6 GHz Intel Core

i5 Macintosh computer with 4GB RAM processors.

In addition to the above specifications, we take β as the mean curvature of the free

boundary Σ (i.e., we let β = κ) in all of the test cases we examine here. We mention that we

have actually tested several values for this Robin coefficient, but it appears that the mean

curvature κ of the free boundary is the best choice for the algorithm to work effectively in

terms of convergence speed and stability, especially in the case of the classical approach.

Notations. In all examples we present below, Σk denotes the k th approximation of the op-

timal free boundary Σ∗, and the quantity dH(Σk,Σ) denotes the Hausdorff distance between

Σk and Σ. Also, K denotes the optimal termination index when the stopping condition (26) is

imposed with some prescribed value for Tol; i.e., K :=min{k ∈N0 : |J (Σk+1)− J (Σk ) | < Tol}.

Moreover, for later use, we denote by the index M the last iteration loop of the algorithm

before timing out (or equivalently, the maximum number of iterations completed by the

algorithm after running it for a specified number of seconds).

5.1 Exterior case

5.1.1 Example 1: Accuracy Tests.

We first test the accuracy of the computed gradient. For this purpose, we consider the exterior

Bernoulli problem with

Γ = C(0,r), λ =
1

R(logr − log R)
, 0 < r < R,

where C(0,r) denotes the circle centered at the origin with radius r . In this case, the only

solution is the circle C(0,R).

We let r = 0.3 and R = 0.5 (hence, Σ∗ = C(0,0.5)), giving us λ = −3.9152. We take

C(0,0.6) as the initial guess and compute the optimal shapes using the proposed formulation

and the classical Neumann-data tracking approach.

In this example, since the evolution of the free boundary consists of concentric circles,

we will often use the term ‘k th mean radii’ which means the average distance from the origin

of the nodes on the exterior boundary of the k th domain Ωk . Throughout the discussion, this

term will be denoted by R̄k . Furthermore, in all test cases, we take hmax = 0.02 and terminate

the optimization process after running the algorithm for 300 seconds.

Comparisons of results for different choices of X in (24). In this test case, we present

the results of the optimization process when X in the step size formula (24) for tk is set to

either H1(Ωk ), V (Ωk ) or L2(Σk ) with α = 0.01. Figure 1a shows the histories of mean radii

of the free boundary obtained using the proposed formulation. Looking at the said figure, it

seems that the choice X = L2(Σk ) provides the fastest convergence to the optimal solution

among the three choices. This is primarily due to the fact that when X is set to L2(Σk ), we

have, on the average, larger values for the step size tk (as expected) than when it is set to

either H1(Ωk ) or V (Ωk ) (see Figure 1b). Observe also that the latter two choices almost

have the same rate of convergence, which is not suprising since their corresponding norms

are actually equivalent. Meanwhile, in Table 1, we tabulate the computational results of the

present experiment. The table shows, in particular, the Hausdorff distance between the K th
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approximation ΣK of the free boundary and its exact optimal shape Σ∗, the mean radii R̄K

and its corresponding standard deviation σrad
K

at the K th iterate, where K is the optimal

termination index when the tolerance Tol is set to the ones indicated in the first column

of the table. Also listed in the table are the values of the cost at the K th iterate and the total

computing time to reach convergence when the stopping rule (26) is imposed with Tol values

given in the first column of the table. Here we mention that the Tol values listed in the table

are actually the values of the tolerance in the stopping rule (26) that were satisfied (omitting

the case when 10−1 and 10−2) after running the algorithm for 300 seconds (except for the

case whenX = L2(Σk ) where we only present the results up to 10−6). Based on the results, it

appears that a reasonable choice for the tolerance Tol when imposing the stopping condition

(26) when using the proposed formulation is to take it equal to 10−5. Note also that, for all

X ∈ {H1(Ωk ),V (Ωk ), L2(Σk )}, the Hausdorff distance between Σ∗ and the computed optimal

free boundary ΣK , with Tol = 10−5 in (26), is approximately equal to 0.005.

Fig. 1 Histories of mean radii (plot a) and descent step sizes (plot b) when X = H1 (Ωk ),V (Ωk ), L2 (Σk ) in

(24) with α = 0.01 using the proposed formulation, running the algorithm for 300 seconds

Tol dH (ΣK , Σ
∗) R̄K σrad

K
J (ΣK ) K CPU time

X = H1 (Ωk )

10−3 0.006660 0.504413 2.33×10−5 0.004413 42 63.89 sec

10−4 0.005371 0.501888 3.74×10−5 0.001888 58 124.21 sec

10−5 0.005004 0.500214 4.05×10−5 0.000214 88 298.37 sec

X =V (Ωk )

10−3 0.008084 0.506344 1.82×10−5 0.038721 46 67.84 sec

10−4 0.005146 0.501220 1.60×10−5 0.001632 78 148.89 sec

10−5 0.005053 0.500766 2.55×10−5 0.000765 89 199.50 sec

X = L2 (Σk )

10−3 0.005041 0.500586 3.93×10−5 0.000927 15 23.60 sec

10−4 0.005006 0.500198 4.09×10−5 0.000108 17 29.45 sec

10−5 0.005000 0.500055 2.94×10−5 1.30×10−5 22 49.19 sec

10−6 0.004998 0.500101 3.15×10−5 5.70×10−6 25 74.39 sec

Table 1 Summary of results of the computational experiments when X = H1 (Ωk ),V (Ωk ), L2 (Σk ) in (24)

with α = 0.01 using the proposed formulation

On the other hand, the results obtained from using the classical Neumann-data tracking

approach are depicted in Figure 2. Figure 2a shows the histories of mean radii R̄k of the free

boundary Σk while Figure 2b plots the graph of their corresponding standard deviations.

Looking at the latter plot, we observe that the choice X = L2(Σk ) gives a very unstable
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Fig. 2 Histories of mean radii (plot a) and their corresponding histories of standard deviations (plot b) when

X = H1 (Ωk ),V (Ωk ), L2 (Σk ) in (24) with α = 0.01 using the classical Neumann-data tracking approach

after 300 seconds of run time

Tol dH (ΣK , Σ
∗) R̄K σrad

K
J (ΣK ) K CPU time

X = H1 (Ωk )

10−1 0.020737 0.517855 0.000972 2.527479 20 22.70 sec

10−2 0.017395 0.514585 0.001157 1.957065 31 38.98 sec

10−3 0.014639 0.512422 0.000855 1.526704 44 195.86 sec

10−4 0.014612 0.512444 0.000848 1.525842 47 288.12 sec

X =V (Ωk )

10−1 0.030236 0.522901 0.002171 4.638160 22 29.40 sec

10−2 0.019315 0.515450 0.001315 2.204293 32 49.77 sec

10−3 0.015384 0.512289 0.000970 1.430624 55 276.75 sec

X = L2 (Σk )

10−1 0.038000 0.527682 0.003034 7.934110 5 19.36 sec

10−2 0.044922 0.528277 0.006324 5.996569 15 77.61 sec

Table 2 Summary of results of the computational experiments when X = H1 (Ωk ),V (Ωk ), L2 (Σk ) in (24)

with α = 0.01 using the Neumann-data tracking approach

approximation of the free boundary during the optimization process. In fact, we noticed

during the optimization process that the exterior boundary Σ becomes very ‘jagged’ after

some iterations. This possibly means that the algorithm, when employing the Neumann-data

tracking approach, is very sensitive to large deformations, which, on the other hand, suggests

that we need to take smaller values for α in order to get more stable approximation of the

optimal free boundary. Setting α in (24) to smaller values, however, would then require

the algorithm to process additional number of iterations (and therefore demands additional

computing times) just in order to attain reasonable approximation of the exact optimal free

boundary. Furthermore, even in the case when X is set to either H1(Ωk ) or V (Ωk ), the

histories of mean radii obtained through the Neumann-data tracking approach is less smooth

that in the case of when applying the proposed formulation (compare Figure 1a and Figure

2a). Moreover, it is also evident in the two plots shown in Figure 2 that the choices H1(Ωk )

and V (Ωk ) for X in (24) exhibit almost the same rate of convergence as in the case of using

the proposed formulation. It seems, however, that the best choice for the algorithm to work

effectively when applying the Neumann-data tracking approach is to take X as the space

H1(Ωk ). Meanwhile, the computational results corresponding to the case when using the

Neumann-data tracking approach with α = 0.01 in (24) are summarized in Table 2. Based

on the table, it seems that the appropriate value for the tolerance Tol is 10−3 when imposing

the stopping rule (26), in case of implementing the Neumann-data tracking approach.

Before we proceed further with our numerical investigations, let us comment and reit-

erate the most important findings drawn from the results of the computational experiments
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presented above. Firstly, it seems that the proposed formulation provides a more stable ap-

proximation of the free boundary (in a sense that the domain Ω is less prone to experience

rapid oscillating exterior boundary during iterations) than the Neumann-data tracking ap-

proach, regardless of the choice of X ∈ {H1(Ωk ),V (Ωk ), L2(Σk )}. This observation can ac-

tually be inferred easily by comparing the order of magnitude of σrad
K

obtained from the two

formulations. Secondly, it appears that the proposed formulation exhibits faster convergence

behavior than the Neumann-data tracking approach, again irrespective of the choice of X in

the step size formula (24). In addition, the former formulation provides better approximation

of the analytical solution than the latter approach. Furthermore, it seems that the appropriate

choice for Tol when imposing the stopping condition (26) is to take it equal to 10−5 when

using the proposed formulation and set it to 10−3 when applying the Neumann-data tracking

approach. In relation to this remark, it appears that the best choice forX in (24) that provides

the fastest convergence rate when employing the proposed formulation is the space L2(Σk ).

On the other hand, it seems that the most practical choice for X that provides the most sta-

ble and fastest convergence rate when applying the Neumann-data tracking approach is the

space H1(Ωk ). All these observations can all be inferred easily from the results shown in

Table 1 and Table 2, and, of course, from the graphs plotted in Figure 1 and Figure 2.

Examining the order of convergence of the iterative procedure. Next, we numerically ex-

amine the convergence behavior of the present iterative scheme. We do this by looking at the

sequence of radii of the computed optimal free boundaries obtained from using each of the

two formulations. For this purpose, we let εk = | R̄k − R∗ | be the error in the k th approxima-

tion. Note that, for a ‘good’ numerical procedure, we want the approximate shape solution

Ωk := C(0, R̄k ) to be as close as possible to the analytical solution Ω∗ := C(0,R∗), R∗ = 0.5.

Now, let ρ be the order of convergence of Rk to R∗; that is, we have that limk→∞ εk+1/ε
ρ

k
= µ.

If we assume that the error progression is exactly of the form εk+1 = µε
ρ

k
, then we can ac-

tually write log εk+1 = ρ log εk + log µ. Hence, we can use a best-fit-line approach to find

an approximation of ρ, given the sequence of errors εk . Figure 3 below depicts the order

of convergences of the algorithm when using the proposed and the classical Neumann-

data tracking approach which correspond to the computational results presented above. It

shows, in particular, the order of convergences of the proposed formulation when the stop-

ping condition (26) is imposed with Tol= 10−5 (see Figure 3a and Figure 3b). It also presents

the order of convergences of the algorithm when applying the Neumann-data tracking ap-

proach which is again terminated via the stopping rule (26) but with Tol = 10−3 (refer to

Figure 3c and Figure 3d). In these plots, the dashed-line passing through the origin has

slope equal to the unity. Meanwhile, the solid-line plot represents the best fit line to the data

log εk+1 = ρ log εk + log µwith slope equal to the value indicated in the figure. Clearly, based

on these plots, the present algorithm exhibits linear convergence behavior regardless of the

formulation used in the optimization procedure.

Effects of increasing the value of the step size parameter α. Let us now look at the effect

of increasing the magnitude of the step size tk in the optimization process by adjusting α

to a higher value. Obviously, we could expect that, by increasing the value of α, we could

improve the rate of convergence of the algorithm. Such improvement could be expected

when employing the proposed formulation in the algorithm (at least for slightly higher val-

ues of α for the present case). However, this is not always the case for the other approach

since increasing the magnitude of α, in general, would only cause the algorithm to become

more unstable. These facts are apparent in the plots shown in Figure 4, and also in Table

3 wherein the results of the optimization process obtained through the proposed and the

classical Neumann-data tracking approach with X = H1(Ω) and α ∈ {0.02,0.03,0.04} are

summarized. In the table, the notation t̄ represents the computed mean step size for the en-
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Fig. 3 Order of convergences of the algorithm when applying the proposed formulation (plots a and b) and

when using the Neumann-data tracking approach (plots c and d) with α = 0.01, employing the stopping

condition (26) with Tol = 10−5 and 10−3 for the first and second approach, respectively

tire optimization process when the stopping rule (26) is utilized (i.e., t̄ = ΣK
k=0

tk/K ). The

notation σstep, on the other hand, denotes the standard variation of the computed step sizes,

also for the entire iteration process. Meanwhile, the last column in Table 3 indicates the

coefficient of variation (C.V.) with respect to the step size tk , i.e., C.V. = σstep/t̄. In relation

to this, we note that having a coefficient of variation for the step size that is larger than the

unity is an indication that the step size varies greatly from each iterate. This means, possibly,

that the algorithm is very much less stable, and based on our experience, large fluctuations in

step size could cause the algorithm to crash during iterations. These results further support

our claim that the proposed formulation provides more stable approximation of the exact op-

timal solution than the classical Neumann-data tracking approach. Moreover, it is clear from

the table that the former approach is more accurate than the latter one. Lastly, notice from

the table that the number of iterations (and hence, the computing times) required to reach

convergence when imposing the stopping condition (26) is significantly less for the case of

the proposed formulation than in the case of using the Neumann-data tracking approach.

In the rest of the examples below, we utilize the main findings drawn above. More pre-

cisely, we take X = L2(Σk ) in (24) when the proposed formulation is being applied in the

algorithm and, on the other hand, set X = H1(Ωk ) when the Neumann-data tracking ap-

proach is used in the optimization procedure.
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Fig. 4 Histories of Hausdorff distances using the proposed formulation with X = L2 (Σk ) (plot a) and when

applying the Neumann-data tracking approach with X = H1 (Ωk ) for some values of α

α dH (ΣK , Σ
∗) R̄K σrad

K
J (ΣK ) K time t̄ σstep C.V.

Proposed approach with X = L2 (Σk ) in (24) and terminated using (26) with Tol = 10−5

0.02 0.005002 0.499914 0.000037 4.81×10−6 10 52 s 0.0375 0.0235 < 1

0.03 0.005002 0.499688 0.000062 3.09×10−7 7 21 s 0.0524 0.0458 < 1

0.04 0.005014 0.499620 0.000074 1.49×10−9 7 24 s 0.0926 0.0650 < 1

Neumann-data tracking approach with X = H1 (Σk ) in (24) and stopped using (26) with Tol = 10−3

0.02 0.017956 0.513706 0.001123 1.697592 51 183 s 0.0009 0.0012 > 1

0.03 0.018772 0.513442 0.001803 1.721732 52 276 s 0.0012 0.0014 > 1

0.04 0.029857 0.515549 0.005606 1.826101 54 116 s 0.0010 0.0016 > 1

Table 3 Summary of results of the computational experiments corresponding to Figure 4

5.1.2 Example 2: A T-shaped fixed boundary

Next, we consider Γ = ∂S as the boundary of the T-shape

S := ((−3/8,3/8)× (−1/4,0))∪ ((−1/8,1/8)× [0,1/4)).

The optimal domain for λ = −1,−2, . . .,−10. First, we compute the optimal domain for

all integers λ = −1,−2, . . .,−10 using the proposed formulation. We choose the unit circle

as the initial guess and let hmax = 0.025 for all cases. Furthermore, we terminate the itera-

tion process after running the algorithm for 60 seconds. The resulting exterior boundaries

are shown in Figure 5, where the outermost boundary corresponds to λ = −1 and the inner-

most boundary to λ = −10, and the shaded area represents the region bounded by the fixed

boundary. Meanwhile, the results of the present computational experiments are summarized

in Table 4 when the stopping rule (26) with Tol = 10−5 is used. The table shows in particular

the computed cost value at the K th iterate and the total computing time to reach convergence

for each values of λ. Also indicated in the table are the total number of iterations completed

by the algorithm before timing out. The values shown in Table 4 were all obtained with the

step size parameter α set to 0.10 except for the case when λ = −3 where we slightly ad-

justed α to 0.11 to reach convergence under the stopping condition (26) with Tol = 10−5 and

within 60 seconds. On the other hand, we remark that the optimal free boundaries obtained

when the stopping rule (26) is employed are actually indistinguishable from the ones shown

in Figure 5 (see Figure 6 for a direct comparison of the free boundaries ΣK and ΣM when

λ = −1,−8). The evolution of the free boundary when λ = −10 is shown in Figure 7a.

Comparison of results obtained from the two formulations. Next, we compare the opti-

mal free boundaries obtained from the two formulations for the present test case. We focus

particularly on the case when λ = −10. So, we repeat the optimization process for the case
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λ = −10, but now using the Neumann-data tracking approach. Also, this time, we run the

algorithm for 120 seconds and again take α = 0.10. In contrast to the evolution of the free

boundary shown in Figure 7a, we notice several oscillations appearing on Σk , at some iter-

ations, when using the Neumann-data tracking approach. These unwanted irregularities on

the free boundary are actually discernible from the evolution of Σk obtained through the said

approach shown in Figure 7b. We emphasize that such phenomenon actually indicates that

the algorithm is unstable for large deformations (which has already been observed in Exam-

ple 5.1.1). These oscillations appearing on the free boundary during iterations can actually

be avoided by taking smaller values for the step size; that is, by reducing the magnitude

of α, in expense, of course, of processing additional number of iterations to attain good

enough approximation of the optimal free boundary. In relation to this, the evolution of the

free boundary using the classical approach under the same setup, but now with α = 0.01, is

shown in Figure 7c. Observe that, with the new value of α, we now have a smooth evolu-

tion of the free boundary (but smaller gaps between each consecutive shape deformations).

Meanwhile, a direct comparison of the computed optimal free boundary ΣM obtained from

the two formulations (with α = 0.10) are shown in Figure 7d. For the proposed formulation,

the final cost value is J (Σ23) = 2.99× 10−8 and for the Neumann-data tracking approach,

we obtain the value J (Σ80) = 4.10 at the final iteration. We mention here that we have not

actually satisfied the stopping condition (26) with Tol = 10−3 when using the Neumann-data

tracking approach, after running the algorithm for 120 seconds. Nevertheless, we are able to

satisfy (26) for Tol = 10−2 after K = 42 iterations (which was completed after 47.93 seconds

of run time) with cost value J (Σ42) = 5.06. Taking Tol = 10−2 as the tolerance value when

imposing the stopping rule (26), however, seems reasonable since the cost actually decreases

very slow after reaching 39 iterations, as evident in Figure 8.

Fig. 5 The optimal free (or exterior) boundaries Σ∗ using the proposed formulation

Remark 1 We remark here that we actually took slightly larger edge size for the mesh (in

fact, we set hmax = 0.03) during mesh adaptation in performing the optimization process with

the Neumann-data tracking approach. The main reason for this different setup is that it is

actually difficult to obtain stable approximation of the optimal free boundary when using the

said approach with finer mesh during mesh adaptation. In fact, the algorithm crashes after a

certain number of iterations when a smaller value for hmax is used during mesh adaptation.

Below we provide a few more examples illustrating further the robustness of the proposed

formulation in solving the exterior Bernoulli free boundary problem.
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λ J (ΣK ) K CPU time M

−1 3.68×10−5 6 11.98 sec 18

−2 7.84×10−6 13 22.21 sec 17

−3 5.37×10−5 10 16.55 sec 16

−4 6.27×10−6 14 27.72 sec 16

−5 1.51×10−5 16 25.56 sec 20

−6 4.59×10−7 15 31.99 sec 17

−7 9.52×10−6 21 40.14 sec 24

−8 2.03×10−6 17 41.61 sec 24

−9 1.94×10−6 22 42.09 sec 24

−10 1.22×10−7 21 55.82 sec 23

Table 4 Summary of computational results corresponding to the optimal free boundaries shown in Figure 5

Fig. 6 Optimal free (or exterior) boundaries obtained through the proposed formulation for Example 5.1.2

(the case where Γ = ∂S) when λ = −1 (plot a) and when λ = −8 (plot b)

5.1.3 Example 3: An L-shaped fixed (interior) boundary

In this test case, we consider the boundary Γ= ∂S of the L-shaped domain S = (−0.25,0.25)2 \

[0,0.25]2 and let λ = −10. For the initial guess, we select the circle C(0,0.6) and take

α = 0.10 for both approaches. Also, we run the algorithm for 300 seconds and we let

hmax = 0.025 when using the proposed formulation and take hmax = 0.03 when applying

the Neumann-data tracking approach. In case of using the proposed formulation, the algo-

rithm completed 16 iterations (which was reached after 23.49 seconds of run time) with

the final cost value J (Σ16) = 4.68× 10−11. The stopping rule (26) with Tol = 10−5 is sat-

isfied after 15 iterations which was completed after 19.77 seconds and the computed cost

is J (Σ15) = 2.17×10−7. The evolution of the free boundary obtained through the proposed

formulation is shown in Figure 9a. On the other hand, when the Neumann-data tracking

approach is applied, the optimization procedure completely processed 158 iterations with

the final cost value J (Σ158) = 0.88. Again, during the iteration process, we notice several

oscillations on the free boundary, and these oscillations are noticeable from the evolution

of the free boundary obtained through Neumann-data tracking approach depicted in Figure

10b. A direct comparison of the optimal free boundaries Σ16 and Σ158 obtained through the

proposed formulation and from the classical Neumann-data tracking approach, respectively,

are shown in Figure 10c. Observe that the two computed optimal free boundaries are almost
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Fig. 7 Evolutions of the free boundary for the case λ = −10 when the proposed formulation is employed with

α = 0.10 (plot a) and when the Neumann-data tracking approach is applied with α = 0.10, 0.01 (plots b and

c, respectively); d: direct comparison between the optimal free boundaries obtained through the proposed and

the classical Neumann-data tracking approach when α = 0.10

Fig. 8 Convergence history of the cost function for Example 5.1.2 when λ=−10, applying the Neumann-data

tracking approach with α = 0.10

indistinguishable from each other. However, it seems that Σ158 is slightly larger compared to

Σ16. The Hausdorff distance between the two is computed to be of order 10−2. Meanwhile,

for the classical approach, the stopping rule (26) with Tol = 10−2 (respectively, 10−3) is met

after 49 (respectively, 139) iterations which was attained after 48.77 seconds (respectively,

244.66 seconds) of run time. Similar to the case of the previous example, setting the toler-

ance value in (26) to Tol = 10−2 seems reasonable if the stopping rule is applied because the

cost actually decreases slowly after reaching 49 iterations (see upper plot in Figure 9d). This

observation is also apparent from the history of Hausdorff distances between the k th and the

139th approximations of the optimal free boundary depicted in the lower plot in Figure 9d.
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Fig. 9 Evolutions of the free boundary for Example 5.1.3 when the proposed formulation is employed (plot

a) and when the Neumann-data tracking approach is applied (plot b) where α = 0.10 in both cases; c: direct

comparison between the optimal free boundaries obtained through the proposed and the classical Neumann-

data tracking approach when α = 0.10; d: histories of cost values (upper plot) and Hausdorff distances (lower

plot) obtained through the Neumann-data tracking approach corresponding to plot b

5.1.4 Example 4: A fixed boundary with two disjoint components

For the last example under the exterior case, we take λ = −1.5 and define the fixed boundary

as the union of two disjoint kite-shaped figures given by the following parametrization

Γ1 = {(1+0.7cosθ −0.4cos2θ, sinθ)>,0 6 θ 6 2π},

Γ2 = {(−2+ cosθ +0.4cos2θ,0.5+0.7sinθ)>,0 6 θ 6 2π}.

For the initial guess, we choose the circle C(0,5). In this case, the solution is known to be

connected, hence the present scheme is suitable for numerically solving the problem (cf.

[31]). Here, in all situations, the algorithm is ran for 600 seconds. Also, we use finer mesh

during mesh adaptation when employing the proposed formulation than when applying the

Neumann-data tracking approach. In particular, we use hmax = 0.05 for the former approach

and set hmax = 0.10 for the latter method. We choose coarser mesh when using the Neumann-

data tracking approach for the same reason stated in Remark 1.

The evolution of the free boundary obtained through the application of the proposed

formulation is depicted in Figure 10 when α = 0.10, 0.25 and 0.50 (see plots a, b and c,

respectively). Clearly, as α increases in magnitude, the convergence speed also increases (of

course, this is only true up to some value of α as in the results shown in Table 3). In the same



24 Julius Fergy T. Rabago, Hideyuki Azegami

figure, particularly, in plots b, d and f, the evolution of the free boundary obtained using the

Neumann-data tracking approach when α = 0.001,0.010,0.100 are shown. Notice that, even

at small step sizes, the free boundary is prone to oscillations as evident (although not too

visible) in Figure 10b. Also, it is apparent from Figures 10d and f that increasing α, in case

of using the Neumann-data tracking approach, only worsen the oscillations appearing on the

free boundary during the optimization process. The numerical results of the present compu-

tational experiments are summarized in Table 5. The table shows, in particular, the computed

cost value J (ΣK ) at the optimal termination number K when the stopping condition (26) is

utilized with tolerance value Tol = 10−5 for the proposed formulation and Tol = 10−2 for

the Neumann-data tracking approach (the reason behind these choices of Tol values will

be issued later). Also, listed in the table are the corresponding final cost values J (ΣM ) for

each of the methods applied (and for each values of α used in the experiment). Surprisingly,

the computing time to reach convergence (imposing the stopping rule (26)) when using

the proposed formulation with α = 0.25 is almost the same with the case when α is set to

0.50. Meanwhile, the corresponding histories of cost values of the free boundaries shown

in Figure 10 are plotted in Figure 11a. Observe that, in case of the Neumann-data tracking

approach, the values 0.01 and 0.10 for α exhibits comparable convergence speed. Based on

this, it seems that the rate of convergence of the optimization process when applying the

Neumann-data tracking approach could not be further improved even when α is increased

in magnitude. On the other hand, Figures 11b and c respectively plots the histories of Haus-

dorff distances between Σk and the final computed free boundary ΣM obtained through the

proposed formulation, for each α = 0.10, 0.25, 0.50, and via the Neumann-data tracking ap-

proach, for each α = 0.001, 0.010, 0.100. In these plots, the abbreviation ‘H.D.’ appearing

on the vertical axes means the term ‘Hausdorff Distance’. In all situations, including the

cross comparisons between the final optimal free boundaries obtained from using each of

the values of α and the comparisons between the results obtained from each methods, the

computed Hausdorff distances are all of order 10−2 (or lower). We emphasize that the said

order of magnitude of the computed Hausdorff distances is reasonable since we used coarser

mesh during the optimization process. Furthermore, the graphs depicted in Figures 11b and

c show that the stopping rule (26) can indeed be effectively used to terminate the iteration

process by taking the tolerance value Tol = 10−5 when using the proposed formulation and

setting it to Tol = 10−2 when the Neumann-data tracking approach is being applied. Finally,

a direct comparison between the computed optimal free boundaries Σ32 and Σ114 obtained

through the proposed formulation (with α = 0.50) and the classical Neumann-data tracking

approach (with α = 0.10), respectively, are shown in Figure 11d. As in Example 5.1.2, it

seems that the optimal free boundary due to the Neumann-data tracking approach is slightly

larger compared to the one obtained through the proposed formulation.

5.2 Interior case

We now provide some numerical examples for the interior case. This time we take X =

L2(Ωk ) and let α = 0.99, for simplicity, in the step size formula (24) for both the proposed

and the classical Neumann-data tracking approach. Also, we run the algorithm for 60 and

600 seconds in the first (Example 5.2.1) and second test case (Example 5.2.2), respectively.
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Fig. 10 Evolutions of the free boundary corresponding to Example 5.1.4 when the proposed formulation

is employed with α = 0.10, 0.25, 0.50 (plots a, c and e, respectively) and when the Neumann-data tracking

approach is applied with α = 0.001, 0.010, 0.100 (plots b, d and f, respectively)

5.2.1 Example 5: Accuracy Tests.

For the first test case, we again check the accuracy of the computed gradient. To this end,

we consider the interior Bernoulli problem with

Γ = C(0,R), λ =
1

r (log R− logr)
, R/e < r < R.
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α J (ΣK ) K CPU time J (ΣM ) M

Proposed formulation; Tol = 10−5

0.10 0.000762 38 146.68 sec 0.000473 47

0.25 0.000164 27 55.30 sec 1.26×10−6 42

0.50 2.20×10−5 22 55.28 sec 1.30×10−8 32

Neumann-data tracking approach; Tol = 10−2

0.001 9.25 210 363.67 sec 5.73 265

0.010 8.02 71 86.95 sec 7.43 99

0.100 5.69 68 187.94 sec 4.60 114

Table 5 Summary of computational results corresponding to Example 5.1.4

Histories of Cost Values

Fig. 11 a: Convergence histories of the cost function for both the proposed and classical formulations with

different values of α; the histories of Hausdorff distances between Σk and the final computed free boundary

ΣM obtained through the proposed formulation, for each α = 0.10, 0.25, 0.50 (plot b), and via the Neumann-

data tracking approach, for each α = 0.001, 0.010, 0.100 (plot c); d: direct comparison between the optimal

free boundaries obtained through the proposed and the classical Neumann-data tracking approach

For this case, the interior Bernoulli problem admits two possible solutions; namely, the

elliptic solution which is the circle C(0,r), and the hyperbolic solution given by the circle

C(0,rh), where rh is the unique real number such that

0 < rh < R/e,
1

rh (log R− logrh)
= λ.
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Convergence to the elliptic or hyperbolic solution depends on the initial guess. In our test,

we are interested only in the elliptic solution. We take R = 0.9 and r = 0.5, so λ = 3.4026

(and again, obviously, Σ∗ =C(0,0.5)). We choose C(0,0.6) as the initial guess. The histories

of the mean radii and Hausdorff distances obtained through the application of the proposed

formulation are plotted in Figures 12a and b, respectively, for some mesh sizes hmax used

during mesh adaptation. Observe from the said plots that the rate of convergence of the mean

radii and of the Hausdorff distances slows down after four iterations. If we imposed the stop-

ping condition (26), with Tol = 10−4, the algorithm actually terminates after six iterations,

irrespective of the magnitude of maximum edge size of the mesh hmax used during mesh

adaptation. Table 6 summarizes the results toward the elliptic solution when the stopping

rulr (26) with Tol = 10−4 is utilized to terminate the algorithm. It is clear from the table

that the accuracy of the computed optimal free boundary is improved as the magnitude of

hmax is reduced. Also, based on the computed value for the standard deviation σrad
K

shown

in the said table, we can actually say that the proposed method produces a very stable ap-

proximation of the optimal solution, in a sense that every domain Ωk , k = 1,2, . . .,M , has

an exterior boundary Σk with no rapid oscillation. We have also ran the algorithm using

the Neumann-data tracking approach. However, the algorithm was only able to process one

complete iteration (regardless of the magnitude of hmax) and the computed free boundary

has mean radius R̄1 = 0.5127, Hausdorff distance of dH(Σ1,Σ
∗) = 0.0207 from the exact op-

timal shape Σ∗ and final cost value J (Σ1) = 0.0046 when hmax is set to 1/160. It seems that

the formula (24) produces a very small magnitude for t1 which is already of order 10−3, and

apparently, this step size is not large enough to produce a variation of the current domain Ω1

that would decrease the magnitude of the cost at the next iteration. In addition, we mention

that the computed shape at the first iterate actually has some irregularities appearing on its

exterior boundary. In fact, the computed standard deviation σrad
1

is equal to 0.0029 which is

one order higher compare to the order of magnitude of σrad
K

’s listed in Table 6.

Fig. 12 Histories of mean radii (plot a) and Hausdorff distances (plot b) obtained through the application of

the proposed formulation after running the algorithm for 60 seconds

hmax dH (ΣK , Σ
∗) R̄K σrad

K
J (ΣK ) K time t̄ σstep C.V.

1/40 0.004602 0.502944 0.000292 7.27×10−6 6 12.83 s 0.6327 0.3545 < 1

1/80 0.004341 0.501177 0.000205 7.46×10−6 6 17.63 s 0.5907 0.2780 < 1

1/160 0.003328 0.501606 0.000193 1.91×10−6 6 17.37 s 0.6119 0.3010 < 1

Table 6 Summary of computational results corresponding to Example 5.2.1 using the proposed formulation

terminated with the stopping rule (26) with Tol = 10−4
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5.2.2 Example 6: An L-shaped fixed (exterior) boundary

For the second test case, we consider the boundary Γ = ∂S of the L-shaped domain S =

(−0.5,0.5)2 \ [0.1,0.5]2 and take λ = 14. We choose C((−0.15,−0.15),0.25) as the initial

guess. The result of the computational experiments are summarized in Table 7. Clearly,

based from the table, the proposed formulation converges significantly faster to the opti-

mal solution than the classical Neumann-data tracking approach. The evolution of the free

boundary using the proposed and the classical Neumann-data tracking approach are respec-

tively depicted in Figures 13a and b (where the shaded region represents the final computed

domain ΩM ). Observe from the latter figure that the there are some irregularities appear-

ing on the shape of the free boundary at several iterations. Meanwhile, a direct comparison

between the free boundaries Σ17 and Σ104, respectively obtained through the proposed for-

mulation and the Neumann-data tracking approach, are shown in Figure 13c. These shapes

have the corresponding cost values J (Σ17) = 1.55×10−7 and J (Σ104) = 0.33. Also, the com-

puted Hausdorff distance between Σ17 and Σ104 are found to be equal to 0.02. Lastly, in

Figure 13d, we plot the histories of cost values and Hausdorff distances dH(Σk,Σ104) ob-

tained through the Neumann-data tracking approach. Notice that the value of dH(Σk,Σ104)

fluctuates at a certain number after 44 iterations. So, based from Table 7, we can actually

terminate the algorithm using (26) with Tol = 10−2. On the other hand, the value Tol = 10−5

seems a reasonable choice for the tolerance value when imposing the stopping rule (26).

History of Hausdorff Distance

History of Cost Value

Fig. 13 Evolutions of the free boundary for Example 5.2.2 when the proposed formulation is employed

(plot a) and when the Neumann-data tracking approach is applied (plot b); c: direct comparison between the

optimal free boundaries obtained through the proposed and the classical Neumann-data tracking approach;

d: convergence history of the function (upper plot) and history of Hausdorff distances (lower plot) obtained

through the Neumann-data tracking approach corresponding to plot b
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Tol J (ΣK ) K dH (ΣK , ΣM ) CPU time

Proposed formulation

10−3 0.037359 7 0.017952 35.73 sec

10−4 7.83×10−5 11 0.004287 71.17 sec

10−5 7.12×10−5 12 0.004174 73.77 sec

Neumann-data tracking approach

10−1 112.97 7 0.223435 37.38 sec

10−2 2.41 57 0.019425 194.46 sec

10−3 2.23 70 0.025111 430.145 sec

Table 7 Summary of computational results corresponding to Example 5.2.2

6 Conclusion

We presented a new shape optimization formulation of the Bernoulli problem by tracking

the Neumann data in a least-squares sense. The novelty of the present investigation was the

use of a mixed Dirichlet-Robin problem as the state equation which provides more regularity

to the associated adjoint state. We numerically solved the optimization problem through an

iterative procedure by steepest descent using the knowledge of the shape gradient of the cost

combined with a Lagrangian-like method. Numerical tests revealed positive implications

of the new formulation on the accuracy, convergence speed and stability of the algorithm.

This led us to conclude that our proposed approach is more robust compared to that of the

classical shape optimization setting by tracking the Neumann data in numerically solving

the well-known Bernoulli free boundary problem.
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Appendix: The theorem of Correa and Seeger

We first introduce some notations. Consider a functional G : [0, ε]× X ×Y → R, for some ε > 0 and the

topological spaces X and Y . For each t ∈ [0, ε], define

g(t) = inf
x∈X

sup
y∈Y

G(t, x, y) and h(t) = sup
y∈Y

inf
x∈X

G(t, x, y),

and the associated sets

X (t) =



x̂ ∈ X : sup

y∈Y

G(t, x̂, y) = g(t)




and Y (t) =

{

ŷ ∈Y : inf
x∈X

G(t, x, ŷ) = h(t)

}

.

Given the above definitions, we introduce the set of saddle points S(t) = {(x̂, ŷ) ∈ X ×Y : g(t) =

G(t, x̂, ŷ) = h(t) }, which may be empty. In general, the inequality h(t) 6 g(t) holds and when h(t) = g(t),

we exactly have S(t) = X (t) ×Y (t). Here, we are particularly interested on the situation when G admits

saddle points for all t ∈ [0, ε].

Now, we quote an improved version [21, Theorem 5.1, pp. 556–559] of the theorem of Correa and Seeger.

The result provides realistic conditions under which the existence of the limit

dg(0) = lim
t↘0

g(t)−g(0))

t

is guaranteed.
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Theorem 1 ([25]) Let X, Y , G and ε be given as previously. Assume that the following assumptions hold:

(H1) for all t ∈ [0, ε], the set S(t) is non-empty;

(H2) the partial derivative ∂tG(t, x, y) exists for all (t, x, y) ∈ [0, ε]×X ×Y;

(H3) for any sequence {tn }n∈N, with tn → 0, there exists a subsequence {tnk
}k∈N and x0 ∈ X (0), xnk

∈

X (tnk
) such that for all y ∈Y (0), liminf t↘0

k→∞

∂tG(t, xnk
, y) > ∂tG(0, x0, y);

(H4) for any sequence {tn }n∈N, with tn → 0, there exists a subsequence {tnk
}k∈N and y0 ∈ Y (0), ynk

∈

Y (tnk
) such that for all x ∈ X (0), limsup t↘0

k→∞

∂tG(t, x, ynk
) 6 ∂tG(0, x, y0).

Then, there exists (x0, y0) ∈ X (0)×Y (0) such that

dg

dt
(0) = ∂tG(0, x0, y0).
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