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ON THE WELL-POSEDNESS OF A HELE–SHAW-LIKE SYSTEM

RESULTING FROM AN INVERSE GEOMETRY PROBLEM

FORMULATED THROUGH A SHAPE OPTIMIZATION SETTING

Julius Fergy Tiongson Rabago* and Masato Kimura

Abstract. The purpose of this study is twofold. First, we revisit a shape optimization reformulation
of a prototypical shape inverse problem and briefly propose a simple yet efficient numerical approach for
solving the corresponding minimization problem. Second, we examine the existence, uniqueness, and
continuous dependence of a classical solution to a Hele–Shaw-like system, which is derived from the
continuous setting of a numerical discretization of the shape optimization reformulation for the shape
inverse problem. The analysis is based on the methods developed by G. I. Bizhanova and V. A. Solon-
nikov in “On Free Boundary Problems for Second Order Parabolic Equations” (Algebra Anal. 12 (6)
(2000) 98–139), and by V. A. Solonnikov in “Lectures on Evolution Free Boundary Problems: Classical

Solutions” (Lect. Notes Math., Springer, 2003, pp. 123–175).
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1. Introduction

1.1. A Hele–Shaw-like system

In this study, we examine a Hele–Shaw-like system that arises from a shape optimization reformulation of an
inverse geometry problem. We prove the existence, uniqueness, and continuous dependence of a classical solution
to the quasi-stationary moving boundary problem derived from the discretized version of the optimization
algorithm used to solve the shape optimization problem. The inverse problem occurs in contexts such as non-
destructive testing to identify inclusions or voids in solids. The available information or data are collected from a
part of the solid’s surface (geometrical boundary), with the goal of determining the inclusion within the interior
of the solid.

Let T be a positive number and t ∈ [0, T ]. Let Ω(t) ¢ R
d, where d ∈ 2, 3, be a bounded annular domain with

a sufficiently smooth boundary ∂Ω(t) = Γ(t) ∪ Σ, consisting of two non-intersecting parts: a fixed boundary Σ
and a free boundary Γ(t). We assume that Σ lies outside the surface Γ(t), and denote by ν(t) the unit normal
vector to Γ(t) directed inward the domain Ω(t); that is, it goes in the same direction with the outward unit
normal vector to Σ. The main problem we consider here is the following: given a pair of positive-valued functions
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f = f(x, t) and g = g(x, t) defined on Σ, for t > 0, and an initial geometry Γ◦ of the moving boundary, we seek
to find a surface Γ(t) and two functions uD = uD(x, t) and uN = uN(x, t) satisfying the following system of
partial differential equations (PDEs):







−∆uD(x, t) = 0, x ∈ Ω(t), t ∈ [0, T ],

uD(x, t) = f(x, t), x ∈ Σ, t ∈ [0, T ],

uD(x, t) = 0, x ∈ Γ(t), t ∈ [0, T ],

−∆uN(x, t) = 0, x ∈ Ω(t), t ∈ [0, T ],
∂

∂ν
uN(x, t) = g(x, t), x ∈ Σ, t ∈ [0, T ],

uN(x, t) = 0, x ∈ Γ(t), t ∈ [0, T ],

Vn(x, t) = −
∂

∂ν
(uD(x, t) − uN(x, t)) , x ∈ Γ(t), t ∈ [0, T ],

Γ(0) = Γ◦,

(1.1)

where ∂/∂ν = ∂/∂ν(t) is the inward normal derivative operator on Γ(t) while Vn(x, t) represents the velocity
of movement of Γ(t) in the direction of the normal ν(t) for all t > 0. As alluded above, the problem originates
from a reformulation of a shape inverse problem into a shape optimization setting. Shape optimization is a well-
established technique extensively applied in engineering sciences for addressing shape identification problems.
The modern mathematical theory of shape optimization was laid in monographs [1–3].

Motivation and review of related work. As far as we are concerned, shape inverse problems are typically solved
numerically from an optimization perspective through shape optimization settings; see, for example, [4, 5] and
the references therein. The model problem from which the Hele–Shaw-like system (1.1) was derived is a specific
case of the more general conductivity reconstruction problem. This type of problem is known to be severely
ill-posed in the sense of Hadamard [4]. Nevertheless, it has been widely studied in literature, both theoretically
and numerically; see, e.g., [4, 6–13] and references therein. For instance, the existence and uniqueness of the
solution to the problem based on boundary measurement data have been studied by several authors.; see, e.g.,
[8–10, 13]. Aside from these aforementioned investigations, shape optimization reformulations of shape inverse
problems, in general, are hardly examined from a different theoretical and numerical point of view. The main
purpose of this investigation, therefore, is to carry out a rigorous analysis of the existence, uniqueness, and
continuous dependence on the data of the classical solution of (1.1) in short-time horizon. We assert that,
to our knowledge, little to no work has been done on the well-posedness of the shape optimization problem
from which (1.1) is derived, especially in the direction of our current study. We believe that the system (1.1)
itself, originating from a shape optimization context, which in turn was derived from a shape inverse problem, is
novel. Therefore, the analysis conducted in this work, inspired by the work of Bizhanova and Solonnikov [14] and
Solonnikov [15], offers a new perspective. We emphasize, however, that Escher and Simonett demonstrated the
existence and uniqueness of classical solutions for the multidimensional expanding Hele–Shaw problem in [16].
In their study, the problem is formulated over the exterior boundary component, while the interior component
remains fixed. It is also worth mentioning that geometric flows related to shape optimization problems similar
to Bernoulli-type free boundary problems are explored by Cardaliaguet and Ley in [17]. The evolution process
examined in their work involves a combination of curvature and Hele–Shaw type nonlocal terms. They introduce
the concept of generalized set solutions, drawing heavily from viscosity solutions (see, e.g., [18] or [19], Chap. 2,
p. 69), which diverges from our current focus. The main result in [17] is the inclusion preservation principle
for generalized solutions, which guarantees the existence, uniqueness, and stability of the flow. In addition, the
study examines the asymptotic behavior, establishing that the solutions converge to a generalized Bernoulli
exterior free-boundary problem. Meanwhile, from geometric analysis perspective, Plotnikov and Soko lowski [20]
recently provided a comprehensive review of existing results in shape optimization emphasizing the theory of
gradient flows for objective functions and their regularizations. For the sake of simplicity, their mathematical
exposition is confined to two spatial dimensions, and they illustrate their findings through a model problem,
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leading to an initial result concerning convergence in shape optimization. In an earlier work [21], Plotnikov and
Soko lowski rigorously established the well-posedness of the Cauchy problem arising from a penalized gradient
flow and conducted an in-depth examination of the case involving the Kohn-Vogelius cost functional.

Remark 1.1. The analysis conducted in this investigation can be applied to a class of shape optimization
problems. Specifically, the same methodology presented in the subsequent sections can be utilized to prove
the well-posedness of (1.1), where the normal velocity of the boundary of the evolving domain is given by
Vn(x, t) = −G(x, u(x)) for x ∈ Γ(t) and t > 0. Here, G can be the exact shape gradient of a cost functional such
as (1.3) and is assumed to be positive for all x ∈ Ω(t), for all t > 0. Additionally, this approach is applicable
to other quasi-stationary moving boundary problems that arise from the discretization of numerical shape
optimization schemes used to solve the shape optimal control reformulation of the inverse geometry problem,
such as L2 tracking of boundary data, under appropriate assumptions on the kernel of the shape gradient of
the associated cost functional.

In the next subsection, we will explore the derivation of system (1.1) and its connection to a shape optimization
problem to provide further context and motivation.

1.2. Derivation of the system

Consider a bounded (simply connected) domain D with boundary Σ := ∂D and assume the existence of a
simply connected open set ω such that ω ¢ D, composed of a material with a constant conductivity that is
essentially different from the constant conductivity of the material in the annular subregion Ω := D \ ω. We are
interested in determining the shape and location of the inclusion from the knowledge of the Cauchy data of the
electrical potential u on the boundary Σ. In other words, through the concept of non-destructive testing and
evaluation, we want to identify the inclusion given that the pair of boundary data f = u

∣
∣
Σ

and g = (∇u · ν)
∣
∣
Σ

is known, where ν is the outward unit normal to Σ. As alluded in the previous section, the problem under
consideration is a special case of the general conductivity reconstruction problem and has been extensively
studied in the literature, particularly in the context of inverse problems.

Various numerical techniques can solve the inverse problem, including applying shape optimization methods
as demonstrated by Roche and Soko lowski in [5], and by Eppler and Harbrecht in [4]. The former study utilized
first-order shape optimization algorithms to analyze and numerically address the proposed shape optimization
formulation. On the other hand, [4] investigated second-order methods related to the previous study, developed
and applied by the same authors in their prior work. Here, we introduce an alternative numerical approach
closely aligned with the shape optimization techniques employed in these references. Notably, our method does
not directly require knowledge of the exact shape gradient typically used in shape optimization procedures.
Nonetheless, our approach can be seen as stemming from the specific shape optimization formulation in [4, 5].
In essence, our method simplifies the gradient-based optimization procedure outlined in [5]. In fact, we will
choose a suitable descent direction that improves descent speed for the relevant shape optimization problem. It
is important to highlight in advance that our method operates as a Lagrangian-type numerical scheme, utilizing
finite element methods. This is in contrast to the approaches used in [4, 5] which rely on the concepts of
boundary integral equations.

To further explain the idea about our method, we first review the shape optimization formulation proposed in
[5] and [4] for the model problem introduced previously; see Figure 1 for a conceptual model. To determine the
inclusion ω bounded by Γ, we apply the concept of nondestructive testing and evaluation, a well-known technique
used in engineering and related sciences to evaluate the properties of a material without causing damage. That is,
we identify ω by measuring, for a given current distribution g ∈ H−1/2(Σ), the voltage distribution f ∈ H1/2(Σ)
at the boundary Σ. This means that we are seeking to find a connected domain Ω := D \ ω and an associated
harmonic function u which satisfies the overdetermined boundary value problem:

−∆u = 0 in Ω, u = 0 on Γ, u = f and ∇u · ν = g on Σ. (1.2)
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Figure 1. Conceptual model

Equation (1.2) admits a solution only when the true inclusion (cavity or void)1 ω is considered.
We recall in the following theorem a key result about identifiability for this inverse problem. It guarantees

the uniqueness of the inclusion ω and consequently, the potential u from a pair of boundary data (f, g) ̸= (0, 0).

Theorem 1.2 ([10]). The Cauchy pair (f, g) ̸= (0, 0) uniquely determine Γ and u satisfying (1.2).

In the context of thermal imaging, the Dirichlet data f represent a prescribed surface heat, and correspond-
ingly, g stands for the surface heat flux of the material. This perspective reinterprets the state variable u as
the internal thermal distribution within the material. It is important to note that the homogeneous Dirichlet
boundary condition applied to the unknown shape Γ models a perfectly conducting inclusion. Note that when
the Dirichlet data on the surface Σ is positive, the solution u to (1.2) is also positive due to the maximum prin-
ciple and unique continuation property [22]. This implies that the outgoing flux ∇u · ν on Σ is positive, while
on Γ, the outgoing flux is negative. Moreover, because u takes homogeneous Dirichlet data on the surface Γ of
the unknown inclusion, we have the identity |∇u| ≡ −∇u · ν on Γ. For a non-conducting inclusion, a Neumann
boundary condition governs the problem. Additionally, if the conductivity of the inclusion differs from that of
the surrounding material or object Ω, an inverse transmission problem arises.

Roche and Soko lowski in [5] proposed a shape optimization reformulation of (1.2) as follows:

J(Ω) =

∫

Ω

|∇(uD − uN)|
2
dx =

∫

Σ

(

g −
∂uD

∂ν

)

(uN − f) ds → inf, (1.3)

subject to the underlying well-posed state problems

{

−∆uD = 0 in Ω, uD = f on Σ, uD = 0 on Γ,

−∆uN = 0 in Ω, ∇uN · ν = g on Σ, uN = 0 on Γ.
(1.4)

In (1.3), the infimum has to be taken over all domains containing an inclusion with sufficiently regular boundary.
The existence of optimal solutions with respect to the shape optimization problem (1.3) was established in [5].

Remark 1.3. 1. The proof of the existence of an optimal solution to (1.3) over some set of admissible
domains is based on properties of harmonic functions in R

2 and uses the same arguments as those given
by Šverák [23] for a slightly different shape optimization problem.In particular, the method cannot be
directly applied in R

d for d ⩾ 3.

1While the terms inclusion, cavity, and void are related and commonly used in various contexts, such as materials science,
geology, and engineering, we have used them interchangeably in this discussion.
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2. To establish an existence result in dimension d = 3, we need to assume that the family of admissible
domains, say Uad, meets the following compactness criterion (see, e.g., [2], Chap. 2).
Given any sequence {Ωn}n∈N ¢ Uad, there exists a subsequence {Ωnk

}k∈N = {D \ ωnk
}k∈N, such that

the sequence of compacts {ωnk
}k∈N converges in the Hausdorff metric to the compact ω. Moreover, the

associated sequence of metric projections Pn : H1
0 (D) → H1

0 (Ωn) converges strongly to the metric projec-
tion P : H1

0 (D) → H1
0 (D \ ω). For such a family of admissible domains, there is a solution to the shape

identification problem in R
3. The hypothesis generally requires some form of uniform regularity for the

boundaries Γ, such as the cone condition or more intricate conditions related to capacity (refer to [1, 2]).
For further details, see Henrot, Horn, and Soko lowski [24] for an overview of stability results for the Dirich-
let problem, and Bucur and Zolésio [25] for an approach to existence problems. Additionally, [2] provides
more discussion on the existence of optimal shapes in shape optimization problems. For a recent related
result on the existence issue related to Problem (1.3), see [26].

3. For technical purposes, in order to establish the existence optimal solution, we require that any admissible
inclusion or obstacle ω ò D satisfies the condition that there exists a constant d0 > 0 such that d(x, ∂D) >
d0, for all x ∈ ω. This condition is assumed without further notice throughout the paper. We emphasize
that such a requirement is also needed for computing the shape derivatives of the states u and the cost
function J with respect to ω (see, e.g., [26]).

The equivalence between (1.2) and (1.3) issues from the first-order necessary condition of a minimizer of the
shape functional J(Ω); that is2,

dJ(Ω)[V] = lim
ε¸0

J(Ωε) − J(Ω)

ε
=

d

dε
J(Ωε)

∣
∣
∣
∣
ε=0

=

∫

Γ

Gν ·V ds,

where

G =

(
∂uD

∂ν

)2

−

(
∂uN

∂ν

)2

=

(
∂uD

∂ν
+

∂uN

∂ν

)(
∂uD

∂ν
−

∂uN

∂ν

)

=: G+G−,

has to hold for all sufficiently smooth perturbation fields V. Here, Ωε stands for a perturbation of Ω along V

that vanishes on the known surface Σ. Obviously, by the calculus of variations, the above statement implies the
necessary condition ∇uN · ν ≡ ∇uD · ν on Γ. For details on how to compute dJ(Ω)[V], and for more discussion
on shape optimization methods in general, we refer readers to [1] and [3].

To resolve the minimization problem (1.3), a typical approach is to utilize the kernel of the shape deriva-
tive dJ(Ω)[V], the so-called shape gradient (see, e.g., [1], Thm. 3.6, p. 479–480), in a gradient-based descent
algorithm. For example, for a smooth boundary ∂Ω and sufficiently regular states uD and uN, one can take
0 ̸≡ V = −Gν ∈ L2(Γ)d. This implies that, by formal expansion, and t > 0 sufficiently small, the following
inequality holds

J(Ωt) = J(Ω) + t
d

dε
J(Ωε)

∣
∣
∣
∣
ε=0

+ O(t2) = J(Ω) + t

∫

Γ

Gν ·V ds + O(t2)

= J(Ω) − t

∫

Γ

|V|
2
ds + O(t2) < J(Ω).

Hence, in practice, opting for the descent direction V = −Gν is straightforward. However, there are cases where
one can deviate from this choice. For instance, if f > 0, we can choose V = −G−ν, which still provides a descent
direction for J . Indeed, in such a case, G+ > 0 on Γ. Hence, it is evident that when V = −G−ν, the following

2Here, the representation of the shape gradient is non-conventional. We must note that ν denotes the inward unit normal to Γ
and ∂/∂ν is the inward normal derivative on Γ.
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holds:

J(Ωt) = J(Ω) + t

∫

Γ

G+G−ν ·V ds + O(t2) = J(Ω) − t

∫

Γ

G+

︸︷︷︸

> 0

|V|
2
ds + O(t2) < J(Ω). (1.5)

A naive idea to numerically solve (1.2) then involves an iterative procedure that minimizes the cost functional
J . For simplicity, let ∆t > 0 be a fixed number. Given an initial shape Γ◦, for all k = 1, 2, . . ., denote the free
boundary at iteration k as Γk. Then, the update at iteration k + 1 is given by Γk+1 = {x + ∆tVk(x) | x ∈ Γk},
for k = 0, 1, . . .. Accordingly, the main steps for computing the kth free boundary Γk using J via a naive
gradient-based descent method is given in Algorithm 1.4.

Algorithm 1.4. Boundary variation algorithm:

– Initialization Fix a number ∆t > 0 and choose an initial shape Γ◦.
– Iteration For k = 0, 1, . . .

1. Solve the corresponding variational formulations of (1.4) on Ωk.
2. Define Vn,k := ∇uD,k · νk −∇uN,k · νk on Γk.
3. Set Γk+1 = {x + ∆tVk(x) | x ∈ Γk}.

– Stop Test Repeat Iteration until convergence.

The identification of the unknown boundary Γ in (1.2) according to Algorithm 1.4 describes a similar evolu-
tionary equation for the Hele–Shaw-like system (1.1) (see, e.g., [27–29] for the classical Hele–Shaw flow problem)
in discrete setting. Indeed, let T > 0 be a given final time of interest (this can be interpreted as the condition
for Stop Test in Algorithm 1.4), NT be a fixed positive integer, and set the time discretization step-size as
∆t := T/NT . For each time-step index k = 0, 1, · · · , NT , we let tk = k∆t and denote the time-discretized
domain and free boundary by Ωk ≈ Ω(k∆t) and Γk ≈ Γ(k∆t), respectively, and the associated time-discretized
functions as uD,k ≈ uD(·, k∆t) and uN,k ≈ uN(·, k∆t). Then, given an initial free boundary Γ◦, Algorithm 1.4
reduces to solving the moving boundary value problem







−∆uD,k = 0 in Ωk,

uD,k = f on Σ,

uD,k = 0 on Γk,

−∆uN,k = 0 in Ωk,

∇uN,k · νk = g on Σ,

uN,k = 0 on Γk,

Vn,k = − (∇uD,k · νk −∇uN,k · νk) on Γk,

Γ(0) = Γ◦.

(1.6)

Notice that the discrete system (1.6) is clearly the time-discretized version of system (1.1) with f = f(x) and
g = g(x), x ∈ Σ.

1.3. Extended-regularized normal flows for shape identifications

In various studies, it has been observed that directly using V = −Gν can lead to unwanted oscillations on the
boundary, which may cause numerical instabilities, especially in finite element methods. To address this issue,
one typically employs a Sobolev gradient method in numerical optimization (see [30], Chap. 11), combined with
perimeter or surface area penalization. A typical approach includes the traction method [31] or the H1 gradient
method [32], both widely used smoothing techniques in shape optimization problems [33]. On the other hand,
it is worth noting that treating inverse geometry problems as shape optimization problems presents significant
challenges due to their inherent ill-posed nature [4]. These problems are prone to instability and are frequently
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stabilized through numerical regularization techniques [34]. For example, in a related work [35], the authors
stabilized their shape optimization algorithm, similar to (1.2), by employing perimeter regularization.

Following the discussed idea, Algorithm 1.4 can be modified to formulate a more stable numerical shape
optimization algorithm to solve (1.2). Given an initial shape Ω0 and denoting the domain shape at iteration k
as Ωk, the update at iteration k + 1 is Ωk+1 = {x + ∆tVk(x) | x ∈ Ωk}, where ∆t > 0 is a sufficiently small
step size and Vk is the descent deformation field at iteration k. The main steps for computing Ωk through
formulation (1.3) via a gradient-based descent method in Hilbert space can then be summarized in the following
optimization algorithm.

Algorithm 1.5. Domain variation algorithm:

– Initialization Fix a number ∆t > 0 and choose an initial shape Ω◦.
– Iteration For k = 0, 1, . . .

1. Solve the corresponding variational formulations of (1.4) on Ωk.
2. Compute Vk ∈ V (Ωk)d by solving the variational equation

a(Vk,ϕ) =

∫

Γk

G̃kνk ·ϕ ds, ∀ϕ ∈ V (Ωk)d,

where V (Ωk) := {ϕ ∈ H1(Ωk) | ϕ = 0 on Σ} and a is a bounded and coercive bilinear form on V (Ωk)d.
3. Set Ωk+1 = {x + ∆tVk(x) | x ∈ Ωk}.

– Stop Test Repeat Iteration until convergence.

In Step 2 of Iteration, we can take G̃ as either exactly G or G−, depending on the sign of f and g. Meanwhile,
for the Stop Test, we simply terminate the algorithm after a finite number of iterations.

As emphasized in previous subsections, our main intent in this exposition is to prove the existence and
uniqueness of classical solution to (1.1). Before delving with this problem, however, we first exhibit a numerical
example in two spatial dimensions illustrating the feasibility of the proposed optimization algorithm with the
choice of preconditioned descent vector field V obtained through the vector G−ν. Here, we define a(ϕ,ψ) :=
(∇ϕ,∇ψ)Ω, for ϕ,ψ ∈ V (Ω). Hereon, we shall refer to our algorithm as quasi-stationary Stefan type-scheme
or QSSTS as it also provides a kind of a comoving mesh method [36, 37] for (1.1).

Example 1.6. Using Algorithm 1.53, we reconstruct various cavity shapes (see Fig. 2) under the following
setup. The specimen under investigation is a circular disk with a unit radius, centered at the origin. For the
input data, we set f ≡ 1 on Σ, while synthetic data is used for extra boundary measurements on the outer part of
Σ. To avoid “inverse crimes” (see [38], p. 179), the synthetic data is generated using a different numerical scheme,
employing a larger number of discretization points and P2 finite element basis functions in the FreeFem++
code [39]. In the inversion procedure, all variational problems are solved using P1 finite elements with coarse
meshes.

We contrast the traditional shape optimization approach (utilizing G̃ = G) with the proposed method
(employing G̃ = G−). The geometry of the initial free boundary Γ◦ is a circle centered at the origin with a
radius of 0.9. The experimental findings, outlined in Figure 2, indicate a clear advantage of the proposed method
(QSSTS) over the conventional shape optimization method (SO). The QSSTS method not only achieves faster
identification of the shape and location of the unknown inclusion, but also does so with greater accuracy in gen-
eral. From these numerical results, one can expect that the proposed method will exhibit the same advantages
over traditional shape optimization approaches, even when extended to more complex geometries and higher
dimensions.

3Here, we used a non-uniform time step size to clearly highlight the potential of taking G̃ = G−. In fact, we determine the step
size using a backtracking line search procedure, calculated as ∆tk = cJ(Ωk)/|Vk|

2
H1(Ωk)

at each time step, where c > 0 is a scaling

factor. This factor is adjusted to prevent reversed triangles within the mesh after updating (see [40], p. 281).
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Figure 2. Identification results for various cavity shapes (top row), histories of Hausdorff
distances (middle row), and residuums (bottom row). In the history plots, the red lines represent
the conventional shape optimization approach (SO), while the blue lines indicate the values
obtained using the QSSTS approach.

Example 1.7. We also evaluate the performance of the proposed QSSTS approach compared to the classical SO
method in three dimensions. The results, shown in Figure 3, illustrate the identification of cubic and dumbbell-
shaped cavities inside a unit ball using these methods, where in all cases we choose a ball of radius 0.8 as
the initial guess for the reconstruction procedure. The main observation is that both methods produce almost
identical reconstructions of the exact cavities. However, a clear difference is seen in their convergence speeds: the
QSSTS method converges significantly faster than the SO method, as expected and consistent with the results
observed in the two-dimensional case. It should be noted, however, that the reconstruction in the concave regions
of the cavities is less accurate, likely because these regions are farther from the measurement surface. In relation
to this, a recent numerical study has proposed improving the identification of such concavities by coupling the
standard SO method with the alternating direction method of multipliers (ADMM); see [44]. We expect that
combining QSSTS with ADMM could lead to a more robust and accurate reconstruction scheme, which we
leave as a subject for future work.

The rest of the paper is organized as follows. In Section 2, we establish several auxiliary results related to
a diffeomorphic mapping between a reference domain and its perturbation. In Section 3, we present the main
result of the paper (see Thm. 3.2), which addresses the local-in-time solvability of system (1.1) by employing
techniques developed by Solonnikov in [15]. The remaining sections sequentially outline the key steps in proving
the main result. Section 4 details the transformation of the original problem onto a fixed domain. In Section 5,
we establish the regularity of solutions on the fixed domain. Section 6 addresses the nonlinear problem with
respect to a parameter. This is followed by an analysis of the linearized problem in Section 7. The proof of the
main result, as stated in Theorem 3.2, is completed in Section 8. Finally, a summary of the work and some final
remarks are given in Section 9.

This work also includes several appendices that provide preliminary analyses of the well-posedness of (1.1)
in the case of axisymmetric domains (see Appendices A and B), demonstrations of transformations and
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Figure 3. Identifications of cube and a dumbbell shape cavity and histories of cost values and
gradient norms.

computations of key equations and identities (Appendices C and D) utilized in the paper, and detailed proofs
of auxiliary lemmas used in the proof of the main result (Appendix E).

2. Auxiliary results

To state clearly our main result, we start by fixing some notations and prove some preliminary results in
this section. Throughout the paper, for k ∈ N ∪ {0}, Ck(Ω) denotes the usual space of all functions having
continuous and bounded derivatives in Ω up to kth order while, with ³ ∈ (0, 1), Ck+³(Ω) is the Banach space
of all functions u ∈ Ck(Ω) for which the norm4

|u|(k+³)
Ω = |u|(k)Ω + [u]

(k+³)
Ω ,

is finite, where

|u|(k)Ω =
k∑

j=0

[u]
(j)
Ω , [u]

(j)
Ω = max

|´|=j

∣∣D´u
∣∣(0)
Ω
, |u|(0)Ω = [u]

(0)
Ω = sup

Ω
|u| ,

and

[u]
(k+³)
Ω = max

|´|=k
[D´u]

(³)
Ω , [u]

(³)
Ω = sup

x,x′∈Ω
x ̸=x′

|u(x)− u(y)|

|x− y|³
.

Given a bounded simply connected domain D ¢ R
d with boundary ∂D = Σ, we define the set of admissible

geometries (the boundary of inclusions) as follows:

A2+³ :=
{
Γ = ∂É | Ω ¢ D, É is a simply connected bounded domain and ∂É ∈ C2+³

}
.

4See also the norms issued at the beginning of Section 3 (cf. notations in [49, 66]).
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For Γ ∈ A2+³, we introduce the notation Ω(Γ) to denote an annular domain in R
d with boundary ∂Ω(Γ) = Γ∪Σ.

Accordingly, given f ∈ C2+³(Σ) and Γ ∈ A2+³, we denote by uD(Γ) the unique solution of





uD ∈ C2+³(Ω(Γ)),

−∆uD = 0 in Ω(Γ),

uD = f on Σ,

uD = 0 on Γ.

(2.1)

Similarly, given g ∈ C1+³(Σ) and Γ ∈ A2+³, we denote by uN(Γ) the unique solution of





uN ∈ C2+³(Ω(Γ)),

−∆uN = 0 in Ω(Γ),
∂uN
∂¿

= g on Σ,

uN = 0 on Γ.

(2.2)

Hereinafter, unless otherwise stated, we assume Γ ∈ A2+³.
For technical purposes and for economy of space, we need to introduce a notion of quasi-normal vector on Γ.

Definition 2.1. We say that a vector field N is quasi-normal on Γ ∈ A2+³, inheriting the regularity of Γ, if

{
N ∈ C2+³(Γ;Rd), N = 0 near Σ, and

it is such that |N(À)| = 1 and N(À) · ¿(À; Γ) > 0, for all À ∈ Γ.
(2.3)

The assumption that N vanishes near Σ is necessary to keep the exterior boundary Σ fixed.
We let Iε0 := [−ε0, ε0] and fix a constant ε0 = ε0(Γ,N) > 0 such that the map

X : Γ× Iε0 −→ Γε0 ¢ R
d, X(À, Ä) 7−→ À + ÄN(À) ¢ D,

is a C2+³-diffeomorphism, where

Γε := {X(À, r) := À + rN(À) | (À, r) ∈ Γ× Iε},

for ε > 0. In fact, we have the following proposition.

Proposition 2.2. There exists a constant ε0 > 0 such that

X ∈ Diffeo2+³(Γ× Iε0 ; Γ
ε0), Γε0 := X(Γ× Iε0).

Proof. Let ϱ ∈ B1 := B1(R
d−1) (i.e., B1 denotes the unit ball in R

d−1). For all À0 ∈ Γ, there exists an open set
B(À0) ¢ R

d containing À0 and a mapping φ ∈ Diffeo2+³(B1,Γ ∩B(À0)) such that

Υ : B1 × Iε → R
d, Υ(ϱ, r) := X(φ(ϱ), r) = φ(ϱ) + rN(φ(ϱ)).

We shall first prove that the determinant of the Jacobian of the map Υ is non-zero for all (ϱ, r) ∈ B1 × Iε.
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We let Ñ be a smooth extension of N in a tubular neighborhood of Γ and define N(ϱ, r) = I+ r∇¦
Γ Ñ(φ(ϱ)).

By straightforward computations, we get

R
d×d ∋ ∇¦

(ϱ,r)Υ(ϱ, r) =
(
∇¦

ϱ Υ(ϱ, r) ∂rΥ(ϱ, r)
)

=
(
∇¦

ϱ φ(ϱ) + r
(
∇¦

x Ñ(x)
∣∣
x=φ(ϱ)

)
∇¦

ϱ φ(ϱ) N(φ(ϱ))
)

=
(
∇¦

ϱ φ(ϱ) + r∇¦
Γ Ñ(φ(ϱ))∇¦

ϱ φ(ϱ) N(φ(ϱ))
)

=
((

I+ r∇¦
Γ Ñ(φ(ϱ))

)
∇¦

ϱ φ(ϱ) N(φ(ϱ))
)

=
(
∇¦

ϱ φ(ϱ) N(φ(ϱ))
)

= N(ϱ, r)
(
N

−1(ϱ, r)∇¦
ϱ φ(ϱ) N

−1(ϱ, r)N(φ(ϱ))
)
.

For À := φ(ϱ), we claim that

[
N

−1(ϱ, r)N(À)
]
· ¿(À) > 0.

Indeed, since N is a quasi-normal vector on Γ, there exists a constant c > 0 such that N(À) · ¿(À) ⩾ c > 0, for
all À ∈ Γ. Noting that

N
−1 − I = N

−1(I− N) = rN−1∇¦
ΓN,

we can choose ε0 ⩽ ε1 where

ε1 = cmin

{
1,

1

2
∥∥N−1∇¦

ΓN
∥∥

}

so that

[
N

−1(ϱ, r)N(À)
]
· ¿(À) =

[
N

−1(I− N)(ϱ, r)N(À)
]
· ¿(À) +N(À) · ¿(À)

⩾ c−
∥∥N−1 − I

∥∥ ⩾
c

2
,

where ∥·∥ is the usual entry-wise matrix norm.
We next prove that the map X is injective. For this purpose, we show that

if À, À̃ ∈ Γ and X(À, Ä) = X(À̃, Ä̃), then (À, Ä) = (À̃, Ä̃).

Again, we note that for each À ∈ Γ, there exists an open set B(À) ¢ R
d containing À. Meanwhile, since Γ is

compact, there exists a finite collection of open covers {Oj}Mj=1, M ∈ N, such that Γ =
⋃M

j=1Oj . For each
j = 1, . . . ,M , we let Àj ∈ Γ and define, for each open set B(Àj) ∋ Àj , the set Oj = Γ ∩ B(Àj) ∋ Àj . Clearly, for
Ài ̸= Àj , there exists r0 > 0 such that

inf
{Ài,Àj}̸¢Oj

Ài,Àj∈Γ

|Ài − Àj | = r0 > 0. (2.4)

By the previous argument, it suffices to prove that

if À, À̃ ∈ Γ and X(À, Ä) = X(À̃, Ä̃), then À = À̃.
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Let us assume that À, À̃ ∈ Γ× Iε, X(À, Ä) = X(À̃, Ä̃), and À ̸= À̃. The latter condition implies that there exist
i, j ∈ {1, . . . ,M}, with i ̸= j, such that À ∈ Oi \Oj and À̃ ∈ Oj \Oi. Now, we let

r0 := inf{À − À̃ | À, À̃ ∈ Γ and {Ài, Àj} ̸¢ Oj , for all j = 1, . . . ,M}.

Meanwhile, we have

0 ̸= À − À̃ = ÄN(À)− Ä̃N(À̃) = (Ä− Ä̃)N(À) + Ä̃(N(À)−N(À̃)).

Hence,

À − À̃ ⩽ |Ä− Ä̃|+ L0 |Ä̃| À − À̃, where L0 := sup
x,y∈Γ
x ̸=y

|N(x)−N(y)|

|x− y|
.

Since |Ä̃| ⩽ ε0, we get

(1− ε0L0)À − À̃ ⩽ |Ä− Ä̃| ⩽ 2ε0.

From (2.4), we deduce that

r0 = inf
{Ài,Àj}̸¢Oj

Ài,Àj∈Γ

|Ài − Àj | ⩽ À − À̃ ⩽
2ε0

1− ε0L0
.

Taking ε0 <
r0

2 + r0L0
, we arrive at a contradiction unless r0 = 0. Thus, À = À̃.

For the sake of being specific, we choose

ε0 = cmin

{
r0

3 + r0L0
, ε1

}
, ε1 = cmin

{
1,

1

2
∥∥N−1∇¦

ΓN
∥∥

}

to conclude the proof.

Remark 2.3 (Extensions of the normal vector). In the previous proof, it suffices to assume that Ñ is C1+³.
This is guaranteed because Γ ∈ A2+³ implies that ¿ ∈ C1+³, and therefore, we can create a C1+³ extension
of ¿ in D £ Γ. More specifically, there exists an ε⋆-neighborhood of Γ (ε⋆ ⩾ ε0), say N ε⋆(Γ) £ X(Γ × Iε0),

such that Ñ ∈ C1+³(N ε⋆(Γ);Rd). Additionally, we see that the distance function d(·,Γ) ∈ C2+³(N ε⋆(Γ)),

where d(x,Γ) := ± dist(x,Γ). Consequently, for any x ∈ N ε⋆(Γ), we can define Ñ(x) := N(À(x)), where À(x) =
x− d(x,Γ)∇ d(x,Γ). Furthermore, for later use, we emphasize that we can create another extension of N which

is C2+³. That is, for (À, Ä) ∈ Γ× Iε0 , we can define ˜̃N(X(Γ× Iε0)) := N(À) such that ˜̃N
∣∣
Γ
= N. These extensions

are assumed to vanish near Σ.

For fixed real numbers a and b, where b > a, the scalar-valued function Ä belongs to the Banach space

R[a,b](Γ,N) :=
{
Ä : Γ× [a, b] → Iε0(Γ,N) | Ä ∈ C0([a, b];C2+³(Γ)) ∩ C1([a, b];C1+³(Γ))

}
. (2.5)

We introduce the set

R0(Γ,N) :=
{
Ä ∈ C2+³(Γ) | |Ä(À)| ⩽ ε0(Γ,N), ∀À ∈ Γ

}
.
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For Ä ∈ R0(Γ,N), it can be shown that

S(Ä) := {X(À, Ä) | À ∈ Γ} is a C2+³ boundary.

In fact, S(Ä) ∈ A2+³, as claimed in the following proposition.

Proposition 2.4. There exists ε1 := ε1(Γ,N) ∈ (0, ε0(Γ,N)] such that S(Ä) ∈ A2+³ holds for Ä ∈ R1(Γ,N),
where

R1(Γ,N) := {Ä ∈ R0(Γ,N) | |Ä(À)| ⩽ ε1, |∇ΓÄ(À)| ⩽ ε1, for all À ∈ Γ} .

To prove the proposition, we need the next lemma.

Lemma 2.5. Let k ∈ N, ³ ∈ [0, 1), and Ω ¢ R
d be an open bounded set with Ck+³ boundary. Let ϕ ∈ Ck+³

0 (Ω)
and consider φ(x) = x + ϕ(x), x ∈ Ω. Assume that maxx∈Ω

∥∥∇¦ϕ(x)
∥∥ < 1. Then, det(∇¦φ) > 0 and φ ∈

Diffeok+³(Ω,Ω); i.e., the map φ : Ω → Ω is a Ck+³-diffeomorphism.

See Appendix E.1 for the proof.

Proof of Proposition 2.4. Let ε0 := ε0(Γ,N). The map X : Γ× Iε0 → Γε0 is a C2+³-diffeomorphism. We choose
and fix ε > ε0, with |ε− ε0| sufficiently small, such that the map X : Γ × Iε → Γε ¢ D ¢ R

d is a C2+³-

diffeomorphism. Consequently, X−1 : Γε → Γ× Iε is also a C2+³-diffeomorphism; i.e., X−1 = (À̂(x), r̂(x)) where

À̂ ∈ C2+³(Γε,Γ) and r̂ ∈ C2+³(Γε, Iε). We consider ¸ ∈ C∞
0 (R) with 0 ⩽ ¸(s) ⩽ 1, such that ¸(s) = 1 for |s| ⩽ ε0

and supp ¸ ¢ (−ε, ε).
Let us define Φ as follows:

Φ(x) =

{
x if x ∈ D \ Γε,

x+ ¸(r̂(x))Ä(À̂(x))N(À̂(x)) if x ∈ Γε.

Clearly, Φ ∈ C2+³(D;Rd). We claim that Φ ∈ Diffeo2+³(Ω,Ω). Indeed, this follows from Lemma 2.5. We only
need to verify that the norm of the Jacobian of its perturbation – given that |Ä(À)| ⩽ ε1, |∇ΓÄ(À)| ⩽ ε1, for all

À ∈ Γ – has magnitude less than one. To facilitate the proof, let us write G(x) := ¸(r̂(x))N(À̂(x)) and define
Φ(x) = x+ ϕ(x), where

ϕ(x) =

{
0 if x ∈ D \ Γε,

G(x)Ä(À̂(x)) if x ∈ Γε.

From the definition of ϕ, we have

∇¦ϕ(x) =

{
0 if x ∈ D \ Γε,

∇¦G(x)Ä(À̂(x)) +G(x)∇¦
Γ Ä(À̂(x))∇

¦
x À̂(x) if x ∈ Γε.

Computing its norm, while noting that |Ä(À)| ⩽ ε1 and |∇ΓÄ(À)| ⩽ ε1, for all À ∈ Γ, we get

∥∥∇¦ϕ(x)
∥∥ ⩽ ∥Ä∥∞

∥∥∇¦G
∥∥+ |G(x)|

∣∣∣∇¦
Γ Ä(À̂(x))

∣∣∣
∥∥∥∇¦

x À̂(x)
∥∥∥

⩽ ε1

[
max
x∈Γε

∥∥∇¦G(x)
∥∥+max

x∈Γε

(
|G(x)|

∥∥∥∇¦
x À̂(x)

∥∥∥
)]

< 1.

This proves the proposition.
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For Ä ∈ R[a,b](Γ,N), we define the moving boundary

M(Ä, [a, b]) :=
⋃

t∈[a,b]

S(Ä(t))× {t}, (2.6)

with normal velocity Vn(t) = Vn(·, t) ∈ C0(S(Ä(t))), where

Vn(x, t) := Ät(À, t)N(À) · ¿(x;S(Ä(t))), x = À + Ä(À, t)N(À) ∈ S(Ä(t)), À ∈ Γ.

We define the set of moving boundaries as

M[a,b](Γ,N) :=
{
M(Ä, [a, b]) ¢ R

d × R | ∃Ä ∈ R[a,b](Γ,N) such that (2.6) is satisfied
}
.

Now, we consider the quasi-stationary moving boundary problem stated as follows:

Problem 2.6. For given Γ◦ ∈ A2+³, f ∈ C2+³(Σ), and g ∈ C1+³(Σ), find T > 0 and M =
⋃

0⩽t⩽T Γ(t)× {t}
such that




Vn(t) = −

∂

∂¿
[uD(Γ(t))− uN(Γ(t))] on Γ(t), (0 ⩽ t ⩽ T ),

Γ(0) = Γ◦,
(2.7)

where uD(Γ(t)) and uN(Γ(t)) are defined by (2.1) and (2.2), respectively.

We formally define the solution of Problem 2.6 as follows.

Definition 2.7. We say M =
⋃

0⩽t⩽T Γ(t) × {t} ¢ R
d × R a solution of Problem 2.6, if for Γ(0) = Γ◦, there

exists a collection of closed intervals {Ik}nk=1 such that
⋃n

k=1 Ik = [0, T ], and for each k, there exists tk ∈ Ik,
Γk ∈ A2+³, and quasi-normal Nk on Γk such that

M
∣∣
Ik

∈MIk(Γk,Nk), where M
∣∣
Ik

=
⋃

t∈Ik

Γ(t)× {t},

is a solution of

Vn(t) = −
∂

∂¿
[uD(Γ(t))− uN(Γ(t))] on Γ(t), for t ∈ Ik, for each k = 1, . . . , n,

where uD(Γ(t)) and uN(Γ(t)) are defined by (2.1) and (2.2), respectively.

We note that the definition of Vn does not depends on the choice of Γk and Nk.
Before we proceed further, we ask the following question in view of Definition 2.7: suppose M[0,T ] is a solution

to (1.1), then is it true that M[t∗,T ] is also a solution to (1.1) for t∗ ∈ [0, T ]? The next lemma answers this
question affirmatively.

Lemma 2.8. Let Γ ∈ A2+³, N be a quasi-normal vector on Γ,

M =
⋃

a⩽t⩽b

Γ(t)× {t} ∈M[a,b](Γ,N),
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t∗ ∈ [a, b], and N∗ be quasi-normal on Γ(t∗). Then, there exists a Ä > 0 such that, with I∗ := [a, b]∩ [t∗−Ä, t∗+Ä ],
we have

M
∣∣
I∗

∈MI∗(Γ(t∗),N∗). (2.8)

Proof. We start by noting that there exist ε∗ > 0 such that

X∗ ∈ Diffeo2+³ (Γ(t∗)× I∗, X∗(Γ(t∗)× I∗)) , X∗(x, r) := x+ rN∗(x),

where

(x, r) ∈ Γ(t∗)× I∗, I∗ := Iε∗ ∩ [a, b], Iε∗ = [−ε∗, ε∗].

We claim the following:

There exists a Ä > 0 such that Γ(t) ¢ X∗(Γ(t∗)× I∗∗), for t ∈ I∗∗ := I∗ ∩ [t∗ − Ä, t∗ + Ä ].

For (y, t) ∈ Γ× I∗∗, we define

(x∗(y, t), Ä∗(y, t)) := X−1
∗ (X(y, Ä(y, t))),

and for (x, t) ∈ Γ(t∗)× I∗∗, we set

Ä̃(x, t) := Ä∗(x∗(·, t)
−1(x), t),

where x∗(·, t) : Γ → Γ(t∗). Hence, by construction

X(y, Ä(y, t)) = X∗(x, Ä̃(x, t))
∣∣∣
x=x∗(y,t)

.

Now, to validate (2.8), we need to show that

Ä̃ ∈ C0(I∗∗;C
2+³(Γ(t∗)) ∩ C

1(I∗∗;C
1+³(Γ(t∗)). (2.9)

This follows directly from the following assumptions:

(y, t) ∈ Γ× I∗∗ ¢ Γ× I∗ ¢ Γ× [a, b],

Ä ∈ C0(I∗;C
2+³(Γ)) ∩ C1(I∗;C

1+³(Γ)),

X ∈ C2+³(Γ× Iε0),

(x, t) ∈ Γ(t∗)× I∗∗ ¢ Γ(t∗)× I∗,

as well as from the regularities of the following mappings:

[(y, t) 7→ X(y, Ä(y, t))] ∈ C0(I∗∗;C
2+³(Γ;Rd)) ∩ C1(I∗∗;C

1+³(Γ;Rd)),

X∗ ∈ Diffeo2+³(Γ(t∗)× I∗∗, X∗(Γ(t∗)× I∗∗)),

Ä∗ ∈ C0(I∗∗;C
2+³(Γ)) ∩ C1(I∗∗;C

1+³(Γ)),

x∗ ∈ C2+³(Γ; Γ(t∗)),

x−1
∗ ∈ C2+³(Γ(t∗); Γ).

In view of Definition 2.7, the composition of these mappings leads to (2.9).

By Lemma 2.8, we can state an equivalent definition of the solution to Problem 2.6, given as follows:
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Definition 2.9. We say M =
⋃

0⩽t⩽T Γ(t) × {t} ¢ R
d × R is a solution to Problem 2.6 if, for all t∗ ∈ [0, T ],

there exist a < b and Ä > 0 such that [t∗ − Ä, t∗ + Ä ] ∩ [0, T ] ¢ [a, b] ¢ [0, T ], and there exists a quasi-normal
vector N∗ on Γ(t∗) such that

M[a,b] ∈M[a,b](Γ(t∗),N∗), where M[a,b] :=
⋃

a⩽t⩽b

Γ(t)× {t},

and uD(Γ(t)) and uN(Γ(t)), defined by (2.1) and (2.2), solve (2.7).

Remark 2.10. The definition of the solution to Problem 2.6 given in Definition 2.9 is indeed equivalent to
Definition 2.7. To see this, we note that, for all t ∈ [0, T ], there exists Ä(t) > 0 such that [t − Ä(t), t + Ä(t)] ∩
[0, T ] ¢ [a, b] ¢ [0, T ], and there exists a quasi-normal vector N on Γ(t) such that

M[a,b] ∈M[a,b](Γ(t),N),

and uD(Γ(t)) and uN(Γ(t)), defined by (2.1) and (2.2), solve (2.7). Now, we observe that

∅ ≠ O(t) :=





(t− Ä(t), t+ Ä(t)) ∩ (0, T ) for t ∈ (0, T ),

[0, Ä(0)) for t = 0,

(t− Ä(t), T ] for t = T.

Note that O is open in [0, T ] and
⋃

t∈[0,T ] O(t) = [0, T ].

3. Main results

Our main objective is to demonstrate the (local-in-time) solvability of system (1.1) by applying the techniques
outlined by Solonnikov in [15]. Specifically, we refer to the proofs of [15], Theorems 1.1 and 3.1, and also to [41]
for a related application of this method.

Notations. Let l be a nonnegative real number. We denote by C0([0, T ];Cl(Ω)) the space of continuous
functions with respect to

(x, t) ∈
{
(x, t) | t ∈ [0, T ], x ∈ Ω

}

with the finite norm

max
0⩽t⩽T

|u(·, t)|(l)
Ω
,

where

|u|(l)
Ω

:= ∥u∥C[l],l−[l](Ω) = |u|[l],l−[l]; Ω =
∑

|j|<l

max
Ω

|Dju(x)|+ [u]
(l)

Ω
,

[u]
(l)

Ω
:= [u][l],l−[l]; Ω =

∑

|j|=[l]

max
x,x̂∈Ω

|Dju(x)−Dju(x̂)|

|x− x̂|l−[l]
.

For example, |u|(0)
Ω

is the maximum norm of u(x), i.e., |u|(0)
Ω

= maxx∈Ω |u(x)|. Also, in a more familiar notation,

|u|(k+³)

Ω
:= ∥u∥Ck,³(Ω) where l = k+³, k = [l] ∈ N∪{0}, ³ = [l]− l ∈ (0, 1); see [42], equations (4.5)–(4.6), p. 53.

The spaces C0([0, T ];Cl(Σ)) and C0([0, T ];Cl(Γ)) are introduced in a similar manner. Here, C [l],l−[l] := Ck for
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integer l = k ∈ N. Throughout the paper, we use c as a general positive constant, meaning it can vary in value
depending on the context.

Let a and b be fixed real numbers such that b > a, k ∈ N ∪ {0}, and ³ ∈ (0, 1). For functions φ = φ(À, t) ∈
C0([a, b];Ck+³(Ω)), the norm

max
a⩽Ä⩽b

|φ(·, Ä)|(k+³)

Ω
,

will appear many times in the paper (especially from Section 7 onwards and in Appendix E.3). So, for economy
of space, we introduce the following notation

|φ|(k+³)
Ξ; [a,b] := max

a⩽Ä⩽b
|φ(·, Ä)|(k+³)

Ξ , Ξ ∈ {Ω,Ω,Γ,Σ}.

For nested maximum norms, we write

|φ|∞Ξ; [a,b] := max
a⩽Ä⩽b

max
Ξ

|φ(·, Ä)| , Ξ ∈ {Ω,Γ,Σ}.

Additionally, for functions u = u(À, t), v = v(À, t) ∈ C0([a, b];Ck+³(Ξ)), Ξ ∈ {Ω,Γ,Σ}, we introduce the
following specially defined norms

∥(u, v)∥(k+³)
Ξ; [a,b] := |u|(k+³)

Ξ; [a,b] + |v|(k+³)
Ξ; [a,b] = max

a⩽t⩽b
|u(·, Ä)|(k+³)

Ξ + max
a⩽t⩽b

|v(·, Ä)|(k+³)
Ξ .

For a pair of functions with subscripts ·D and ·N, we simply write

∥φD,N∥
(k+³)
Ξ; [a,b] := ∥(φD, φN)∥

(k+³)
Ξ; [a,b] ,

especially when such a norm appears many times in a sequence of arguments. Moreover, and specifically for the
boundary data f ∈ C0([0, T ];C2+³(Σ)) and g ∈ C0([0, T ];C1+³(Σ)), [a, b] ¦ [0, T ], we simply write

|||(f, g)|||(2+³)
Σ; [a,b] := max

a⩽Ä⩽b
|f(·, Ä)|(2+³)

Σ + max
a⩽Ä⩽b

|g(·, Ä)|(1+³)
Σ , |||(f, g)||| := ∥(f, g)∥(2+³)

Σ, [0,T ] .

Additionally, for k ∈ N and Ä ∈ C0([a, b];Ck+³(Ξ)) ∩ C1([a, b];Ck−1+³(Ξ)) and Ξ ∈ {Ω,Γ}, we introduce the
norm notation

|||Ä|||(k+³)
Ξ; [a,b] := max

a⩽Ä⩽b
|Ä(·, Ä)|(k+³)

Ξ + max
a⩽Ä⩽b

∣∣∣∣
d

dÄ
Ä(·, Ä)

∣∣∣∣
(k−1+³)

Ξ

,

and another special notation

|||Ä|||(k+³)

Ω,Γ; [a,b]
:= max

a⩽Ä⩽b
|Ä(·, Ä)|(k+³)

Ω
+ max

a⩽Ä⩽b

∣∣∣∣
d

dÄ
Ä(·, Ä)

∣∣∣∣
(k−1+³)

Γ

.

Finally, for any pair of well-defined functions φD and φN, we will extensively use the following special notations
for convenience:

φDN := φD − φN and φND := φN − φD.

For example, we write uDN = uD − uN and uDN(Γ) = uD(Γ)− uN(Γ).
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To prepare for later discussions involving the differentiability of certain linear and bounded operators (see
Lem. 4.3), we introduce the following function spaces. The space B(X ,Y) denotes the set of linear and contin-
uous (bounded) operators between two normed vector spaces X and Y. We also consider the space CÉ(U ,V),
consisting of real analytic functions from a Banach space U into V, understood in the sense of Fréchet or Gâteaux
differentiability.

Prior to stating the primary result we seek to establish in this study, we observe that, in the original inverse
geometry problem setup, f and g are solely space-dependent. However, for the remainder of the discussion,
otherwise specified, we shall assume that these functions are also (pseudo-)time-dependent. Specifically, we let
f = f(x, t) and g = g(x, t), where x ∈ Ω(t) and t ∈ [0, T ], in (1.1), and assume that they are both positive-valued.

We consider the following conditions, which are essential for the analytical framework underlying the proof
of the well-posedness of (1.1):

Assumption 3.1. � For some ³ ∈ (0, 1),

Σ, Γ = Γ◦ ∈ C2+³, f ∈ C0([0, T ];C2+³(Σ)), f > 0, g ∈ C0([0, T ];C1+³(Σ)), g > 0,

such that

∂

∂¿
(uDN(Γ◦)) > 0, (A1)

where uD and uN respectively solves (2.1) and (2.2) in Ω(Γ◦).
� There exists a t⋆⋆ ∈ (0, T ] such that

∂

∂¿
(uDN(Γ(t))) > 0, for t ∈ [0, t⋆⋆].

It is necessary to comment on the key assumptions above, taking into account both its technical and practical
implications. The positivity of the difference between the normal derivatives, as expressed in (A1), is not only
an essential requirement for proving the well-posedness of system (1.1) (see comment at the bottom of page 584
in [43]), but also plays a crucial role in the reconstruction procedure, and can, in fact, be ensured in practical
computations. This condition is satisfied when the initial guess in the algorithm is chosen sufficiently large to
fully enclose the exact cavity – a choice that is both natural and effective in numerical implementations, at least
in simple settings (see, e.g., [44]). Appendix A further illustrates this point in the setting of axially symmetric
domains through a detailed comparison of normal derivatives.

Our main theorem is formulated as follows.

Theorem 3.2. Let Assumption 3.1 be satisfied. Then, there exists a unique solution Γ(t), uD(x, t), and uN(x, t)
to (1.1) defined on some small time-interval I⋆ = [0, t⋆], where t⋆ < T . The free surface Γ(t) is described by the
equation

x = À + Ä(À, t)N(À), À ∈ Γ, (3.1)

where À is the local coordinate on the surface Γ and N is a smooth vector field on Γ such that N · ¿◦ ⩾ ¿⋆ >
0, where ¿◦ is the unit normal vector to the surface Γ directed inward the domain Ω(Γ). The function Ä ∈
C0(I⋆;C2+³(Γ)) has extra smoothness with respect to the variable t; namely, Ät ∈ C0(I⋆;C1+³(Γ)). Meanwhile,
the functions uD(x, t) and uN(x, t) are defined in Ω(t) for t ∈ I⋆ and both belong to the space C0(I⋆;C2+³(Ω(t))).
Moreover, the following estimate hold

∥uD,N∥
(2+³)

Ω; [0,t]
+ |||Ä|||(2+³)

Γ; [0,t] ⩽ c|||(f, g)|||(2+³)
Σ; [0,t] ⩽ c |||(f, g)|||. (3.2)

for some constant c > 0, for all t ∈ I⋆.
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Given the short-time existence of solution to (1.1), we can also prove the uniqueness of short-time solution
to the system.

Theorem 3.3. A solution of Problem 2.6 is unique.

Proof. If there exist two solutions Mi :=
⋃
Γi(t) × {t}, i = 1, 2, to Problem 2.6, then we need to show that

M1 = M2. We prove the assertion via a contradiction. Let us assume that M1 ̸= M2. Then, there exists
t∗ ∈ [0, T ) and a sequence {tk}∞k=1 ∈ (t∗, T ] such that





M1

∣∣
[0,t∗]

= M2

∣∣
[0,t∗]

,

T ⩾ t1 > t2 > · · · > t∗, where lim
k→∞

tk = t∗, and

Γ1(tk) ̸= Γ2(tk), for k = 1, 2, . . ..

(3.3)

Since Γ(t∗) := Γ1(t∗) = Γ2(t∗) satisfies the condition in Theorem 3.2, there exists t∗∗ ∈ (t∗, T ] such that there
is a unique Γ(t) for t ∈ [t∗, t∗∗]. However, this contradicts the last two lines in (3.3). Thus, M1 and M2 have to
be the same solution to Problem 2.6.

Before we proceed, we provide additional comments on condition (A1) (cf. (A3)). To this end, we first consider
the following lemma.

Lemma 3.4. Let Ω ¢ R
d, of class C2, be an open bounded connected set with non-intersecting boundaries Γ

and Σ. Assume that v ∈ C2(Ω) ∩ C0(Ω) ∩ C1(Σ) and

−∆v = 0 in Ω, v = 0 on Γ,
∂v

∂¿
> 0 on Σ.

Then,

v > 0 in Ω.

Proof. The proof proceeds by contradiction and uses the maximum principle [45], Chap. 6.4, p. 344. We start

by observing that v ̸≡ constant in Ω; otherwise, v = 0 in Ω because v = 0 on Γ, and so
∂v

∂¿
= 0 on Σ, which

contradicts the assumption. We suppose that

inf
Ω
v < 0.

Then, by the maximum principle,

0 > inf
Ω
v = min

Ω̄
v = min

Σ
v.

That is,

there exists x0 ∈ Σ such that v(x0) = min
Σ
v = min

Ω̄
v.

Because v = 0 on Γ, we deduce that

∂v

∂¿
(x0) < 0, x0 ∈ Σ.
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This is a contradiction to our assumption that
∂v

∂¿
> 0 on Σ. Therefore, infΩ v > 0, and thus v > 0 in Ω, proving

the lemma.

Using Lemma 3.4, we will prove in the next proposition that there exists a suitable choice of Γ◦ such that
condition (A1) holds. In fact, we will use the same idea as in Appendices A.1 and A.2, which compares the
normal derivatives on the free boundary of concentric circles and spheres.

Proposition 3.5. Let Ω = D \ É ¢ R
d, of class C2+³, be an open bounded connected set with non-intersecting

boundaries ∂É = Γ ∈ A2+³ and Σ = ∂D. Assume that ∂É⋆ = Γ⋆ ∈ A2+³ is the exact interior boundary that
satisfies (1.2) and É strictly contains É⋆ (i.e., Γ lies entirely in the interior of Ω

⋆
= D \ É⋆). Let f ∈ C2+³(Σ)

and g ∈ C1+³(Σ). Then, the functions uD(Γ) and uN(Γ) satisfying (2.1) and (2.2), respectively, satisfy the
following condition

uD > uN in Ω.

Consequently,

∂

∂¿
(uD − uN) > 0 on Γ.

Proof. Let the assumptions of the proposition be satisified. Let us denote by (Ω⋆, u⋆(Ω⋆)), Ω⋆ = D \ É⋆, Ω⋆ is
of class C2+³, u⋆ ∈ C2+³(Ω) ∩ C0+³(Ω), the exact solution pair of the free boundary problem (1.2) with the
corresponding exact interior boundary Γ⋆ = ∂É⋆ ∈ A2+³. We note the following observation





∆u⋆ = ∆uD = ∆uN = 0 in Ω,

u⋆ = uD > 0 on Σ,

uD = uN = 0 on Γ,

u⋆ > 0 on Γ.

(3.4)

Let us define

vD := −uD + u⋆ and vN := −uN + u⋆.

Then, from (3.4), we have the following





∆vD = ∆vD = 0 in Ω,

vD = 0 on Σ,
∂vN
∂¿

= 0 on Σ,

vD = vN = u⋆ > 0 on Γ.

(3.5)

We deduce from (3.5) that

vD > 0 in Ω and
∂vD
∂¿

< 0 on Σ. (3.6)

Now, we define

v = vN − vD = (−uN + u⋆)− (−uD + u⋆) = uD − uN.
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Hence, we have

−∆v = 0 in Ω, v = 0 on Γ,
∂v

∂¿
> 0 on Σ.

Therefore, by Lemma 3.4, we get

uD − uN = v > 0 in Ω.

Consequently, when Γ ∈ A2+³ lies entirely in the interior of Ω
⋆
= D \ É⋆, we get

∂

∂¿
(uD − uN) > 0 on Γ,

which concludes the proof.

Theorem 3.2 follows from an auxiliary result (see Thm. 4.4) which we issue in the next section.

4. Problem transformation onto a fixed domain

To carry out our analysis, we first need to transform system (1.1) into a problem over a fixed domain via the
change of variables to be described below. Such technique has been used in many studies (see, e.g., [15]) and can
be achieved by a special mapping – a modification of the well-known Hanzawa transform – of the pseudo-time
dependent domain Ω(t) onto the fixed domain Ω. The target equation is given by (4.7), and the main result we
want to state here is emphasized in Theorem 4.4.

From this point forward, we assume that Assumption 3.1 holds and that N is a quasi-normal vector on Γ
(see Def. 2.1). Also, for some technical purposes, we assume there is a constant ¿⋆ > 0 such that

N(À) · ¿◦(À) ⩾ ¿⋆ > 0, À ∈ Γ, (A2)

where ¿◦ denotes the unit inward normal vector to Γ. This requirement will be made clear in Section 6.
Given a constant ε◦ > 0, it was shown in [15], Sect. 3, p. 134 that the tubular strip

Sε◦ = {À +N(À)¼ | |¼| < ε◦, À ∈ Γ}

contains some neighborhood of Γ where the equation x = À +N(À)¼ determines some functions À(x) and ¼(x)
of class C2+³ (see the proof of Prop. 2.4). For sufficiently small t > 0, the free boundary Γ(t) is contained in
Sε◦ (cf. Prop. 2.4) and can be described by the equation ¼ = Ä(À, t). Accordingly, for

Ä ∈ R◦(Γ,N) := {Ä ∈ C2+³(Γ;R) | ∥Ä∥∞ < ε◦}

we define

S(Ä) := {x ∈ R
d | x = À +N(À)Ä(À), À ∈ Γ}. (4.1)

We introduce the admissible set of hypersurfaces consisting of d − 1 dimensional C2+³ manifold embedded in
R

d as follows

Hε◦(Γ,N) := {S(Ä) | Ä ∈ R◦(Γ,N)}.

The following definition introduces a family of admissible moving surfaces (or moving boundaries).
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Definition 4.1. We say that a moving surface (or moving boundary) M is admissible, and we write M ∈
M[0,T ](Γ,N), if and only if





M =
⋃

0⩽t⩽T

Γ(t)× {t} ¢ R
d × R,

Γ(t) = S(Ä(t)) ∈ Hε◦(Γ,N), for all t ∈ [0, T ],

Ä ∈ R[0,T ](Γ,N),

where R[0,T ](Γ,N) is the set given in (2.5) with ε0 = ε◦.

For every function Ä ∈ R[0,T ](Γ,N), we put into correspondence its extension

Ä̃(y, t) := EÄ(y, t), (4.2)

where E is a linear and bounded map

E : R[0,T ](Γ,N) → C0([0, T ];C2+³(Ω)) ∩ C1([0, T ];C1+³(Ω)) (4.3)

satisfying

∥EÄ∥(2+³)

Ω; [0,t]
⩽ c|||Ä|||(2+³)

Γ; [0,t],

for some constant c > 0. Such an extension of Ä from Γ× [0, T ] to Ω× [0, T ] can be constructed in different ways.
In this investigation, we assume that Ä̃ = Ä̃(y, t) := EÄ(y, t) satisfies the following boundary value problem:

−∆Ä̃ = 0, y ∈ Ω, t > 0, Ä̃|y∈Γ = Ä, Ä̃|y∈Σ = 0, (4.4)

where the latter condition is essential because Σ is fixed. Using this extension allows for a more straightforward
development of later arguments. Throughout the remainder of our discussion, we assume without further mention
that Ä̃ satisfies (4.4).

To meet certain technical requirements, we extend the vector field N (retaining the same notation) to the
domain Sε◦ by defining N(x) = N(À(x)). We then further extend it to the domain Ω ∪ Sε◦ , where Ω = Ω(0),
ensuring that the regularity N ∈ C2+³(Ω ∪ Sε◦) is preserved (cf. Rem. 2.3).

Let us introduce the change of variables y = Y (x, t) under which Ω(t), t > 0, is transformed to Ω and define
the inverse transform Y −1 : Ω → Ω(t) as follows:

Y −1(y, t) = x ∈ Ω(t), x = y +N(y)Ä̃(y, t), (4.5)

for y ∈ Ω and t > 0. The given map is bijective, as stated in the following lemma.

Lemma 4.2. Let Z(y) := y + N(y)Ä̃(y), y ∈ Ω, such that Z =|y∈Σ y and Z
∣∣
y∈Γ

= y + N(y)Ä(y). Then, for

sufficiently small |Ä̃| > 0, the map Z : Ω → Ω(Ä), where Ω(Ä) is the annular domain bounded by Σ and S(Ä) is
bijective.

Proof. See Appendix E.2.

To transform the Hele–Shaw-like system (1.1) onto a fixed domain, we make a few additional preparations.
The Jacobi matrix J = (Jkm)km (k,m = 1, . . . , d) of the transform Y −1 has entries

Jkm = (DyY
−1(y, t))km = ¶km +Nk

∂Ä̃

∂ym
+
∂Nk

∂ym
Ä̃.
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Correspondingly, we denote by J
km the entries of the inverse matrix J

−1, i.e.,

J
−1 =

(
J
km
)

km
= ((DxY (x, t))km)km =

(
(DyY

−1(y, t))km
)−1

km
,

which is the Jacobi matrix of the transform Y (x, t). Denoting J
−¦ = (J−1)¦, the operator ∇x := (∂x1

, . . . , ∂xd
),

∂xk
:= ∂/∂xk, k = 1, . . . , d, takes the form

J
−¦∇¦

y :=

(
d∑

k=1

J
km ∂

∂yk

)
, m = 1, . . . , d, ∇y :=

(
∂

∂y1
, . . . ,

∂

∂yd

)
. (4.6)

The following relation between the inward unit normal vectors ¿◦ to Γ and ¿(t) to Γ(t) (cf. [15], p. 135 or see
[1], Thm. 4.4, p. 488) holds:

¿(t) ◦ Y −1 =
J
−¦¿◦

|J−¦¿◦|
⇐⇒ ¿(t) =

J
−¦¿◦

|J−¦¿◦|
◦ Y.

Applying the above change of variables and identities, we can pass from the t-dependent system (1.1) to the
problem in the given fixed domain Ω with respect to the three unknown functions UD(y, t) = uD(Y

−1(y, t), t),
UN(y, t) = uN(Y

−1(y, t), t), and Ä̃(y, t), y ∈ Ω. More precisely, given the harmonic function Ä̃ satisfying (4.4),
we have the following transformation of (1.1) using the map Y : Ω(t) → Ω, where Y (x, t) = y ∈ Ω, for t > 0:





d∑

m,p=1

Amp

∂2UD

∂ym∂yp
+

d∑

k,m,p=1

J
mk ∂J

pk

∂ym

∂UD

∂yp
= 0, y ∈ Ω, t > 0,

UD|y∈Σ = f(y, t), UD|y∈Γ = 0,

d∑

m,p=1

Amp

∂2UN

∂ym∂yp
+

d∑

k,m,p=1

J
mk ∂J

pk

∂ym

∂UN

∂yp
= 0, y ∈ Ω, t > 0,

∂UN

∂¿

∣∣∣∣
y∈Σ

= g(y, t), UN|y∈Γ = 0,

(
∂Ä̃

∂t
+BÄ̃

∂UDN

∂¿◦

)∣∣∣∣
y∈Γ

= 0,

Ä̃
∣∣
y∈Γ, t=0

= 0.

(4.7)

where

Amp :=

d∑

k=1

J
mk

J
pk, m, p = 1, . . . , d,

are the entries of the matrix A := J
−1

J
−¦, and

BÄ̃ :=
(
N · J−¦¿◦

)−1

(¿◦ · A¿◦) . (4.8)
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We note here that
∂UDN

∂¿◦
> 0 is consistent with Assumption 3.1. The detailed computation of system (4.7) is

provided in Appendix C.
For convenience of later use, we will write problem (4.7) in compact form. For this purpose, for Ä ∈ C2+³(Γ),

we define the following linear and bounded operators:





LÄ̃ : C2+³(Ω) → C³(Ω), LÄ̃ =

d∑

m,p=1

Amp

∂2

∂ym∂yp
,

KÄ̃ : C2+³(Ω) → C1+³(Ω), KÄ̃ = −
d∑

j,k=1

NkJ
jk ∂

∂yj
,

MÄ̃ : C2+³(Ω) → C1+³(Ω),

MÄ̃ = −
d∑

p=1




d∑

j,k,m,q=1

J
km

J
pj
J
qm

(
∂Nj

∂yq

∂Ä̃

∂yk
+
∂Nj

∂yk

∂Ä̃

∂yq
+

∂2Nj

∂yk∂yq
Ä̃

)
 ∂

∂yp
.

(4.9)

The main equations in system (4.7) can then be written as follows

LÄ̃UD +KÄ̃UDLÄ̃Ä̃+MÄ̃UD = 0 and LÄ̃UN +KÄ̃UNLÄ̃Ä̃+MÄ̃UN = 0. (4.10)

We note here that MÄ̃ ≡ 0 when Ä̃ ≡ 0.

Lemma 4.3. The following regularities hold:

{
[Ä 7→ LÄ̃] ∈ CÉ(C2+³(Γ),B(C2+³(Ω), C³(Ω))),

[Ä 7→ KÄ̃], [Ä 7→ MÄ̃] ∈ CÉ(C2+³(Γ),B(C2+³(Ω), C1+³(Ω))).
(4.11)

Proof. We will only prove our claim that

[Ä 7→ LÄ̃] ∈ CÉ(C2+³(Γ),B(C2+³(Ω), C³(Ω))). (4.12)

The other two results can be proven in a similar fashion.
We let Ä ∈ C2+³(Γ). In view of (4.2) and (4.4), we define

Ä̃(y) := EÄ(y), y ∈ Γ, where E ∈ B(C2+³(Γ);C2+³(Ω)), (4.13)

and such that

−∆Ä̃ = 0, y ∈ Ω, Ä̃|y∈Γ = Ä, Ä̃|y∈Σ = 0. (4.14)

We claim that

LÄ̃ ∈ B(C2+³(Ω), C³(Ω)). (4.15)

Let us note that the following regularities hold:

�

[
Ä̃ 7→

∂Ä̃

∂ym

]
∈ B(C2+³(Ω), C1+³(Ω)), for all m = 1, . . . , d;
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� Dmp :=
∂2

∂ym∂yp

∈ B(C2+³(Ω), C³(Ω)), for all m, p = 1, . . . , d;

� Amp ∈ CÉ(C2+³(Ω));C1+³(Ω))), for all m, p = 1, . . . , d;
� for u ∈ C2+³(Ω)), we have Λmp ∈ CÉ(C³(Ω));C³(Ω))), for all m, p = 1, . . . , d, where ΛÄ

mp(x) :=

Amp(Ä̃)(x)u(x), x ∈ Ω.

The latter regularity result follows from the fact that the following map

F : C³(Ω)× C³(Ω) −→ C³(Ω), (φ, È) 7−→ φÈ,

is analytic (cf. [42], p. 53); i.e. F ∈ CÉ(C³(Ω) × C³(Ω);C³(Ω))). Hence, using ΛÄ
mp(x) = F (Amp(Ä̃), u), we

establish the final regularity result mentioned above. Consequently, by composing the given maps, we validate
(4.15). To complete the proof, we use the composition of the map Ä 7→ Ä̃ (defined through the extension operator
E) and the operator LÄ̃, which allows us to confirm our claim (4.12).

Finally, our main result, stated in Theorem 3.2, follows from the next result, which asserts the local-in-time
solvability of (4.7).

Theorem 4.4. Let Assumption 3.1 be satisfied. Specifically,

∂

∂¿◦
(UDN(y, 0)) > 0, y ∈ Γ. (A3)

Then, problem (4.7) has a unique solution (Ä̃(y, t), UD(y, t), UN(y, t)), y ∈ Ω, that is defined for t ∈ I⋆ with
t⋆ < T , and such that the following regularities hold:

Ä̃ ∈ C0(I⋆;C2+³(Ω)), Ä̃t
∣∣
Γ
∈ C0(I⋆;C1+³(Γ)), UD(y, t), UN(y, t) ∈ C0(I⋆;C2+³(Ω)).

Moreover, the following estimate holds

∥UD,N∥
(2+³)

Ω; [0,t]
+ |||Ä̃|||(2+³)

Ω,Γ; [0,t]
⩽ c|||(f, g)|||(2+³)

Σ; [0,t] ⩽ c |||(f, g)|||, (4.16)

for some constant c > 0, for all t ∈ I⋆.

5. Regularity of solutions on a fixed domain

Our immediate aim is to distinguish between the linear components of the main conditions and the dynamic
boundary conditions in the nonlinear problem arising from (4.7). The complete formulation of this nonlinear
problem will be formally presented in Section 6, specifically in equation (6.1). This formulation is derived by
introducing two new variables that represent the difference between the solutions of two states: one corresponding
to the transformed problem on a varied domain (cf. (4.7)) and the other corresponding to the problem on a
fixed domain, which will be introduced in this section. Part of the analysis requires understanding the unique
solvability of a pure Dirichlet problem and a mixed Dirichlet-Neumann problem, as well as obtaining estimates
for the solutions of such equations. In this section, we lay the groundwork for these preparations.

Let u0D := uD(x, 0), f0 := f(·, 0) ∈ C2+³(Σ), and consider the pure Dirichlet problem

∆u0D = 0 in Ω, u0D = f0 on Σ, u0D = 0 on Γ. (5.1)

The solvability of (5.1) in the space Ck+³(Ω) (Ω a bounded region) is well-known and is given, for instance, in
[49], Thm. 1.1, p. 107 or [50], Chap. V.36, I, p. 166 (see also Kellogg’s Thm. [51, 52]). In particular, we have
the following result.
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Lemma 5.1. For any f0 ∈ C2+³(Σ), there exists a unique solution u0
D
∈ C2+³(Ω) to (5.1).

Proof. See, for example, [42], Theorem 6.14, p. 107.

Remark 5.2. It is worth to emphasize here that, for k = 0, 1, . . . and ³ ∈ (0, 1), the space Ck+³(Ω) essentially
coincides with Ck+³(Ω) for any open (bounded) set Ω ¢ R

d [53], Proposition 1.1.7, p. 6.

Now, let u0N := uN(x, 0), g0 := g(·, 0) ∈ C1+³(Σ), and consider the following mixed Dirichlet-Neumann
boundary value problem

∆u0N = 0 in Ω,
∂u0N
∂¿◦

= g0 on Σ, u0N = 0 on Γ. (5.2)

In the next proposition, we aim to prove that u0N ∈ C2+³(Ω), provided that g0 ∈ C1+³(Σ).

Lemma 5.3. Let Ω ¢ R
d be an annular open bounded set with C2+³ boundary ∂Ω = Σ ∪ Γ and g0 ∈ C1+³(Σ).

Then Equation (5.2) has the unique solution u0
N
∈ C2+³(Ω).

Proof. Let us choose an annular connected open bounded set Ω1 with exterior boundary Γ and interior boundary
S of class C0,³ ∩ C∞. We denote by Ω2 the annular open bounded set contained in Ω whose boundary are S
and Σ. Obviously, Ω1 ∩Ω2 = ∅ and Ω1 ∪Ω2 = Ω. We then consider the following pure Dirichlet boundary value
problem

∆V = 0 in Ω1, V = u0N on S, V = 0 on Γ. (5.3)

By [45], Theorem 3, p. 316, we know that u0N ∈ C∞(Ω), in particular, u0N ∈ C2(Ω). Hence, u0N ∈ C2+³(Ω1) by
[42], Theorem 4.6, p. 60. This implies that the above problem admits a unique solution w ∈ C2+³(Ω1) because of
[42], Theorem 6.8, p. 100 (see also [49], Theorem 1.3, p. 107). Since u0N

∣∣
Ω1

also solves (5.3), then by uniqueness,

we have w ≡ u0N
∣∣
Ω1

.
Let us next consider the following boundary value problem:

∆v − v = −u0N in Ω2,
∂v

∂¿◦
= g0 on Σ,

∂v

∂¿◦
=
∂u0N
∂¿◦

on S. (5.4)

Since u0N ∈ C2+³(Ω2),∇u0N ·¿ ∈ C1+³(S), and g0 ∈ C1+³(Σ), then by [54], Theorem 5.2, we see that (5.4) admits
a unique solution v ∈ C2+³(Ω2). Because u

0
N

∣∣
Ω2

also solves (5.4), uniqueness then implies that v ≡ u0N
∣∣
Ω2

. This

concludes that Equation (5.2) admits a unique solution in C2+³(Ω).

Let U0
D := U0

D(y, t), y ∈ Ω, t > 0, and f(·, t) ∈ C2+³(Σ), for all t ⩾ 0. Then, it can be checked that the
boundary value problem

∆U0
D = 0, y ∈ Ω, U0

D

∣∣
y∈Σ

= f(y, t), U0
D

∣∣
y∈Γ

= 0, (5.5)

admits a unique solution U0
D ∈ C0([0, T ];C2+³(Ω)), for all t ⩾ 0, where t is a parameter appearing in the

boundary condition on Σ. The solution to (5.5) satisfies the inequality condition

max
0⩽Ä⩽t

∣∣U0
D(·, Ä)

∣∣(2+³)

Ω
⩽ c(d,Ω, ³) max

0⩽Ä⩽t
|f(·, Ä)|(2+³)

Σ , (5.6)
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Similarly, for U0
N := U0

N(y, t), y ∈ Ω, t > 0, and g(·, t) ∈ C1+³(Σ) for all t ⩾ 0, the boundary value problem

∆U0
N = 0, y ∈ Ω,

∂U0
N

∂¿◦

∣∣∣∣
y∈Σ

= g(y, t), U0
N

∣∣
y∈Γ

= 0, (5.7)

admits a unique solution U0
N ∈ C0([0, T ];C2+³(Ω)). Again, t is a parameter appearing in the boundary condition

on Σ.
Next, we want to prove an estimate for

∣∣U0
N

∣∣Ω(2+³)
in terms of |g|Σ(1+³). More precisely, we aim to establish

the validity of the following proposition.

Proposition 5.4. Let ³ ∈ (0, 1) and Ω ¢ R
d be an open, bounded, and connected set with C2+³ regularity and

g ∈ C0([0, T ];C1+³(Σ)) be given. If U0
N
∈ C0([0, T ];C2+³(Ω)) is a solution to (5.7), then we have the following

estimate

max
0⩽Ä⩽t

∣∣U0
N
(·, Ä)

∣∣(2+³)

Ω
⩽ c(d,Ω, ³) max

0⩽Ä⩽t
|g(·, Ä)|(1+³)

Σ , (5.8)

where c(d,Ω, ³) > 0 is a constant that depends only on the dimension d, the set Ω, and the number ³ ∈ (0, 1).

Proof. Let g ∈ C0([0, T ];C1+³(Σ)), for some ³ ∈ (0, 1), t ∈ [0, T ], and Ä < t be fixed. Note that it is enough to

prove that
∣∣U0

N

∣∣(2+³)

Ω
⩽ c |g|(1+³)

Σ , for some constant c > 0. In the proof, we abuse some notations (i.e., we write

φ instead of φ(À, Ä) =: φ(À) as Ä is fixed for the functions involved here) and assume that U0
N ∈ C2+³(Ω) is a

solution to (5.7). We consider a cutoff function ϕ ∈ C∞(Rd) such that ϕ = 1 near Σ and ϕ = 0 near Γ. Next,
we define the functions vN := ϕU0

N and vD := (1− ϕ)U0
N such that

∆vN = hϕ in Ω,
∂vN
∂¿◦

= g on ∈ Σ,
∂vN
∂¿◦

= 0 on Γ;

∆vD = −hϕ in Ω, vD = 0 on ∈ Σ, vD = 0 on Γ,

where hϕ := (∆ϕ)U0
N+∇ϕ ·∇U0

N. By these constructions, notice that U0
N = vN+vD. Now, by [42], Theorem 6.30,

equation (6.77), p. 127, we immediately get the following estimates

|vN|
(2+³)

Ω
⩽ c0N(d,Ω, ³)

(
|vN|

(0)

Ω
+ |g|(1+³)

Σ + |hϕ|
(0+³)

Ω

)
⩽ c1N(d,Ω, ³)

(
|g|(1+³)

Σ +
∣∣U0

N

∣∣(1+³)

Ω

)
,

|vD|
(2+³)

Ω
⩽ c0D(d,Ω, ³) |hϕ|

(0+³)

Ω
⩽ c1D(d,Ω, ³)

∣∣U0
N

∣∣(0+³)

Ω
,

where c0N, c1N, c0D, c1D > 0. These inequalities clearly implies that

∣∣U0
N

∣∣(2+³)

Ω
⩽ c0(d,Ω, ³)

(∣∣U0
N

∣∣(1+³)

Ω
+ |g|(1+³)

Σ

)
.

The quantity
∣∣U0

N

∣∣(1+³)

Ω
can be estimated as follows (see, e.g., [42], Lem. 6.35, p. 135):

∣∣U0
N

∣∣(1+³)

Ω
⩽ c1(ε,Ω)

∣∣U0
N

∣∣(0)
Ω

+ ε
∣∣U0

N

∣∣(2+³)

Ω
,

for some constant c1(ε,Ω) > 0. Using the above interpolation inequality, we get

∣∣U0
N

∣∣(2+³)

Ω
⩽ c2(n,Ω, ³, ε)

(∣∣U0
N

∣∣(0)
Ω

+ |g|(1+³)
Σ

)
, (5.9)
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for some constant c2(n,Ω, ³, ε) > 0, and we want to prove that we actually have (5.8). To do this, we mimic an
argument in showing inequalities between two equivalent norms which is also similar to a proof of Poincaré’s
inequality via a contradiction (see, e.g., [45], Proof of Theorem 1, pp. 275–276 or [55], Lem. 49.30, p. 1037).
Analogous proof can also be found in [56], Proof of Theorem 3.28, pp. 194–195.

The argument to prove (5.8) will proceed by contradiction. So, let us suppose that inequality (5.8) does not
hold. This means that we can find a sequence {U0

Nk}k∈N ¢ C2+³(Ω) and {gk} ¢ C1+³(Σ) such that

∆U0
Nk = 0 in Ω,

∂U0
Nk

∂¿◦
= gk on ∈ Σ, U0

Nk = 0 on Γ,

and, for each k ∈ N, U0
Nk satisfies

∣∣U0
Nk

∣∣(2+³)

Ω
= 1 and

∣∣U0
Nk

∣∣(2+³)

Ω
⩾ k |gk|

(1+³)
Σ .

Letting k → ∞, we get gk → 0 in C1+³(Σ) because 1
k

∣∣U0
Nk

∣∣(2+³)

Ω
→ 0. By the first condition above, we see that

for every multi-index ´, with |´| = 0, 1, 2, the sequence {D´U0
Nk} is uniformly bounded in C0(Ω). Consequently,

the sequence is equicontinuous because the inequality

∣∣D´U0
Nk(À1)−D´U0

Nk(À2)
∣∣ ⩽ |À1 − À2|

³
, for all À1, À2 ∈ Ω, and all |´| = 2,

actually implies that

∣∣D´U0
Nk(À1)−D´U0

Nk(À2)
∣∣ ⩽ m0 |À1 − À2|

³
, for all À1, À2 ∈ Ω, and all |´| = 0, 1,

for some constant m0 = m0(Ω) > 0, according to [53], Proposition 1.5.2, p. 34; Theorem 4.4.1, p. 109; or
Theorem 4.4.2, p. 120. By iteratively applying the Arzelà-Ascoli Theorem (see, e.g., [45], Sect. C.7, pp. 634–635
or [57], Thm. 2.86, p. 48), we obtain a subsequence (which we denote with the same notation) such that

U0
Nk → U0

N in C0(Ω), and D´U0
Nk → D´U0

N in C0(Ω), for all |´| = 1, 2,

which implies that U0
Nk → U0

N in C2(Ω). Consequently, we arrive at the following limits

∆U0
N = lim

k→∞
∆U0

Nk = 0,
∂

∂¿◦
U0
N = lim

k→∞

∂

∂¿◦
U0
Nk = lim

k→∞
gk = 0,

from which we obtain

∆U0
N = 0 in Ω,

∂U0
N

∂¿◦
= 0 on ∈ Σ, U0

N = 0 on Γ.

This implies that U0
N ≡ 0. Comparing this with the first estimate (8.10) yields a contradiction because the

subsequence {U0
Nk}k∈N satisfies

1 =
∣∣U0

Nk

∣∣(2+³)

Ω
⩽ c0(d,Ω, ³)

[∣∣U0
Nk

∣∣(0)
Ω

+ |gk|
(1+³)
Σ

]
−→ 0.

Thus, inequality (5.8) holds true. Taking the supremum of Ä < t ∈ [0, T ] yields the desired estimate.
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6. The nonlinear problem

In this section, we distinguish the linear part of the main and dynamic boundary conditions of the nonlinear
problem (6.1). To do this, we compute the variations of the operators given in (4.9) with respect to Ä̃. We
introduce the new unknown functions

VD = UD − U0
D and VN = UN − U0

N.

Hence, using the equations in (4.10), we may write (4.7) in the following form





LÄ̃VD + (LÄ̃ −∆)U0
D + (KÄ̃VD +KÄ̃U

0
D)LÄ̃Ä̃+ (MÄ̃VD +MÄ̃U

0
D) = 0, y ∈ Ω, t > 0,

VD|y∈Σ = 0, VD|y∈Γ = 0,

LÄ̃VN + (LÄ̃ −∆)U0
N + (KÄ̃VN +KÄ̃U

0
N)LÄ̃Ä̃+ (MÄ̃VN +MÄ̃U

0
N) = 0, y ∈ Ω, t > 0,

∂VN
∂¿◦

∣∣∣∣
y∈Σ

= 0, VN|y∈Γ = 0,

(
∂Ä̃

∂t
+BÄ̃

∂VDN

∂¿◦
+BÄ̃

∂U0
DN

∂¿◦

)∣∣∣∣
y∈Γ

= 0,

Ä̃
∣∣
y∈Γ, t=0

= 0,

(6.1)

where Ä̃ = Ä̃(y, t) = EÄ(y, t), E being the operator (4.3), satisfies (4.4).
In order to identify the linear part of the main equations and of the dynamic boundary condition in (6.1),

we introduce the variation

¶F0 =
d

d¼
F¼Ä̃

∣∣∣∣
¼=0

,

of the operator F ∈ {L,K,M} which depends on Ä̃. Note that the map [Ä̃ 7→ FÄ̃], where FÄ̃ ∈ {LÄ̃,KÄ̃,MÄ̃},
are analytic; see (4.11). Also, we note of the following identities:

L0Vi = ∆Vi, M0Vi = 0, K0Vi = N · ∇Vi, B0 =
1

N · ¿◦
, i = D,N.

Because M0 ≡ 0 and L0Ä̃ ≡ 0, then for i = D,N, we can write the main equations in (6.1) posed over Ω in the
following way:

L0Vi + ¶L0Ui + ¶M0Ui +K0UiL0Ä̃

= −(LÄ̃ − L0)Vi − (LÄ̃ − L0 − ¶L0)Ui

− (MÄ̃ −M0)Vi − (MÄ̃ −M0 − ¶M0)Ui,

− (KÄ̃Vi +KÄ̃Ui)(LÄ̃Ä̃− L0Ä̃)

=: N [Vi, Ä̃].
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On the other hand, the dynamic boundary condition on Γ in (6.1) can be written as follows:

∂Ä̃

∂t
+B0

∂VDN

∂¿◦
+ ¶B0

∂U0
DN

∂¿◦

∣∣∣∣
Γ

= −

[
(BÄ̃ −B0 − ¶B0)

∂U0
DN

∂¿◦
+ (BÄ̃ −B0)

∂VDN

∂¿◦
+B0

∂U0
DN

∂¿◦

]

=: B[VD, VN, Ä̃]−B0
∂U0

DN

∂¿◦
.

(6.2)

The computations of the variations ¶L0, ¶K0, ¶M0, and ¶B0, which consists of the variations of ¶B0 and/or

¶A(0), can be done without difficulty (see Appendix D). In fact, it can be checked, for instance, that

¶L0Ui =

d∑

m,p=1

¶A(0)
mp

∂2Ui

∂ym∂yp
, (i = D,N), ¶A(0)

mp = −
d∑

m=1

(
∂(NmÄ̃)

∂yp
+
∂(NpÄ̃)

∂ym

)
,

¶B0 = −2¿◦ · ∇Ä̃−
N · ∇Ä̃

N · ¿◦
+ h(N, ∂yN)Ä̃,

where

h(N, ∂yN) := −
2¿◦ · (∇¹N)¦¿◦

N · ¿◦
+

1

(N · ¿◦)
2

(
¿◦ · (∇¹N)¦N

)
.

Note that ¶B0 is well-defined because of Assumption (A2).
Observe from the above expressions that the variations ¶L0 and ¶B0 only consist of first-order derivatives of

Ä̃. Because Ä̃ is satisfies the Laplace equation (4.4), the linear part of the first and fourth equation in problem
(6.1) do not contain the second-order partial derivatives of the function Ä̃. Therefore, we are able to reduce the
problem as follows:





∆VD + qD · ∇Ä̃+QDÄ̃ = N [VD, Ä̃], y ∈ Ω, t > 0,

VD|y∈Σ = 0, VD|y∈Γ = 0,

∆VN + qN · ∇Ä̃+QNÄ̃ = N [VN, Ä̃], y ∈ Ω, t > 0,

∂VN
∂¿◦

∣∣∣∣
y∈Σ

= 0, VN|y∈Γ = 0,

(
∂Ä̃

∂t
+ b§

∂Ä̃

∂¿◦
+ b∥ · ∇ΓÄ̃+ hÄ̃+B0

∂VDN

∂¿◦

)∣∣∣∣
y∈Γ

= B[VD, VN, Ä̃]−B0
∂U0

DN

∂¿◦
,

Ä̃
∣∣
y∈Γ, t=0

= 0,

(6.3)

where h := h(N, ∂yN). Here, B and N are the nonlinear terms. The functions qD and QD depend on U0
D, N,

and their derivatives, while the functions qN and QN depend on U0
N, N, and their derivatives. The functions b§

and b∥ depend on N and its derivatives.

At this point, it is important to know the sign of the coefficient b§ of
∂Ä̃

∂¿◦
appearing in the boundary equation

on Γ (cf. (6.2)). By examining the explicit form of ¶B0, (A2), and (A3), we deduce that b§ < 0.
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7. The linear problem

Our goal here is to prove the existence of classical solution to a linear problem corresponding to (6.3). That
is, we study the following system of partial differential equations:





∆wD + qD · ∇¹ +QD¹ = FD(y, t), y ∈ Ω, t > 0,

wD|y∈Σ = 0, wD|y∈Γ = 0,

∆wN + qN · ∇¹ +QN¹ = FN(y, t), y ∈ Ω, t > 0,

∂wN

∂¿◦

∣∣∣∣
y∈Σ

= 0, wN|y∈Γ = 0,

(
∂¹

∂t
+ b§

∂¹

∂¿◦
+ b∥ · ∇Γ¹ + h¹ +B0

∂wDN

∂¿◦

)∣∣∣∣
y∈Γ

= È(y, t),

¹
∣∣
y∈Γ, t=0

= 0,

(7.1)

where ¹ = ¹(y, t), for t > 0, is harmonic in y ∈ Ω and vanishes on Σ (i.e., ¹
∣∣
Σ
= 0).

In connection with the above problem, we will prove the following result under the essential condition b§ < 0
(cf. [58], Eq. (3.4)). If this condition is violated, the moving boundary problem (1.1) may become ill-posed; that
is, it may fail to admit a classical solution; cf. [43], Theorem 2.1 for a related issue in Hele–Shaw flows (see also
[59] and [16], Rem. 5.3).

Theorem 7.1. Let Σ,Γ ∈ C2+³ for some ³ ∈ (0, 1), and suppose that the coefficients in (7.1) satisfy the
following conditions





b§, h ∈ C0([0, T ];C1+³(Γ)),

b∥ ∈ C0([0, T ];C1+³(Γ)d),

QD, QN ∈ C0([0, T ];C0+³(Ω)),

q
D
, q

N
∈ C0([0, T ];C0+³(Ω)d),

b§ < 0.

For any FD, FN ∈ C0([0, T ];C0+³(Ω)) and È ∈ C0([0, T ];C1+³(Γ)), system (7.1) has a unique solution

wD, wN, ¹ ∈ C0([0, T ];C2+³(Ω))

with ¹ having additional smoothness with respect to t on the surface Γ. That is, ¹t ∈ C0([0, T ];C1+³(Γ)). In
addition, the following estimate hold:

∥wD,N∥
(2+³)

Ω; [0,t]
+ ∥¹∥(2+³)

Ω; [0,t]
⩽ c

(
∥FD,N∥

(³)

Ω; [0,t]
+ |È|(1+³)

Γ; [0,t]

)
, (7.2)

for some constant c > 0.

To solve system (7.1), we will apply the method of successive approximations (see, e.g., [42], p. 74 or [67],
Sect. 1.1.1, p. 124). At each step, three problems are solved: the first two are elliptic equations whose coefficients
and unknown functions depend on time like a parameter (this corresponds to the pure Dirichlet problem and
mixed Dirichlet-Neumann problem in (7.1)), and the problem for an elliptic equation with the time-derivative
in the boundary condition (this corresponds to the last two equations in (7.1)). In the next several lines, we
focus on the existence of solution to the last mentioned problem.
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Let Ω ¢ R
d be an open, bounded, connected set with boundary ∂Ω = Γ ∪Σ, where Γ,Σ ∈ C2+³ are disjoint

surfaces, and Γ is interior to Σ. Let us consider and examine the following system:





−∆Θ = 0, y ∈ Ω, t > 0, Θ|y∈Σ = È2, Θ
∣∣
y∈Γ, t=0

= 0,
(
∂Θ

∂t
+ b · ∇Θ+ »Θ

)∣∣∣∣
y∈Γ

= È1.
(7.3)

Lemma 7.2. Let the coefficients in (7.3) satisfy the following conditions

bi (i = 1, . . . , d), » ∈ C0([0, T ];C1+³(Γ)), b · ¿ < −b0 < 0, (b = (b1, . . . , bd)
¦),

for some constant b0 > 0. For any given boundary data

È1 ∈ C0([0, T ];C1+³(Γ)) and È2 ∈ C0([0, T ];C2+³(Σ)),

there exists a unique solution Θ ∈ C0([0, T ];C2+³(Ω)) to problem (7.3), and such that the following estimate
hold

|||Θ|||(2+³)

Ω,Γ; [0,t]
⩽ c

(
|È1|

(1+³)
Γ; [0,t] + |È2|

(2+³)
Σ; [0,t]

)
, t ⩽ T, (7.4)

where the constant c > 0 depends on the coefficients in the boundary condition.

Proof. The proof is given in Appendix E.3.

We are now in the position to prove Theorem 7.1.

Proof of Theorem 7.1. We first confirm estimate (7.2). To this end, we write the main equations in (7.1) in the
form

{
∆wD = HD ≡ FD − qD · ∇¹ −QD¹,

∆wN = HN ≡ FN − qN · ∇¹ −QN¹.
(7.5)

We consider the Poisson equation above with the homogeneous Dirichlet condition on the whole boundary ∂Ω.
According to a classical result concerning the pure Dirichlet problem (cf. [49], Eq. (1.11), p. 110), the following

estimate holds: |wD|
(2+³)

Ω; [0,t]
⩽ c

(
|HD|

(³)

Ω; [0,t]
+maxΩ |wD|

)
, for some constant c > 0. We can disregard the term

maxΩ |wD| because, as we will verify later in the proof, the Poisson problem has a unique solution (cf. [49],
p. 110). Hence, we get the bound

|wD|
(2+³)

Ω; [0,t]
⩽ cD

(
|¹|(1+³)

Ω; [0,t]
+ |¹|(³)

Ω; [0,t]
+ |FD|

(³)

Ω; [0,t]

)
, (7.6)

where cD > 0 is a constant that depends only on QD and qD.

For the second equation in (7.5), we consider the boundary problem for the Poisson equation with homoge-
nous Neumann condition on Σ and a homogenous Dirichlet condition on Γ. Using the result from [56],
Theorem 3.28(ii), p. 194, we have the estimate

|wN|
(2+³)

Ω; [0,t]
⩽ c |HN|

(³)

Ω; [0,t]
⩽ cN

(
|¹|(1+³)

Ω; [0,t]
+ |¹|(³)

Ω; [0,t]
+ |FN|

(³)

Ω; [0,t]

)
, (7.7)

for some constant c, cN > 0 that depends only on QN and qN.
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Next, we consider the last two equations in system (7.1) and apply estimate (7.4) with

È1 = È −B0
∂wDN

∂¿◦

to obtain

|||¹|||(2+³)

Ω,Γ; [0,t]
⩽ c |È1|

(1+³)
Γ; [0,t] ⩽ c

(
|È|(1+³)

Γ; [0,t] + ∥wD,N∥
(2+³)
Γ; [0,t]

)
,

for some constant c > 0. Combining this estimate with (7.6) and (7.7), we get a new estimate

|||¹|||(2+³)

Ω,Γ; [0,t]
⩽ c

(
|È|(1+³)

Γ; [0,t] + |¹|(1+³)

Ω; [0,t]
+ |¹|(³)

Ω; [0,t]
+ ∥FD,N∥

(³)

Ω; [0,t]

)
.

It only remains to estimate the sum |¹|(1+³)

Ω; [0,t]
+ |¹|(³)

Ω; [0,t]
. To get rid of these terms on the right hand side of the

above inequality, we simply apply the same argument used in the latter part of the proof of Lemma 7.2. That
is, we utilize the interpolation inequalities (E.4), apply the maximum principle (since ¹ is harmonic), and then
use Grönwall lemma, noting that ¹(y, t) = 0 for y ∈ Γ at t = 0, to eventually get the desired estimate (7.2).
This ends the verification of estimate (7.2).

We next establish the solvability of system (7.1). Our approach is to apply the method of successive

approximation (see, e.g., [60]). To this end, the initial approximation (w
(0)
D , w

(0)
N , ¹(0)) is found by solving the

problem

Q(w
(0)
D , w

(0)
N , ¹(0))(y, t) = (FD, FN)(y, t), y ∈ Ω, t > 0, (7.8)

where, for n = 0, 1, 2, . . .,

Q(w
(n)
D , w

(n)
N , ¹(n))(y, t) = (ΨD,ΨN)(y, t), y ∈ Ω, t > 0,

⇕





∆w
(n)
D = ΨD(y, t), y ∈ Ω, t > 0, w

(n)
D

∣∣∣
y∈Σ

= 0, w
(n)
D

∣∣∣
y∈Γ

= 0,

∆w
(n)
N = ΨN(y, t), y ∈ Ω, t > 0,

∂w
(n)
N

∂¿◦

∣∣∣∣∣
y∈Σ

= 0, w
(n)
N

∣∣∣
y∈Γ

= 0,

∆¹(n) = 0, y ∈ Ω, t > 0, ¹(n)
∣∣∣
y∈Σ

= 0, ¹(n)
∣∣
y∈Γ, t=0

= 0,

(
∂¹(n)

∂t
+ b§

∂¹(n)

∂¿◦
+ b∥ · ∇Γ¹

(n) + h¹(n)
)∣∣∣∣

y∈Γ

= È(y, t)−B0
∂w

(n)
DN

∂¿◦
,

(7.9)

for n = 0, 1, . . ., where (w
(n)
D , w

(n)
N , ¹(n)) are the unknown triplet, and (ΨD,ΨN) are a pair of given functions.

Then, we define the approximants (w
(m+1)
D , w

(m+1)
N , ¹(m+1)), for m = 0, 1, . . ., as solution to (7.9) with n =

m+ 1; that is, (w
(m+1)
D , w

(m+1)
N , ¹(m+1)) solves the equation

Q(w
(m+1)
D , w

(m+1)
N , ¹(m+1))(y, t) = (H

(m)
D , H

(m)
N )(y, t), y ∈ Ω, t > 0, (7.10)
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where

H
(m+1)
i ≡ Fi − qi · ∇¹

(m) −Qi¹
(m), i = D,N.

The solvability of the Poisson problem with pure Dirichlet boundary condition is well-known (see, e.g., [42],

Thm. 4.3, p. 56)5. Meanwhile, because w
(m+1)
N (y, t) vanishes for y ∈ Γ, t > 0, for all m = 0, 1, . . ., then the

Poisson problem with mixed Dirichlet-Neumann boundary condition is also guaranteed to be solvable (see [56],
Chap. 3). Together with Theorem 7.1 and Lemma 7.2, these allow us to infer the unique solvability of (7.10)
for all t ∈ [0, T ] and for all m = 0, 1, . . .. In addition, the solutions satisfy the following estimates6

∣∣∣w(m+1)
i

∣∣∣
(2+³)

Ω; [0,t]
⩽ cmi

(
|Fi|

(³)

Ω; [0,t]
+
∣∣∣¹(m)

∣∣∣
(1+³)

Ω; [0,t]
+
∣∣∣¹(m)

∣∣∣
(³)

Ω; [0,t]

)
, i = D,N,

∣∣∣
∣∣∣
∣∣∣¹(m+1)

∣∣∣
∣∣∣
∣∣∣
(2+³)

Ω,Γ; [0,t]
⩽ c

(
|È|(1+³)

Γ; [0,t] +
∥∥∥w(m+1)

D,N

∥∥∥
(2+³)

Γ; [0,t]

)
,

for some constants cmi := cmD (Qi,qi) > 0, i = D,N, and c > 0.

We first estimate the term
∣∣¹(m)

∣∣(³)
Ω

via the interpolation inequality

[¹(m)]
(³)

Ω
⩽ ε4,m

∣∣∣¹(m)
∣∣∣
(1)

Ω
+ cε4,m

∣∣∣¹(m)
∣∣∣
(0)

Ω
,

and choose ε4,m > 0 small enough so that we can bound the terms above only by maxΩ
∣∣¹(m)

∣∣. Then, we argue
as in the latter part of the proof of Lemma 7.2, to write the estimates above as follows:

∣∣∣w(m+1)
i

∣∣∣
(2+³)

Ω; [0,t]
⩽ c̃mi

(
|Fi|

(³)

Ω; [0,t]
+
∣∣∣¹(m)

∣∣∣
(1+³)

Ω; [0,t]

)
, i = D,N,

∣∣∣
∣∣∣
∣∣∣¹(m+1)

∣∣∣
∣∣∣
∣∣∣
(2+³)

Ω,Γ; [0,t]
⩽ c̃

(
K(t) +

∣∣∣¹(m)
∣∣∣
(1+³)

Ω; [0,t]

)
,

for some constants c̃mi := c̃mi (Qi,qi) > 0, i = D,N, and c̃ > 0, where

K(t) := ∥FD,N∥
(³)

Ω; [0,t]
+ |È|(1+³)

Γ; [0,t] .

Moreover, the initial approximant (w
(0)
D , w

(0)
N , ¹(0)) satisfies the estimate

∥∥∥w(0)
D,N

∥∥∥
(2+³)

Ω; [0,t]
+
∥∥∥¹(0)

∥∥∥
(2+³)

Γ; [0,t]
⩽ c0K(t), (7.11)

for some constant c0 > 0.
Let us consider the differences

ϖ
(m+1)
i = w

(m+1)
i − w

(m)
i , i = D,N, and ϑ(m+1) = ¹(m+1) − ¹(m),

5Because Ω is bounded, its closure is compact.
6Note here that

∣

∣Θ(m)
∣

∣

(³)

Ω; [0,t]
= maxΩ

∣

∣Θ(m)
∣

∣+ [Θ(m)]
(³)

Ω
.
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where m = 0, 1, . . .. Clearly, for m = 0, 1, . . ., (ϖ
(m+1)
D , ϖ

(m+1)
N , ϑ(m+1)) satisfies





∆ϖ
(m+1)
D = −qD · ∇ϑ(m) −QDϑ

(m), y ∈ Ω, t > 0, ϖ
(m+1)
D

∣∣∣
y∈Σ

= 0, ϖ
(m+1)
D

∣∣∣
y∈Γ

= 0,

∆ϖ
(m+1)
N = −qN · ∇ϑ(m) −QNϑ

(m), y ∈ Ω, t > 0,
∂ϖ

(m+1)
N

∂¿◦

∣∣∣∣∣
y∈Σ

= 0, ϖ
(m+1)
N

∣∣∣
y∈Γ

= 0,

∆ϑ(m+1) = 0, y ∈ Ω, t > 0, ϑ(m+1)
∣∣∣
y∈Σ

= 0, ϑ(m+1)
∣∣∣
y∈Γ, t=0

= 0,

(
∂ϑ

∂t

(m+1)

+ b§
∂ϑ(m+1)

∂¿◦
+ b∥ · ∇Γϑ

(m+1) + hϑ(m+1)

)∣∣∣∣∣
y∈Γ

= −B0
∂ϖ

(m+1)
DN

∂¿◦
.

(7.12)

Following the previous estimations, it can be deduced that (ϖ
(m+1)
D , ϖ

(m+1)
N , ϑ(m+1)) satisfy the estimates

∥∥∥ϖ(m+1)
D,N

∥∥∥
(2+³)

Ω; [0,t]
+
∥∥∥ϑ(m+1)

∥∥∥
(2+³)

Γ; [0,t]
⩽ c

∣∣∣ϑ(m)
∣∣∣
(1+³)

Ω; [0,t]
, (7.13)

for some constants c > 0.
We estimate in the next few lines the right hand side of (7.13). For this purpose, we use the following property

of norms on Ck+³ (see, e.g., [49], Eq. (5.7), p. 403):

|u|(k−1+³)

Ω; [0,t]
⩽ ε6 |u|

(k+³)

Ω; [0,t]
+ cε6max

Ω
|u| , (k ⩾ 2).

Here, ε6 > 0 is an arbitrary small number and cε6 → ∞ as ε6 → 0. This, together with the fact that ϑ(m)(y, 0) =
0, for y ∈ Γ, for each m = 0, 1, . . ., leads us to the following estimate

∣∣∣ϑ(m)
∣∣∣
(1+³)

Ω; [0,t]
⩽

(
ε6

∣∣∣ϑ(m)
∣∣∣
(2+³)

Ω; [0,t]
+ cε6max

Ω

∣∣∣ϑ(m)
∣∣∣
)

⩽ ε6

∣∣∣ϑ(m)
∣∣∣
(2+³)

Ω; [0,t]
+ cε6

∫ t

0

max
Γ

∣∣∣∣
∂

∂s
ϑ(m)(·, s)

∣∣∣∣ ds.
(7.14)

For m = 0, it is easy to see that

∆ϖ
(1)
D = −qD · ∇¹(0) −QD¹

(0) and ∆ϖ
(1)
N = −qN · ∇¹(0) −QN¹

(0).

Hence, based on (7.14) and (E.11), we can get an estimate for (ϖ
(1)
D , ϖ

(1)
N , ϑ(1)) given by

∥∥∥ϖ(1)
D,N

∥∥∥
(2+³)

Ω; [0,t]
+
∥∥∥ϑ(1)

∥∥∥
(2+³)

Γ; [0,t]
⩽
˜
c
∣∣∣¹(0)

∣∣∣
(1+³)

Ω; [0,t]
⩽
˜
c1K(t),

for some constants
˜
c1 > 0.

Let us write Ãm(t) =
∑m

j=1 aj(t) where am(t) is given by

am(t) :=
∥∥∥ϖ(m)

D,N

∥∥∥
(2+³)

Ω; [0,t]
+
∥∥∥ϑ(m)

∥∥∥
(2+³)

Γ; [0,t]
.
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As shown previously, we have Ã1(t) = a1(t) ⩽
˜
c1K(t). So, from (7.13) and (7.14), with ε6 > 0 taken sufficiently

small, we can get a bound for the sum Ãm(t) =
∑m

j=1 aj(t) given as follows

Ãm(t) ⩽ c


K(t) +

m∑

j=1

∫ t

0

max
Γ

∣∣∣∣
∂

∂s
ϑ(j)(·, s)

∣∣∣∣ ds


 ,

for some constant c > 0 (independent of m), for all m = 2, 3, . . .. Applying Grönwall’s lemma, we deduce that
the sums Ãm(t), for m = 2, 3, . . ., are also uniformly bounded above by K(t). Thus, the series sums

∑m
j=1 aj(t)

actually converges. As a result, the sequence {(ϖ(m)
D , ϖ

(m)
N , ϑ(m))}m converges in the corresponding norm.

Passing to the limit as m→ ∞, we finally get the solution to system (7.1).
The Schauder method used above only proves the existence of a solution to system (7.1), which at the same

time satisfies the estimate (7.2). Thus, it remains only to address the issue of uniqueness of the solution. To do
this, we assume that two solutions, (ϖ1

D, ϖ
1
N, ϑ

1) and (ϖ2
D, ϖ

2
N, ϑ

2), to system (7.1) exist. Clearly, their difference
is also a solution to (7.1) with FD ≡ 0, FN ≡ 0, and È ≡ 0. Moreover, the estimate (7.2) remains valid, from
which we see that ϖ1

D −ϖ2
D ≡ 0, ϖ1

N −ϖ2
N ≡ 0, and ϑ1 − ϑ2 ≡ 0. This completes the proof of Lemma 7.2.

8. Proof of the main result

We are now in the position to prove Theorem 4.4 by adapting a technique used in [14], Section 5. Also, we
will verify at the end of the section our claims in Theorem 3.2 by using Theorem 4.4 and through the change
of variables. Regarding the latter objective, the interpolation inequalities stated in the lemma below will be
central to our proof.

Lemma 8.1. For some ³ ∈ (0, 1), let Ω ¢ R
d be an open, connected, bounded set of class C2+³ and u ∈

C2+³(Ω). Then, there exist a constant ε5 > 0 such that for any ε ∈ (0, ε5) the following inequalities hold

max
Ω

|∇u| ⩽ ε1+³ |u|(2+³)

Ω
+
c7
ε
max
Ω

|u| , (8.1)

|u|(2)
Ω

⩽ ε³ |u|(2+³)

Ω
+
c8
ε2

max
Ω

|u| , (8.2)

where c7 := c7(d,Ω, ε) and c8 := c8(d,Ω, ε) are positive constants that depend only on the dimension d, the
number ε, and Ω.

See Appendix E.4 for the proof.

Proof of Theorem 4.4. Let us now recall the nonlinear problem (6.3). We will prove its solvability by giving an
estimate for the nonlinear terms

N [Vi, Ä̃] = −(LÄ̃ − L0)Vi − (LÄ̃ − L0 − ¶L0)Ui

− (MÄ̃ −M0)Vi − (MÄ̃ −M0 − ¶M0)Ui,

− (KÄ̃Vi +KÄ̃Ui)(LÄ̃Ä̃− L0Ä̃) in Ω, i = D,N,

B[VD, VN, Ä̃] = −

[
(BÄ̃ −B0 − ¶B0)

∂U0
DN

∂¿◦
+ (BÄ̃ −B0)

∂VDN

∂¿◦

]
on Γ.
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We start by noting the following formulae:

(FÄ̃ −F0)V =

∫ 1

0

d

d¼
(F¼Ä̃V )d¼,

(FÄ̃ −F0 − ¶F0)V =

∫ 1

0

{
d

d¼
(F¼Ä̃V )−

d

dµ
(FµÄ̃V )

∣∣∣∣
µ=0

}
d¼ =

∫ 1

0

(1− µ)
d2

dµ2
(FµÄ̃V )d¼,

where the operator F ∈ {L,M,B}. Using these formulae, and by expanding the derivative d
d¼

(F (¼Ä̃, ¼∇Ä̃)),
it can be verified that (FÄ̃ − F0)V , F ≡ L, V ∈ {VD, VN}, can be expressed as a linear combination of terms
containing the products Ä̃Vyjyi

and Ä̃yk
Vyjyi

, for i, j, k = 1, 2 . . . , d. Here, for notational convenience, Ä̃yk
is used

to denote the partial derivative of Ä̃ with respect to the variable yk while Vyjyi
stands for the second-order

partial derivative of W with respect to the variables yi and yj . Meanwhile, (FÄ̃ −F0 − ¶F0)U0, F ∈ {L,M,B},
U0 ∈ {U0

D, U
0
N}, can be written as a linear combination of terms containing the products Ä̃2, Ä̃Ä̃yj

, and Ä̃yk
Ä̃yj

(cf. [14], p. 131). Note also that the terms involving FÄ̃ −F0, F ∈ {L,M,B}, share similar structures. Indeed,
the following expansions hold:

d

d¼
(F (¼Ä̃, ¼∇Ä̃)) = F ′

Ä̃(¼Ä̃,∇¼Ä̃)Ä̃+
d∑

j=1

F ′
Ä̃yj

(¼Ä̃,∇¼Ä̃)Ä̃yj
,

d2

dµ2
(F (µÄ̃, µ∇Ä̃)) = F ′′

Ä̃Ä̃(µÄ̃,∇µÄ̃)Ä̃
2 + 2

d∑

j=1

F ′′
Ä̃Ä̃yj

(µÄ̃,∇µÄ̃)Ä̃Ä̃yj
+

d∑

k,j=1

F ′′
Ä̃yk

Ä̃yj
(µÄ̃,∇µÄ̃)Ä̃yk

Ä̃yj
.

Hence, all the nonlinear terms of N [VN, Ä̃] and N [VD, Ä̃] consist of a multiplier term Ä̃ or a first-order partial
derivative Ä̃yj

. Moreover, they are linear with respect to the second-order derivatives of the unknowns VN and
VD. Thus, we only need to estimate the product of two functions, one of which contains Ä̃ or Ä̃yj

.
Let us estimate, for instance, the product Ä̃yk

Vyjyi
over the domain Ω, for i, j, k = 1, . . . , d, V ∈ {VD, VN}.

First, let us note that Ä̃ (see (4.13)) and V are C2+³ smooth on Ω. By using the interpolation inequality (8.1)
in Lemma E.3 we can get the estimate

∣∣Ä̃yk
Vyjyi

∣∣(³)
Ω

⩽ max
Ω

∣∣Ä̃yk

∣∣ |V |(2+³)

Ω
⩽

(
ε1+³ |Ä̃|(2+³)

Ω
+
c7
ε
max
Ω

|Ä̃|

)
|V |(2+³)

Ω
,

for some constant c7 := c7(d) > 0. Note that, in the above, we performed the estimate by first taking the max
norm of Ä̃yk

on Ω in order to apply (8.1). Alternatively, one could obtain the same estimate by first writing

∣∣Ä̃yk
Vyjyi

∣∣(³)
Ω

⩽
∣∣Ä̃yk

∣∣(0)
Ω

∣∣Vyjyi

∣∣(³)
Ω

+
∣∣Ä̃yk

∣∣(³)
Ω

∣∣Vyjyi

∣∣(0)
Ω
,

and then applying the equalities and interpolation inequalities given by Equations (E.2), (E.3), (E.7), and (E.8)
in Appendices E.3 and E.4.

Because Ä̃ vanishes on the exterior boundary Σ (see (4.14)), the maximum principle implies that maxΩ |Ä̃| ⩽
maxΓ |Ä̃|. Then, from the previous estimate, and in view of (E.5), we get

∣∣Ä̃yk
Vyjyi

∣∣(³)
Ω; [0,t]

⩽

(
ε1+³ |Ä̃|(2+³)

Ω; [0,t]
+
c7
ε

∫ t

0

max
Γ

|Ä̃s(·, s)| ds

)
|V |(2+³)

Ω; [0,t]

⩽ |V |(2+³)

Ω; [0,t]

(
ε1+³ |Ä̃|(2+³)

Ω; [0,t]
+
c7
ε
t |Ä̃Ä |

∞
Γ; [0,t]

)
.



38 J. F. T. RABAGO AND M. KIMURA

Letting ε = t
1

2+³ , we get the estimate

∣∣Ä̃yk
Vyjyi

∣∣(³)
Ω; [0,t]

⩽ c̃0t
¸ |V |(2+³)

Ω; [0,t]

(
|Ä̃|(2+³)

Ω; [0,t]
+ |Ä̃Ä |

∞
Γ; [0,t]

)
,

for some constant c̃0 > 0, where ¸ =
1 + ³

2 + ³
∈ (0, 1), for each function V ∈ {VD, VN}.

We next estimate the nonlinear terms in the boundary condition. Because these terms do not contain the
second-order derivatives of the unknown functions – in fact, on the boundary Γ, we only have linear combinations
of the products of Ä̃ and the unknown functions VD and VN, up to their first-order derivatives – we can estimate
them in the C0([0, T ];C1+³(Γ))-norm via the interpolation inequality (cf. (E.8))

|Ä̃|(2)Γ ⩽ ε³ |Ä̃|(2+³)
Γ +

c8
ε2

max
Γ

|Ä̃| , (8.3)

for some constant c8 := c8(d) > 0. The above estimates follows from (8.1), the maximum principle, and the fact
that Ä̃ vanishes on the fixed boundary Σ. The end estimate in the C0([0, T ];C1+³(Γ))-norm is achieved through
(8.3) in combination with the identities in (E.3) and of the first estimate in (E.4). Now, while keeping these
informations in mind, we employ the aforementioned estimates to obtain

|N [VD, Ä̃]|
(³)

Ω; [0,t]
+ |N [VN, Ä̃]|

(³)

Ω; [0,t]
+ |B[VD, VN, Ä̃]|

(1+³)
Γ

⩽ c̃1t
¸
(
|VD|

(2+³)

Ω; [0,t]
+ |VN|

(2+³)

Ω; [0,t]
+ |Ä̃|(2+³)

Ω; [0,t]

)(
|Ä̃|(2+³)

Ω; [0,t]
+ |Ä̃Ä |

∞
Γ; [0,t]

)

⩽ c̃1t
¸ (W[VD, VN, Ä̃](t))

2
,

(8.4)

where

W[VD, VN, Ä̃](t) := ∥VD,N∥
(2+³)

Ω; [0,t]
+ |||Ä̃|||(2+³)

Ω,Γ; [0,t]
,

for some constant c̃1 > 0 and ¸ > 0. Here, the notation W[VD, VN, Ä̃](t) is introduced for convenience of later
use.

The rest of the proof applies the method of successive approximation. To this end, we will need the following
estimate (cf. [14], Eq. (5.3), p. 131) in our argumentation further below. Let us consider the functions

VD1, VD2, VN1, VN2, Ä̃1, Ä̃2 ∈ C0([0, T ];C2+³(Ω)) such that Ä̃1t, Ä̃2t ∈ C0([0, T ];C1+³(Γ)).

Then, by estimate (8.4), we have

|N [VD2, Ä̃2]−N [VD1, Ä̃1]|
(³)

Ω; [0,t]
+ |N [VN2, Ä̃2]−N [VN1, Ä̃1]|

(³)

Ω; [0,t]

+ |B[VD2, VN2, Ä̃2]− B[VD1, VN1, Ä̃1]|
(1+³)
Γ

⩽ c̃2t
¸
{(

|VD2 − VD1|
(2+³)

Ω; [0,t]
+ |VN2 − VN1|

(2+³)

Ω; [0,t]
+ |Ä̃2 − Ä̃1|

(2+³)

Ω; [0,t]

)
×
∑

i=1,2

(
|Ä̃i|

(2+³)

Ω; [0,t]
+ |Ä̃iÄ |

∞
Γ; [0,t]

)

+
(
|Ä̃2 − Ä̃1|

(2+³)

Ω; [0,t]
+ |Ä̃2Ä − Ä̃1Ä |

∞
Γ; [0,t]

)
×
∑

i=1,2

(
|VDi|

(2+³)

Ω; [0,t]
+ |VNi|

(2+³)

Ω; [0,t]
+ |Ä̃i|

(2+³)

Ω; [0,t]

)}

⩽ c̃2t
¸ (W[WD,WN, ϱ̃](t)) {W[VD1, VN1, Ä̃1](t) +W[VD2, VN2, Ä̃2](t)} ,

(8.5)

where WD = VD2 − VD1, WN = VN2 − VN1, and ϱ̃ = Ä̃2 − Ä̃1, for some constant c̃2 > 0.
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Now, we consider the initial approximation (V
(0)
D , V

(0)
N , Ä̃(0)), which we assume satisfies the linear system

(7.1) with FD(y, t) = 0 and FN(y, t) = 0 for y ∈ Ω, t > 0, and È(y, t) = −B0
∂U0

DN

∂¿◦
for y ∈ Γ, t > 0. Meanwhile,

the approximants {(V (m+1)
D , V

(m+1)
N , Ä̃(m+1))}m, for m = 0, 1, . . ., are defined as solutions to the problem





∆V
(m+1)
D + qD · ∇Ä̃(m+1) +QDÄ̃

(m+1) = N [V
(m)
D , Ä̃(m)], y ∈ Ω, t > 0,

V
(m+1)
D

∣∣∣
y∈Σ

= 0, V
(m+1)
D

∣∣∣
y∈Γ

= 0,

∆V
(m+1)
N + qN · ∇Ä̃(m+1) +QNÄ̃

(m+1) = N [V
(m)
N , Ä̃(m)], y ∈ Ω, t > 0,

∂

∂¿◦
V

(m+1)
N

∣∣∣∣
y∈Σ

= 0, V
(m+1)
N

∣∣∣
y∈Γ

= 0,

∆Ä̃(m+1) = 0, y ∈ Ω, t > 0 Ä̃(m+1)
∣∣∣
y∈Σ

= 0,

(
∂Ä̃(m+1)

∂t
+ b§

∂Ä̃(m+1)

∂¿◦
+ b∥ · ∇ΓÄ̃

(m+1) + hÄ̃(m+1) +B0
∂V

(m+1)
DN

∂¿◦

)∣∣∣∣∣
y∈Γ

= B[V (m)
D , V

(m)
N , Ä̃(m)]−B0

∂U0
DN

∂¿◦
,

Ä̃(m+1)
∣∣
y∈Γ, t=0

= 0.

(8.6)

Our goal now is to show that all approximants are defined on some interval I⋆ and that the sequence of

sub-approximants {V (m)
D }, {V (m)

N }, and {Ä̃(m)} converge.

By virtue of Theorem 7.1, the initial approximation (V
(0)
D , V

(0)
N , Ä̃(0)) is defined for all t ∈ [0, T ] and satisfies

the estimate

W[V
(0)
D , V

(0)
N , Ä̃(0)](t) ⩽ c̃3

∥∥(U0
D, U

0
N)
∥∥(2+³)

Ω; [0,t]
=: c̃3

∥∥U0
D,N

∥∥(2+³)

Ω; [0,t]
, for all t ⩽ T , (8.7)

for some constant c̃3 > 0. Meanwhile, to get an estimate for the first approximant (V
(1)
D , V

(1)
N , Ä̃(1)), we apply

Theorem 7.1 to (8.6), with m = 0, to obtain

W[V
(1)
D , V

(1)
N , Ä̃(1)](t) ⩽ c̃3

{∣∣∣N [V
(0)
N , Ä̃(0)]

∣∣∣
(³)

Ω; [0,t]
+
∣∣∣N [V

(0)
N , Ä̃(0)]

∣∣∣
(³)

Ω; [0,t]

+
∣∣∣B[V (0)

D , V
(0)
N , Ä̃(0)]

∣∣∣
(1+³)

Γ
+
∥∥U0

D,N

∥∥(2+³)

Ω; [0,t]

}

⩽ c̃3

{
c̃1t

¸
(
W[V

(0)
D , V

(0)
N , Ä̃(0)](t)

)2
+
∥∥U0

D,N

∥∥(2+³)

Ω; [0,t]

}

⩽ c̃33c̃1t
¸
(∥∥U0

D,N

∥∥(2+³)

Ω; [0,t]

)2
+ c̃3

∥∥U0
D,N

∥∥(2+³)

Ω; [0,t]

=: L(t),

(8.8)

where the second inequality follows from (8.4), while the third one is due to estimate (8.7).
We introduce the following notations:

W
(m+1)
D = V

(m+1)
D − V

(m)
D , W

(m+1)
N = V

(m+1)
N − V

(m)
N , and ϱ̃(m+1) = Ä̃(m+1) − Ä̃(m).
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Then, by telescoping sums, we see that

V
(m+1)
D = V

(1)
D +

m∑

j=1

W
(j+1)
D , V

(m+1)
D = V

(1)
D +

m∑

j=1

W
(j+1)
D , and Ä̃(m+1) = Ä̃(1) +

m∑

j=1

ϱ̃(j+1).

Moreover, by (8.6), W
(m+1)
D , W

(m+1)
N , and ϱ̃(m+1) satisfy





∆W
(m+1)
D + qD · ∇ϱ̃(m+1) +QDϱ̃

(m+1)

= N [V
(m)
D , Ä̃(m)]−N [V

(m−1)
D , Ä̃(m−1)], y ∈ Ω, t > 0,

W
(m+1)
D

∣∣∣
y∈Σ

= 0, W
(m+1)
D

∣∣∣
y∈Γ

= 0,

∆W
(m+1)
N + qN · ∇ϱ̃(m+1) +QNϱ̃

(m+1)

= N [V
(m)
N , Ä̃(m)]−N [V

(m−1)
N , Ä̃(m−1)], y ∈ Ω, t > 0,

∂

∂¿◦
W

(m+1)
N

∣∣∣∣
y∈Σ

= 0, W
(m+1)
N

∣∣∣
y∈Γ

= 0,

∆ϱ̃(m+1) = 0, y ∈ Ω, t > 0 ϱ̃(m+1)
∣∣∣
y∈Σ

= 0,

(
∂ϱ̃(m+1)

∂t
+ b§

∂ϱ̃(m+1)

∂¿◦
+ b∥ · ∇Γϱ̃

(m+1) + hϱ̃(m+1) +B0
∂W

(m+1)
DN

∂¿◦

)∣∣∣∣∣
y∈Γ

= B[V (m)
D , V

(m)
N , Ä̃(m)]− B[V (m−1)

D , V
(m−1)
N , Ä̃(m−1)],

ϱ̃(m+1)
∣∣
y∈Γ, t=0

= 0.

(8.9)

We again utilize Theorem 7.1 and make use of the estimate (8.5), to obtain

W[W
(m+1)
D ,W

(m+1)
N , ϱ̃(m+1)](t) ⩽ c̃2c̃3t

¸




∑

j=m,m−1

W[V
(j)
D , V

(j)
N , Ä̃(j)](t)


W[W

(m)
D ,W

(m)
N , ϱ̃(m)](t). (8.10)

We are now in the position to determine the maximum time t⋆ so that the claims we state in Theorem 4.4
are valid. First, we choose t⋆ so that our first approximant satisfies

(t⋆)¸W[V
(1)
D , V

(1)
N , Ä̃(1)](t) ⩽ (t⋆)¸L(t) ⩽M0

and such that M⋆ = 2c̃2c̃3M0 < M1 < 1, for some fixed constant M1 > 0. Clearly, the initial approxi-

mant W[V
(0)
D , V

(0)
N , Ä̃(0)](t) also satisfy the estimate (t⋆)¸W[V

(0)
D , V

(0)
N , Ä̃(0)](t) ⩽ M0. We then assume that

(V
(j)
D , V

(j)
N , Ä̃(j)), j = 0, 1, . . . ,m, are defined for t ∈ I⋆ and satisfy the estimate

(t⋆)¸W[V
(j)
D , V

(j)
N , Ä̃(j)](t) ⩽M0, for all j = 0, 1, . . . ,m. (8.11)
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By Theorem 7.1, it follows that the (m+1)th approximant given by the triplet (V
(m+1)
D , V

(m+1)
N , Ä̃(m+1)) is also

defined in I⋆. Combining estimates (8.10) and (8.11), we get

W[W
(m+1)
D ,W

(m+1)
N , ϱ̃(m+1)](t⋆) ⩽ 2c̃2c̃3M0W[W

(m)
D ,W

(m)
N , ϱ̃(m)](t⋆)

⩽M⋆
W[W

(m)
D ,W

(m)
N , ϱ̃(m)](t⋆).

Taking the sum of above inequality with respect to j from 0 to m yields

Sm+1 :=

m∑

j=0

W[W
(j+1)
D ,W

(j+1)
N , ϱ̃(j+1)](t)

⩽M⋆

m∑

j=0

W[W
(j)
D ,W

(j)
N , ϱ̃(j)](t)

=M⋆Sm+1 +M⋆
(
W[W

(0)
D ,W

(0)
N , ϱ̃(0)](t)−W[W

(m+1)
D ,W

(m+1)
N , ϱ̃(m+1)](t)

)

⩽M⋆Sm+1 +M⋆
W[W

(0)
D ,W

(0)
N , ϱ̃(0)](t)

⩽M⋆Sm+1 + L(t),

where the last inequality follows from (8.8) and the fact that M⋆ < 1. The above estimate clearly shows that
the sums Sm+1, m = 0, 1, . . ., are uniformly bounded by L(t). This information implies that the series sums∑∞

j=1 W[W
(j+1)
D ,W

(j+1)
N , ϱ̃(j+1)](t) converges for all t ∈ I⋆ and that {(V (m+1)

D , V
(m+1)
N , Ä̃(m+1))}m, m = 0, 1, . . .,

also satisfy inequality condition (8.11).
Finally, passing to the limit m→ ∞, we conclude that

(VD, VN, Ä̃) = lim
m→∞

(V
(m)
D , V

(m)
N , Ä̃(m))

is a solution to (6.3) satisfying the estimate

W[VD, VN, Ä̃](t) ⩽ cL(t) ⩽ c
∥∥U0

D,N

∥∥(2+³)

Ω; [0,t]
, for all t ∈ I⋆, (8.12)

for some constant c > 0.
To complete the proof of Theorem 4.4, we need to revert to the original unknown functions that resolve the

transformed problem (4.7). As stated in Section 6, we have the relations UD = VD + U0
D and UN = VN + U0

N.
These functions, along with Ä̃, solve (4.7). Additionally, estimate (4.16) is derived from (8.12), in conjunction
with estimates (5.6) and (5.8). Furthermore, since the difference between two solutions must also satisfy estimate
(4.16) with a zero right-hand side, the solution (UD, UN, Ä̃) is unique. Finally, to obtain Ä, we set Ä = Ä̃

∣∣
Γ
and

then determine the free boundary using the description given in (3.1).

Γ(t) :=
{
x ∈ R

d | x = À + Ä(À, t)N(À), À ∈ Γ
}
, for t ∈ I⋆.

To conclude this section, we remark – as alluded at an earlier part of this note – that the main result
given by Theorem 3.2 follows from Theorem 4.4 which asserts the local-in-time solvability of problem (4.7).
Indeed, recalling the change of variables Y −1(y, t) from (4.5), we can transform the fixed domain Ω to the
moving domain Ω(t), for t ∈ I⋆, and retrieve the functions uD(x, t) = UD(y, t) = uD(Y

−1(y, t), t) and uN(x, t) =
UN(y, t) = uN(Y

−1(y, t), t) (cf. (C.1)) as the pair of solutions to (1.1). In addition, estimate (3.2) immediately
follows from (4.16), confirming our assertion. This verifies Theorem 3.2.



42 J. F. T. RABAGO AND M. KIMURA

9. Summary and final remarks

In this study, we have rigorously established the well-posedness of the moving boundary problem (1.1),
proving the local-in-time existence of classical solutions under key assumptions, including the positivity of the
data and Assumption 3.1. These conditions form the foundation of our theoretical framework and are essential
for ensuring the mathematical consistency of the analysis. Furthermore, the results obtained here implicitly
support the stability of numerical schemes designed for related problems in shape optimization.

The problem addressed is closely connected to the classical Hele–Shaw problem in the expanding case, whose
well-posedness has been widely studied through various analytical approaches, such as variational inequality
formulations and other advanced techniques, as detailed in [59, 61–63]. Despite these developments, several
important directions remain open for the problem considered here. Extending the analysis to describe the long-
time behavior of solutions and to identify possible steady states presents a natural continuation of this work.
Additionally, relaxing the assumptions adopted here—for instance, by reducing the regularity of the moving
boundary or by reformulating the problem in a generalized setting—would offer valuable insights, although these
extensions are expected to involve significant analytical challenges. The established mathematical tools cited
above are anticipated to remain central in addressing these issues. Lastly, translating this theoretical framework
to more physically relevant or applied contexts offers both promising opportunities and technical difficulties,
providing a rich avenue for future investigation.
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[10] L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Prob.
Imaging 4 (2010) 351–377.

[11] R. Chapko and R. Kress, A hybrid method for inverse boundary value problems in potential theory. J. Inv. Ill-Posed
Probl. 13 (2005) 27–40.

[12] F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary
measurement. Inverse Probl. 14 (1998) 67–82.

[13] V. Isakov, Inverse Problems for Partial Differential Equations, Vol. 127. Springer Business & Media (2066).

[14] G.I. Bizhanova and V.A. Solonnikov, On free boundary problems for the second order parabolic equations on free
boundary problems for the second order parabolic equations. Algebra Anal. 12 (2000) 98–139.

[15] V.A. Solonnikov, Lectures on Evolution Free Boundary Problems: Classical Solutions. Lect. Notes Math. Springer
(2003) 123–175.

[16] J. Escher and G. Simonett, Classical solutions of multidimensional Hele–Shaw models. SIAM J. Math. Anal. 28
(1997) 1028–1047.

[17] P. Cardaliaguet and O. Ley, Some flows in shape optimization. Arch. Rational Mech. Anal. 183 (2007) 21–58.

[18] P. Cardaliaguet and E. Rouy, Viscosity solutions of increasing flows of sets. application of the Hele–Shaw problem
for power-law fluids. SIAM J. Math. Anal. 38 (2006) 143–165.

[19] Y. Giga, Surface Evolution Equations A Level Set Approach. Vol. 99 of Monographs in Mathematics. Birkhäuser,
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Appendix A. Comparison of normal derivatives

In this appendix, we examine the normal derivatives of two functions that fulfill a pure Dirichlet problem and a mixed
Dirichlet-Neumann problem on the boundary of axisymmetric domains. Throughout the section, ρ > 0 denotes the radius
of either a circle or a sphere. In this section, f and g are two fixed positive-valued scalar functions defined on R

2.

A.1 The case of concentric circles

For axisymmetric case in two spatial dimensions, the Laplace equation becomes

∆u(ρ) =
1

ρ

d

dρ

(

ρ
du

dρ

)

= 0 or ∆u(ρ) =
d

dρ

(

ρ
du

dρ

)

= 0.

Integrating once, we get du(ρ)/dρ = a/ρ, and then again, u = a log ρ+ b, for some unknowns a and b.
Let Br := B(0, r) be a circle with radius r > 0. Let r⋆ ∈ (0, R) and consider the PDE system

∆u⋆ = 0 in Ω⋆ := BR \Br⋆ , u⋆ = f > 0 on Σ, u⋆ = 0 on Γ⋆ := ∂Br⋆ . (A.1)

Then, we can compute the exact solution as

u⋆(ρ) =
f log (ρ/r⋆)

log (R/r⋆)
, ρ ∈ (r⋆, R). (A.2)

Note that for any ρ ∈ (r⋆, R], u(ρ) is positive. Now, differentiating this function with respect to ρ, we get

∂

∂νR
u⋆(ρ) =

∂

∂ |x|
u⋆(|x|) =

∂

∂ρ
u⋆(ρ) =

f

ρ log (R/r⋆)
, (A.3)

where νR is outward unit normal vector to ∂BR. At ρ = R, we have

∂

∂νR
u⋆(R) =

f

R log (R/r⋆)
.

We define

g :=
f

R log (R/r⋆)
> 0, 0 < r⋆ < R.

Let us consider Equations (2.1) and (2.2) with Ω = BR \ Br, Γ = ∂BR, and Σ = ∂BR, where 0 < r < R. In view of
(A.2), it can easily be verified that the exact solutions to these systems of PDEs are respectively given by

uD(ρ) =
f log (ρ/r)

log (R/r)
and uN(ρ) =

f log (ρ/r)

log (R/r⋆)
, ρ ∈ [r,R].

Now, on Γ, straightforward computation of Vn gives us

Vn = −

(
∂uD

∂ν
−
∂uN

∂ν

)

= −

[
f

log (R/r)

(
1

ρ

)

−
f

log (R/r⋆)

(
1

ρ

)]∣
∣
∣
∣
Ä=r

= −
f

rlog (R/r) log (R/r⋆)
[log (R/r⋆)− log (R/r)]

= −
f

rlog (R/r) log (R/r⋆)
︸ ︷︷ ︸

>0

[

log
( r

r⋆

)]

︸ ︷︷ ︸

:=L1(r)

.

Observe that the sign of Vn only depends on the relations between r and r⋆. If we want Vn to be negative, we need
L1(r) > 0 to be positive, and this happens when r > r⋆.
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Now, motivated by the previous discussion, we examine the existence and uniqueness of solution to the following
initial value problem: for a given T > 0,







r′(t) = −
f (log r(t)− log r⋆)

r(t) log (R/r⋆) (logR− log r(t))
=: F1(t, r(t)), for 0 < t < T,

r(0) = r0, r0 > r⋆,

(A.4)

for some given r0 ∈ (r⋆, R).
Given the techical assumption stated in Remark 1.3, we show – although it is trivial – that the initial value problem

(A.4) admits a unique solution. We prove the existence using Peano’s Theorem [64], Theorem 2.1, p. 10 and its uniqueness
via Picard-Lindelöf Theorem [64], Thm. 1.1, p. 8. First, we observe that for t > 0, 0 < r⋆ ⩽ r(t) < R (see the proof of
Proposition A.2), and for T > 0, F1 is continuous, for all t ∈ [0, T ] and |r(t)− r0| ⩽ R − r⋆. Moreover, r is uniformly
bounded in [0, T ], and therefore, F1(t, r(t)) is bounded in [0, T ]× [r⋆, R0] for some r⋆ < r0 ⩽ R0 < R. In fact, we see that

|F1(t, r(t))| ⩽
∥f∥L∞(Σ)

r⋆ log (R/R0)
=: K0, for all (t, r(t)) ∈ [0, T ]× [r⋆, R0].

By Peano’s Theorem [64], Theorem 2.1, p. 10, (A.4) possesses at least one solution r = r(t) on [0, T0] where T0 =
min{T, (R− r⋆)/K0}.

Remark A.1. The choice T0 = min{T, (R− r⋆)/K0} for the existence of solution to (A.4) is natural. On the one hand,
the requirement T0 ⩽ T is necessary. On the other hand, the requirement T0 < (R − r⋆)/K0 is due to the fact that
if r = r(t) is a solution of (A.4) on t ∈ [0, T0], then |r′(t)| ⩽ K0 implies that |r(t)− r0| ⩽ R − r⋆ ⩽ K0(t − 0) = K0t.
However, we note that |r(t)− r0| ⩽ R− r⋆. Thus, we require t ⩽ (R− r⋆)/K0 so that the previous inequality holds.

To prove that the solution to (A.4) is unique, we will prove that F1 is uniformly Lipschitz continuous with respect to
r. Let us consider

F1(rj) := F1(t, rj(t)) = −
f (log rj(t)− log r⋆)

rj(t) log (R/r⋆) (logR− log rj(t))
, for j = 1, 2, and t > 0,

where r⋆ < rj ⩽ R0 for j = 1, 2, for some 0 < R0 < R. Hence,we have

|F1(r1)− F1(r2)| =

∣
∣
∣
∣

f (log r1 − log r⋆)

r1 log (R/r⋆) (logR− log r1)
−

f (log r2 − log r⋆)

r2 log (R/r⋆) (logR− log r2)

∣
∣
∣
∣

⩽
∥f∥L∞(Σ)

log (R/r⋆)

∣
∣
∣
∣

r2 (logR− log r2) (log r1 − log r⋆)− r1 (logR− log r1) (log r2 − log r⋆)

r1r2 (logR− log r1) (logR− log r2)

∣
∣
∣
∣

=:
∥f∥L∞(Σ)

log (R/r⋆)

∣
∣
∣
∣

n(r1, r2)

d(r1, r2)

∣
∣
∣
∣
,

where

n(r1, r2) = (logR)r2 log r1 − r2 log r1 log r2 − log r⋆(logR)r2 + (log r⋆)r2 log r2

− (logR)r1 log r2 + r1 log r2 log r1 + log r⋆(logR)r1 − (log r⋆)r1 log r1

= logR(r2 log r1 − r1 log r2)− log r1 log r2(r2 − r1)

+ log r⋆(r2 log r2 − r1 log r1) + log r⋆ logR(r1 − r2),

d(r1, r2) = r1r2 (logR− log r1) (logR− log r2) .

For rj > 0 such that r⋆ < rj ⩽ R0 < R for j = 1, 2, the denominator d is bounded below away from zero; i.e.,

|d(r1, r2)| ⩾ [r⋆ (logR− logR0)]
2

=: K1.
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Now, on the other hand, we claim that n(r1, r2) can be bounded by |r1 − r2|; that is, there exists a constant K2 > 0
such that

|n(r1, r2)| ⩽ K2 |r1 − r2| ,

where K2 does not depends on r1 and r2.
Let us note that

|n(r1, r2)| = |logR| |r2 log r1 − r1 log r2|+ |log r1| |log r2| |r2 − r1|

+ |log r⋆| |r2 log r2 − r1 log r1|+ |log r⋆| |logR| |r1 − r2| .

We focus on proving that |r2 log r1 − r1 log r2| can be bounded by |r1 − r2|. The rest can be shown in a similar manner.
So, let us consider the function f(r) = r log r. We note that f is continuous on [r1, r2] and differentiable on (r1, r2). Hence,
by the mean value theorem, there exists r̄ ∈ (r1, r2) such that

log r̄ + 1 = f
′(r̄) =

f(r2)− f(r1)

r2 − r1
=
r2 log r2 − r1 log r1

r2 − r1
, (0 < r⋆ < rj ⩽ R0 < R, j = 1, 2).

Because r1, r2 > 0, |log r̄ + 1| is clearly bounded and does not depend on r1 and r2. Therefore, |r2 log r2 − r1 log r1| =
c |r2 − r1|, for some constant of c > 0.

Combining the bounds on the numerator and denominator, we get

|f(r2)− f(r1)| ⩽
K2

K1
|u1 − u2| ,

which shows that f(r) is uniformly Lipschitz continuous. Finally, applying Picard-Lindelöf Theorem [64], Thm. 1.1, p. 8,
we deduce that the solution to (A.4) is unique.

A.2 The case of concentric spheres

For axisymmetric case in three spatial dimensions, the Laplace equation becomes

∆u(ρ) =
1

ρ2
d

dρ

(

ρ2
du

dρ

)

= 0 or ∆u(ρ) =
d

dρ

(

ρ2
du

dρ

)

= 0.

Integrating once, we get du(ρ)/dρ = a/ρ2, and then again, u(ρ) = −a/ρ+ b, for some unknowns a and b.
Let Br := B(0, r) be a sphere with radius r > 0. Let r⋆ ∈ (0, R) and consider again the PDE system (A.1) but with

Ω⋆ := BR \Br⋆ and Γ⋆ := ∂Br⋆ described by the given spheres. Then, we can compute the exact solution as

u⋆(ρ) =
fR

R− r⋆
(
1− r⋆ρ−1) , ρ ∈ (r⋆, R). (A.5)

Observe that for any ρ ∈ (r⋆, R], u(ρ) is positive.
Now, we differentiate u⋆ with respect to ρ, to obtain

∂

∂νR
u⋆(ρ) =

∂

∂ |x|
u⋆(|x|) =

∂

∂ρ
u⋆(ρ) =

f

ρ log (R/r⋆)
, (A.6)

where νR is outward unit normal vector to ∂BR. At ρ = R, we have

∂

∂νR
u⋆(R) =

fRr⋆

R− r⋆
ρ−2

∣
∣
∣
Ä=R

=
fr⋆

R(R− r⋆)
.
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We define

g :=
fr⋆

R(R− r⋆)
> 0, 0 < r⋆ < R.

Let us again consider Equations (2.1) and (2.2), but now in three dimensions, with Ω = BR \ Br, Γ = ∂BR, and
Σ = ∂BR, where 0 < r < R. In view of (A.5), it can easily be shown that the exact solutions to these systems of PDEs
are respectively given by

uD(ρ) =
fR

R− r

(
1− rρ−1) and uN(ρ) =

fRr⋆

R− r⋆
(
r−1 − ρ−1) , ρ ∈ [r,R].

Now, computing Vn on Γ yields the following

Vn = −

(
∂uD

∂ν
−
∂uN

∂ν

)

= −

[
fR

R− r

(
r

ρ2

)

−
fRr⋆

R− r⋆

(
1

ρ2

)]∣
∣
∣
∣
Ä=r

= −
fR

r

[
1

R− r
−

r⋆

(R− r⋆)r

]

= −
fR

r

[
(R− r⋆)r − (R− r)r⋆

r(R− r)(R− r⋆)

]

= −
fR2

r2(R− r)(R− r⋆)
︸ ︷︷ ︸

>0

(r − r⋆)
︸ ︷︷ ︸

=:L2(r)

.

Notice that, as expected, the sign of Vn only depends on the relations between r and r⋆. If we want Vn to be negative,
we obviously need L2(r) > 0 to be positive, and this occurs when r > r⋆.

Similar to the previous subsection, one can prove the existence and uniqueness of solution to the following initial value
problem







r′(t) = −
fR2(r(t)− r⋆)

r(t)2(R− r(t))(R− r⋆)
=: F2(t, r(t)), for 0 < t < T,

r(0) = r0, r0 > r⋆,

(A.7)

for some given r0 ∈ (r⋆, R). To prove that the right-hand side of (A.7) is uniformly Lipshitz continuous with respect to
r, we can again apply the mean value theorem. For this purpose, we can utilize the derivative of G with respect to r
given by

F ′
2(·, r) = −

fR2(2r2 + r⋆(2R− 3r)−Rr)

r3(R− r⋆)(R− r)2
,

and show that this expression is bounded within the interval [r⋆, R).
In view of the existence of unique solution to (A.4) and (A.7), we formally have the following proposition.

Proposition A.2. The unique solutions to (A.4) and (A.7) satisfy r′(t) < 0, for all t > 0.

Proof. From previous discussion, we have deduced that Vn remains negative for r > r⋆. We want to prove then that
r(t) ⩾ r⋆, for all t > 0, and we claim that r(t) → r⋆ as t → T where T = ∞. In other words, r(t) will not reach r⋆ in
finite time. We will prove the latter claim via a contradiction. That is, we first suppose that there exists a T <∞ such
that r(T ) = r⋆ and show that this will lead to a contradiction.
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To do this, we first comment that Fi(·, r) ∈ C
∞(0, R), where Fi, i = 1, 2, are the rational functions given in (A.4) and

(A.7), respectively. Hence, via Taylor expansion, we can write r′ (after some transformation normalizing the coefficient)
as follows

r′(t) = (r⋆ − r(t))si(r(t)),

where si are some functions over r such that si(r
⋆) > 0 for i = 1, 2. The functions si, i = 1, 2, can be expressed in the

form

si(r) =
r′(t)

r⋆ − r(t)
= log

(
1

r(t)− r⋆

)

.

Now, if r ∈ C1([0, T )) ∩ C0([0, T ]) and r(T ) = r⋆ for 0 ⩽ a < T − ε < T <∞ fo some constant a and ε > 0 then

∫ T−ε

a

si(r(t)) dt = log

(
1

r(t)− r⋆

)∣
∣
∣
∣

T−ε

a

= log

(
r(a)− r⋆

r(T − ε)− r⋆

)

.

Notice that

lim
ε→0

∫ T−ε

a

si(r(t)) dt = lim
ε→0

log

(
r(a)− r⋆

r(T − ε)− r⋆

)

=∞,

which is a contradiction.

Appendix B. Mullins-Sekerka analysis for 2D axisymmetric domains

In this appendix, we examine the main system (1.1) on axisymmetric case in two dimension through Mullins-Sekerka
analysis given that f and g are positive-valued functions. Let rΣ > 0 and ρ0 > 0 be given. We let the exterior (fixed) and
the interior (free) boundary be defined by two concentric circles Σ = {x ∈ R

2 | |x| = rΣ} and Γ = {x ∈ R
2 | |x| = ρ0}.

We define Γ0(t) = {x ∈ R
2 | |x| = ρ0(t)}, and consider, in polar coordinate (r, θ), its perturbation given by

Γε(t) = {(r, θ) | r = ρε(θ, t)},

where we suppose that ρε formally has the expansion

ρε(θ, t) = ρ0(t) + ερ1(θ, t) +O(ε2).

Σ

Ωε(t)

Γε(t)
ν
ε

ν

Figure B.1. The axisymmetric annular domain.
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Here, in particular, we shall consider perturbation of the type ρ1(θ, t) = R(t) cos kθ or R(t) sin kθ. Our aim is to derive
a necessary condition of R(t) for Γε(t) satisfying our main system (1.1) with suitable uε

D(x, t) and uε
N(x, t), except for

the initial condition. For simplicity, let us suppose that f and g are positive constants. We define

Ωε(t) = {x ∈ R
2 | ρε(t) < |x| < rΣ}.

Of course, we set Ω0(t) = {x ∈ R
2 | ρ0(t) < |x| < rΣ}.

We consider the following systems of PDEs:







∆uε
D = 0 in Ωε(t), uε

D = f > 0 on Σ, uε
D = 0 on Γε(t),

∆uε
N = 0 in Ωε(t),

∂uε
N

∂ν
= g > 0 on Σ, uε

N = 0 on Γε(t),
(B.1)

where ν is the outward unit normal vector to Σ. Accordingly, the normal velocity of the moving boundary Γε is given by

vε(θ, t) = −

(
∂uε

D

∂νε
−
∂uε

N

∂νε

)

, y ∈ Γε(t),

where νε is the inward unit normal to Γε(t) (see Fig. B.1 for illustration) given by

νε(θ, t) =

(
cos θ
sin θ

)

+ ε
ρ1¹(θ, t)

ρ0(t)

(
sin θ
− cos θ

)

+O(ε2).

Here, the initial geometric profile of the perturbed boundary is Γε(0) = {(r, θ) | r = ρε0(θ)} where ρε0(θ) = ρ00 + ερ10(θ) +
O(ε2). Now, we assume that

uε
p(x, t) = u0

p(x, t) + εu1
p(x, t) +O(ε2), p = D,N,

in a neighborhood of Ωε(t). So, for x = ρ0(t)

(
cos θ
sin θ

)

∈ Γ0(t) and y = ρε(θ, t)

(
cos θ
sin θ

)

∈ Γε(t) we have, after applying

Taylor’s expansion and combining terms with respect to ε, the following identities

uε
p(y, t) = u0

p(x, t) + ε

(

u1
p(x, t) + ρ1(θ, t)

∂u0
p

∂r
(x, t)

)

+O(ε2),

= u0
p(x, t) + ε

(

u1
p(x, t) + ρ1(θ, t)

∂u0
p

∂r
(x, t)

)

+O(ε2),

∂uε
p

∂νε
(y, t) =

∂u0
p

∂r
(x, t) + ε

(
∂u1

p

∂r
(x, t) + ρ1(θ, t)

∂2u0
p

∂r2
(x, t)

)

+O(ε2).

The equations and terms of order O(ε0) are as follows:







∆u0
D = 0 in Ω0(0), u0

D = f on Σ, u0
D = 0 on Γ0(0),

∆u0
N = 0 in Ω0(0),

∂u0
N

∂ν
= g on Σ, u0

N = 0 on Γ0(0),
(B.2)

with

ρ0t (t) = −

(
∂u0

D

∂r
(x, t)−

∂u0
N

∂r
(x, t)

)

, x ∈ Γ0(t), and ρ0(0) = ρ00. (B.3)
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Meanwhile, the equations and terms of order O(ε1) are as follows:







∆u1
D = 0 in Ω0(t),

u1
D = f on Σ,

u1
D(x, t) + ρ1(θ, t)

∂u0
D

∂r
(x, t) = 0 on Γ0(t),

∆u1
N = 0 in Ω0(t),

∂u1
N

∂ν
= g on Σ,

u1
N(x, t) + ρ1(θ, t)

∂u0
N

∂r
(x, t) = 0 on Γ0(t),

(B.4)

with

ρ1t (θ, t) = −

[(
∂u1

D

∂r
(x, t)−

∂u1
N

∂r
(x, t)

)

+

(
∂2u0

D

∂r2
(x, t)−

∂2u0
N

∂r2
(x, t)

)

ρ1(θ, t)

]

(B.5)

and

ρ1(θ, 0) = ρ10(θ).

Next, we compute the exact solutions to (B.2). We let

u0
p = Cp log

|x|

ρ0(t)
, for p = D, N, where |x| = r.

Then, for f(t) = CD log
rΣ
ρ0(t)

, we get CD(t) =
f(t)

log(rΣ/ρ0(t))
. Meanwhile, for

∂u0
p

∂ν

∣
∣
∣
Σ

=
Cp

rΣ
= g(t) at p = N (note here

that ν is the outward unit normal to Σ), we get CN(t) = g(t)rΣ. Therefore, we obtain the following exact solutions to
(B.2):

u0
D = CD(t) log

(
|x|

ρ0(t)

)

=
f(t)

log
(

rΣ
Ä0(t)

) log

(
|x|

ρ0(t)

)

,

u0
N = CN(t) log

(
|x|

ρ0(t)

)

= g(t)rΣ log

(
|x|

ρ0(t)

)

,

which gives us

w0 := u0
N − u

0
D = (CN(t)− CD(t)) log

(
|x|

ρ0(t)

)

=



g(t)rΣ −
f(t)

log
(

rΣ
Ä0(t)

)



 log

(
|x|

ρ0(t)

)

.

Using the above notation, and from (B.3) and (B.5), we get

O(ε0) :







ρ0t (t) =
∂w0

∂r
(x, t),

∂w0

∂r
(x, t)

∣
∣
∣
x∈Γ0(t)

=
CN(t)− CD(t)

ρ0(t)
, x ∈ Γ0(t),

(B.6)
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O(ε1) :







ρ1t (θ, t) =
∂w1

∂r
(x, t) +

∂2w1

∂r2
(x, t)ρ1(θ, t),

∂2w0

∂r2
(x, t)

∣
∣
∣
x∈Γ0(t)

= −
CN(t)− CD(t)

ρ0(t)2
, x = ρ0(t)

(
cos θ
sin θ

)

∈ Γ0(t),

(B.7)

where

CD(t) =
f(t)

log
(

rΣ
Ä0(t)

) > 0 and CN(t) = g(t)rΣ > 0. (B.8)

Let us now suppose, as mentioned earlier, that ρ1(θ, t) = R(t) cos kθ, k ∈ N. Then, we consider the ansatz

u1
p = ap(t)rk cos kθ + bp(t)r−k cos kθ, r = |x| , p = D,N,

which leads to the equivalence

u1
p + ρ1

∂u0
p

∂r
= 0 ⇐⇒ ap(t)ρ0(t)k + bp(t)ρ0(t)−k +R(t)

Cp(t)

ρ0(t)
= 0. (B.9)

So, for the first-order term, we have

w1 := u1
N − u

1
D =

{

(aN(t)− aD(t))rk + (bN(t)− bD(t))r−k
}

cos kθ,

∂w1

∂r

∣
∣
∣
Γ0(t)

= k
{

(aN(t)− aD(t))ρ0(t)k−1 − (bN(t)− bD(t))ρ0(t)−(k+1)
}

cos kθ.

From (B.7)1 and the fact that ρ1(θ, t) = R(t) cos kθ, we get

R′(t) = λk(t)R(t),

where

λk(t) = k
{

(ãN(t)− ãD(t))ρ0(t)k−1 − (b̃N(t)− b̃D(t))ρ0(t)−(k+1)
}

−
CN(t)− CD(t)

ρ0(t)2
,

where ãp = ap/R(t) and b̃p = bp/R(t).
To get the exact form of λk(t), we need to compute for the coefficients aD(t), bD(t), aN(t), and bN(t). To this end, we

note the following implications of the boundary conditions

u1
D = 0 on Σ ⇐⇒ aD(t)rkΣ + bD(t)r−k

Σ = 0,

∂u1
N

∂ν
= 0 on Σ ⇐⇒ aD(t)rk−1

Σ − bD(t)r
−(k+1)
Σ = 0.

(B.10)

Equations (B.9) and (B.10) respectively lead to a system of equations which, upon solving, provides the forms of aD and
bD as well as aN and bN. That is, we have

(
ρ0(t)k ρ0(t)−k

rkΣ r−k
Σ

)(
ãD(t)

b̃D(t)

)

=

(

−CD(t)

Ä0(t)

0

)
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and

(
ρ0(t)k ρ0(t)−k

rk−1
Σ −r

−(k+1)
Σ

)(
ãN(t)

b̃N(t)

)

=

(

−CN(t)

Ä0(t)

0

)

,

which would give us

(
ãD(t)

b̃D(t)

)

=
1

ρ0(t)kr−k
Σ − ρ0(t)−krkΣ

(
r−k
Σ −ρ0(t)−k

−rkΣ ρ0(t)k

)(

−CD(t)

Ä0(t)

0

)

=
1

detkD(t)

(
CD(t)

ρ0(t)

)(
r−k
Σ

−rkΣ

)

,

(
ãN(t)

b̃N(t)

)

=
1

−ρ0(t)kr
−(k+1)
Σ − ρ0(t)−krk−1

Σ

(
−r

−(k+1)
Σ −ρ0(t)−k

−rk−1
Σ ρ0(t)k

)(

−CN(t)

Ä0(t)

0

)

=
1

detkN(t)

(
g(t)

ρ0(t)

)(
r−k
Σ

rkΣ

)

,

where

detkD(t) = −ρ0(t)kr−k
Σ + ρ0(t)−krkΣ =

(
rΣ
ρ0(t)

)k

−

(
ρ0(t)

rΣ

)k

,

detkN(t) = ρ0(t)kr−k
Σ + ρ0(t)−krkΣ =

(
ρ0(t)

rΣ

)k

+

(
rΣ
ρ0(t)

)k

.

Note that both of these determinants are positive because ρ0(t) < rΣ for all t > 0. Moreover, we observe that

0 <
detkN(t)

detkD(t)
−→ 1, 0 <

detkD(t)

detkN(t)
−→ 1, as k →∞.

Then, finally, we have

λk(t) =
k

ρ0(t)

{[

−ãD(t)ρ0(t)k + b̃D(t)ρ0(t)−k
]

+
[

ãN(t)ρ0(t)k − b̃N(t)ρ0(t)−k
]}

+
CD(t)− CN(t)

ρ0(t)2

=
k

ρ0(t)2

{
−CD(t)

detkD(t)

(

r−k
Σ ρ0(t)k + rkΣρ

0(t)−k
)

+
g(t)

detkN(t)

(

r−k
Σ ρ0(t)k − rkΣρ

0(t)−k
)}

+
CD(t)− CN(t)

ρ0(t)2

= −
k

ρ0(t)2

(

CD(t)
detkN(t)

detkD(t)
+ g(t)

detkD(t)

detkN(t)

)

︸ ︷︷ ︸

>0

+
CD(t)− CN(t)

ρ0(t)2
.

Evidently, for large enough k, λk(t) is negative, for any t ⩾ 0. This implies, formally, that the main system (1.1) is
well-posed in the case of annular domains formed by concentric radially symmetric shapes.

Appendix C. Change of variables

For the benefit of the reader, we provide here the computation of the transformed domain. We focus on rewriting
the main equations for the variable uN (the fourth to sixth equations in (1.1)). For the case uD, the computations are
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similar. So, consider a smooth function uN(x, t), x ∈ Ω(t), and UN(y, t), y ∈ Ω, where y = Y (x, t). Then, x = Y −1(y, t)),
and we have

uN(x, t) = UN(y, t) = uN(Y −1(y, t), t) =: uN ◦ Y
−1(y, t). (C.1)

Let us introduce the notation x := (x1, . . . , xd)¦ ∈ R
d, y := (y1, . . . , yd)¦ ∈ R

d, so that Y −1(y, t) := (x1, . . . , xd)¦(y, t) ∈
R

d. For clarity, we shortly verify here identity (4.6).
By generalized chain rule, the mth (m = 1, . . . , n) column entry of ∇¦

y is computed as follows (dropping t)

∂

∂xm
uN(x) =

d∑

k=1

∂UN

∂yk
(y)

∂Yk

∂xm
(x) =

d∑

k=1

∂UN

∂yk
(y)Jkm =

d∑

k=1

J
km ∂UN

∂yk
(y).

We next focus on the transformation of the Laplace equation. We recall that

∇x · ∇xu = ∆xu =

(
∂2

∂x21
+ · · ·+

∂2

∂x2d

)

u.

From the relation uN(x, t) = UN(y, t), we get ∆xuN(x, t) = ∆yUN(y, t) = ∇¦
y · ∇

¦
y UN(y, t). Each summand ∂2u/∂x2k,

k = 1, . . . , n, is computed by performing the following calculation of partial derivatives

∂

∂xk

(
∂

∂xk
uN(x)

)

=
∂

∂xk

(
d∑

p=1

∂UN

∂yp
(y)

∂Yp

∂xk
(x)

)

=

d∑

p=1







∂

∂xk

(
∂UN

∂yp
(y)

)

︸ ︷︷ ︸

=:D1

∂Yp

∂xk
(x) +

∂UN

∂yp
(y)

∂

∂xk

(
∂Yp

∂xk
(x)

)

︸ ︷︷ ︸

=:D2







.

The partial derivative D1 is computed as follows:

D1 =
∂

∂xk

(
∂UN

∂yp
(y)

)

=

d∑

m=1

∂UN

∂ymyp
(y)

∂Ym

∂xk
(x) =

d∑

m=1

∂UN

∂ymyp
(y)Jmk.

Hence, the first summand where D1 appears can be written as follows:

d∑

p=1

∂

∂xk

(
∂UN

∂yp
(y)

)
∂Yp

∂xk
(x) =

d∑

p=1

(
d∑

m=1

∂UN

∂ymyp
(y)Jmk

)

J
pk.

Now, summing k from 1 to d, and after a few rearrangements, we get

d∑

k=1

d∑

p=1

d∑

m=1

J
mk

J
pk ∂2UN

∂ym∂yp
=

d∑

m,p=1

(
d∑

k=1

J
mk

J
pk

)

∂2UN

∂ym∂yp

=

d∑

m,p=1

Amp
∂2UN

∂ym∂yp
,

where Amp =
∑d

k=1 J
mk

J
pk are the entries of the matrix A = J

−1
J
−¦. For the partial derivative D2, we have the form

d∑

k,m,p=1

J
mp ∂J

pk

∂ym

∂UN

∂yp
=

d∑

k,m,p=1

∂Ym

∂xk
(x)

∂

∂ym

(
∂Yp

∂xk
(x)

)
∂UN

∂yp
(y).



ON THE WELL-POSEDNESS OF A HELE–SHAW-LIKE SYSTEM RESULTING 55

The following computations yield the above expression:

D2 =
∂

∂xk

(
∂Yp

∂xk
(x)

)

=
∂

∂xk
(ϕ ◦ Y (x))

(

ϕ(y) :=

(
∂Y −1

p

∂yk
(y)

)−1

, Ω ∋ y = Y (x, t), x ∈ Ω(t)

)

=
d∑

m=1

∂ϕ

∂ym
(Y (x))

∂Ym

∂xk
(x)

=

d∑

m=1

J
mk ∂ϕ

∂ym
(y) (m-k: row-column entry)

=

d∑

m=1

J
mk ∂

∂ym
J
pk.

Inserting the above expression for D2 in the second summand earlier above, and then summing k from 1 to d, we get

d∑

k=1

d∑

p=1

∂UN

∂yp
(y)

∂

∂xk

(
∂Yp

∂xk
(x)

)

=

d∑

k=1

d∑

m=1

d∑

p=1

∂Ym

∂xk
(x)

∂ϕ

∂ym
(y)

∂UN

∂yp
(y)

=

d∑

k,m,p=1

J
mk ∂J

pk

∂ym

∂UN

∂yp
,

where ϕ(y) is again defined as before. In summary, the Laplace equation ∆xuN(x, t) = 0, x ∈ Ω(t), t > 0, when expressed
over the fixed domain Ω, has the following form:

d∑

m,p=1

Amp
∂2UN

∂ym∂yp
+

d∑

k,m,p=1

J
mk ∂J

pk

∂ym

∂UN

∂yp
= 0,

where Amp is as mentioned earlier. For the Laplace equation ∆xuD(x, t) = 0, x ∈ Ω(t), t > 0, simply replace UN by UD

above.
We next perform the transformations of equations on the boundary. First, it is easy to check that UN(y, t) =

uN(Y −1(y, t), t) = 0, y ∈ Γ, t > 0. Similarly, on Σ, we can write g(x, t) (x ∈ Σ) as g(Y −1(y, t), t). Since ρ̃(x, t) ≡ 0
on Σ, we simply write the function g(Y −1(y, t), t) as g(y, t). Now, let us rewrite the expression ∇xuN(x, t) · ν(x, t), where
x ∈ ∂Ω(t), in terms of UN(y, t) on the fixed boundary ∂Ω. This is done as follows (hereafter, we occasionally drop t and
write ν◦ := ν◦(y) for convenience):

∇xuN(x) · ν(x) = J
−¦∇¦

y UN(y) ·
J
−¦ν◦

|J−¦ν◦|
(y).

Clearly, on the fixed (interior) boundary Σ, we have

∂

∂ν◦
UN(y, t) = g(y, t), y ∈ Σ, t > 0.

In the same manner, we obtain the following transformation of boundary conditions for the variable uD

UD(y, t) = uD(Y −1(y, t), t) = 0, y ∈ Γ, t > 0,

and, on Σ, we can write f(x, t) (x ∈ Σ) as f(Y −1(y, t), t). Again, because ρ̃(x, t) ≡ 0 on Σ, we simply write the function
f(Y −1(y, t), t) as f(y, t). Moreover, from Γ(t) to Γ, we have the following sequence of computations and transformations
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with regards to the equation for the normal velocity

Vn(x, t) = V(x, t) · ν(x, t) =
d

dt
x(t) · ν(x, t),

=
d

dt
(y + N(y)ρ̃(y, t)) · ν(x, t)

=
∂

∂t
ρ̃(y, t)N(y) ·

J
−¦ν◦

|J−¦ν◦|
(y),

(

ρ̃t(y, t) :=
d

dt
ρ̃(y, t), y ∈ Γ, t > 0

)

.

and

(∇uD(x, t)−∇uN(x, t)) · ν(x, t) = J
−¦
(

∇¦
y UD(y)−∇¦

y UN(y)
)

·
J
−¦ν◦

|J−¦ν◦|
(y),

for x = x(t) ∈ Γ(t), y ∈ Γ, and t > 0. These identities, with A := J
−1

J
−¦, gives us

∂

∂t
ρ̃(y, t) = −

(

N(y) · J−¦ν◦(y)
)−1 (

∇¦
y UD(y)−∇¦

y UN(y)
)

· Aν◦,

for y ∈ Γ, t > 0. Taking into account the fact that UN(y, t) = UD(y, t) = 0 on Γ, t > 0, we can equivalently write the
above equation as follows:

∂

∂t
ρ̃(y, t) +BÄ̃

∂

∂ν◦
(UD(y, t)− UN(y, t)) = 0, (y ∈ Γ, t > 0),

where BÄ̃ := BÄ̃(y) =
(
N(y) · J−¦ν◦(y)

)−1
(ν◦ · Aν◦). We remind that throughout the paper we shall assume that ρ̃(y, t),

y ∈ Γ, t ∈ [0, T ], is small enough so that N(y) · J−¦ν◦(y) and |J−1ν◦(y)| are strictly positive for y ∈ Γ, and that the map
Y −1(y, t) is invertible.

In the rest of the section, we look at how the transformed Laplace equation splits into the operators given in (4.9).
The form of LÄ̃ is already clear, so we focus on rewriting the expression

d∑

k,m,p=1

J
mk ∂J

pk

∂ym

∂UN

∂yp
(y), (y ∈ Ω), (C.2)

in terms of N(y) and ρ̃(y) (again, we drop the dependence of ρ̃ to t for convenience) to confirm the forms of KÄ̃ andMÄ̃.
From the identity JJ

−1 = I, we have ∂yJJ
−1 + J∂yJ

−1 = 0, or equivalently, ∂yJ
−1 = −J−1 (∂yJ) J−1. We compute ∂yJ by

differentiating the equation J = I + N∇¦
y ρ̃+ (∇¦

y N)ρ̃ with respect to y:

∂yJ = NHessy(ρ̃) +∇¦
y N

(

∇¦
y ρ̃
)

+ Hessy(N)ρ̃+ (∇¦
y N)∇¦

y ρ̃,

where Hessy(·) denotes the bilinear form associated with the Hessian matrix, i.e., Hessy(ρ̃) := Hessy(ρ̃(y)) = ∂y(∇¦ρ̃(y)),
y ∈ Ω. Thus, we have

∂yJ
−1 = −J−1

NHessy(ρ̃)J−1 − J
−1
[

∇¦
y N

(

∇¦
y ρ̃
)

+ (∇¦
y N)∇¦

y ρ̃+ Hessy(N)ρ̃
]

J
−1.

The entries of the above matrix can be computed without difficulty. For instance, the matrix −J−1NHessy(ρ̃)J−1 has
entries (in Einstein’s notation)

−Jpj
(

N∂ym(∇¦ρ̃)
)

jq
J
qk = −Jpj

(

Nj
∂

∂ym

(
∂ρ̃

∂yq

))

J
qk.
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For the sake of clarity, we provide below a detailed computation of the matrix ∂yJ
−1 in terms of its entries. To start, we

apply the matrix inversion lemma or the so-called Sherman–Morrison–Woodbury formula [46–48] to obtain the following
identity

DxY (x) =
[
DyY

−1(y)
]−1

=
[

I + (∇¦
y N)ρ̃+ N∇¦

y ρ̃
]−1

, (N := N(y), ρ̃ := ρ̃(y), y ∈ Ω),

= I−
[

I + (∇¦
y N)ρ̃+ N∇¦

y ρ̃
]−1 (

(∇¦
y N)ρ̃+ N∇¦

y ρ̃
)

,

= I−
[
DyY

−1(y)
]−1

(

(∇¦
y N)ρ̃+ N∇¦

y ρ̃
)

,

where I := (δij) ∈ R
d×d (i, j = 1, . . . , d) denotes the d× d identity matrix. The above equations mean that

J
−1 = I− J

−1
(

(∇¦
y N)ρ̃+ N∇¦

y ρ̃
)

=: I− J
−1

M,

where, of course,

J
−1 =

(

J
ij
)

= (Jij)
−1 =

(

δij +Ni
∂ρ̃

∂yj
+
∂Ni

∂yj
ρ̃

)−1

.

Differentiating the above equation with respect to y, we get

∂yJ
−1 = −∂yJ

−1
M− J

−1∂yM

⇐⇒ ∂yJ
−1(I + M) = −J−1∂yM

⇐⇒ ∂yJ
−1 = −J−1(∂yM)(I + M)−1

⇐⇒ ∂yJ
−1 = −J−1(∂yM)J−1.

We recall that the product of three matrices, say A = (Aij), B = (Bij), and C = (Cij), in terms of its jm-th entry, is
given by (using Einstein’s notation) (ABC)ij = AikBklClj . Therefore, ∂yiJ

−1 = −J−1(∂yiM)J−1, i = 1, . . . , d, in terms of
its entries, is equivalent to

∂

∂ym
J
pk = −

d∑

j,q=1

J
pj(∂ymM)jqJ

qk, (p-k: row-column entry),

= −

d∑

j,q=1

J
pj ∂

∂ym

(
∂Nj

∂yq
ρ̃+Nj

∂ρ̃

∂yq

)

J
qk

= −

d∑

j,q=1

J
pj

(
∂2Nj

∂ym∂yq
ρ̃+

∂Nj

∂yq

∂ρ̃

∂ym
+
∂Nj

∂ym

∂ρ̃

∂yq
+Nj

∂2ρ̃

∂ym∂yq

)

J
qk.

Inserting the above expression to (C.2), we get the equivalent sum

−

d∑

k,m,p=1

J
mk

{
d∑

j,q=1

J
pj

(
∂2Nj

∂ym∂yq
ρ̃+

∂Nj

∂yq

∂ρ̃

∂ym
+
∂Nj

∂ym

∂ρ̃

∂yq

)

J
qk

}

∂UN

∂yp

−

d∑

k,m,p=1

J
mk

(
d∑

j,q=1

J
pjNj

∂2ρ̃

∂ym∂yq
J
qk

)

∂UN

∂yp
(=: S1 + S2).
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To get the desired expression (C.2) (with the same notation on indices), we simply interchange the indices k and m in
S1, and for S2, we apply the change of notations on indices: k ← j, j ← p, p← q, and note that Amp =

∑d
k=1 J

mk
J
pk.

The resulting expression with these changes in notations finally provides the desired expansion of (C.2) given in (4.9)
from which the forms of the operators KÄ̃ and MÄ̃ are made clear.

Appendix D. Computations of δA(0)
and δB0

In this appendix, we compute the variations δA(0) and δB0 for the more general variation

δFÄ0 =
d

dλ
FÄ0+¼(Ä̃−Ä0)

∣
∣
∣
∣
¼=0

,

where, basically, ρ0(y, 0) = 0, y ∈ Σ, and ρ0(y, 0) = 0, y ∈ Γ (see [14], Sect. 2). In our case, ρ0 ≡ 0. For convenience, let
us first recall that the Jacobi matrix J has entries given by

Jkm = δkm +Nk
∂ρ̃

∂ym
+
∂Nk

∂ym
ρ̃,

and that J
km are, on the other hand, the entries of the inverse matrix J

−1 which is the Jacobi matrix of the transform
Y (x, t), and that J

−¦ = (J−1)¦. Here, δA(0) = J
−1
0 J

−¦
0 , J0 = J

∣
∣
Ä̃=Ä̃0

, where ρ̃0 satisfies the PDE system given by (4.4)

with ρ̃0(y, 0) = 0. Moreover, we recall the entries Amp :=
∑d

k=1 J
mk

J
pk of the matrix A := J

−1
J
−¦. We shall express δA

in terms of δJ, and the computation of δA(0) goes as follows. First, we note that, from the identity J0J
−1
0 = I, we get

δ(J0J
−1
0 ) = J0(δJ−1

0 ) + (δJ0)J−1
0 = 0. So, δJ−1

0 = −J−1
0 (δJ0)J−1

0 . Hence, we have the following sequence of identities (the
index 0 is dropped)

δA = δ(J−1
J
−¦) = J

−1(δJ−1)¦ + (δJ−1)J−¦

= J
−1[−J−¦(δJ)¦J−¦] + [−J−1(δJ)J−1]J−¦

= −A(δJ)¦J−¦ − J
−1(δJ)A.

Here,

δJ =
d

dλ

{

δkm +Nk
∂(λρ̃)

∂ym
+
∂Nk

∂ym
(λρ̃)

}∣
∣
∣
∣
¼=0

= Nk
∂ρ̃

∂ym
+
∂Nk

∂ym
ρ̃.

So,

δA = −A(∇¹ (Nρ̃))J−¦ − J
−1(∇¹ (Nρ̃))¦A,

or, in terms of its entries,

δA
(0)
ij = −

∑

k,m=1

(

A
(0)
ik

∂(Nmρ̃)

∂yk
J
jm
0 + J

im
0
∂(Nmρ̃)

∂yk
A

(0)
mj

)

.

Next, let us compute the variation δB0. To do so, let us first compute the variations δ(N · J−¦ν◦) and

δ
(

A
(0)ν◦/(N · J

−¦
0 ν◦)

)

, and note that δN § ν◦ and N § δν◦:

δ(N · J−¦
0 ν◦) = δN · J−¦

0 ν◦ + N ·
(

δJ−¦
0 ν◦ + J

−¦
0 δν◦

)

=
(
−J−1

0 (δJ)J−1
0

)
ν¦◦ N

= −
∑

i,k,m,j=1

J
ki
0 ν0k

∂(Niρ̃)

∂yj
J
jm
0 Nm

= −J−¦
0 ν◦ · (∇¹ (Nρ̃))¦J−1

0 N.
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Therefore, we have the following computations

δ

(
A

(0)ν◦

N · J−¦
0 ν◦

)

=
δA(0)ν◦

N · J−¦
0 ν◦

− A
(0)ν◦

δ(N · J−¦
0 ν◦)

(N · J−¦
0 ν◦)2

=

[

−A(0)(∇¹ (Nρ̃))J−¦
0 − J

−1
0 (∇¹ (Nρ̃))¦A(0)

]

ν◦

N · J−¦
0 ν◦

+ A
(0)ν◦

J
−¦
0 ν◦ · (∇¹ (Nρ̃))¦J−1

0 N

(N · J−¦
0 ν◦)2

= −A(0)∇ρ̃− J
−1
0 N

A
(0)ν◦ · ∇ρ̃

N · J−¦
0 ν◦

+ A
(0)ν◦

J
−1
0 N · ∇ρ̃

N · J−¦
0 ν◦

+

[

−
A

(0)(∇¹N)J−¦
0 ν◦

N · J−¦
0 ν◦

−
J
−1
0 (∇¹N)¦A(0)ν◦

N · J−¦
0 ν◦

+
A

(0)ν◦
(
N · J−¦

0 ν◦
)2

(

J
−¦
0 ν◦ · (∇¹N)¦J−1

0 N
)
]

ρ̃.

Now, from (4.8), we recall that

BÄ̃ := BÄ̃(y) =
(

N(y) · J−¦
0 ν◦(y)

)−1

(ν◦(y) · Aν◦(y)) , y ∈ Γ.

So, we have the following calculations

δ

(
ν◦ · A

(0)ν◦

N · J−¦
0 ν◦

)

= −ν◦ · A
(0)∇ρ̃− ν◦ · J

−1
0 N

A
(0)ν◦ · ∇ρ̃

N · J−¦
0 ν◦

+ ν◦ · A
(0)ν◦

J
−1
0 N · ∇ρ̃

N · J−¦
0 ν◦

+

[

−
A

(0)ν◦ · (∇¹N)¦J−¦
0 ν◦

N · J−¦
0 ν◦

−
J
−1
0 ν◦ · (∇¹N)¦A(0)ν◦

N · J−¦
0 ν◦

+
ν◦ · A

(0)ν◦
(
N · J−¦

0 ν◦
)2

(

J
−¦
0 ν◦ · (∇¹N)¦J−1

0 N
)
]

ρ̃

= −2A(0)ν◦ · ∇ρ̃−
(ν◦ · A

(0)ν◦)

N · J−¦
0 ν◦

N · J−¦
0 ∇ρ̃

+

[

−
A

(0)ν◦ · (∇¹N)¦J−¦
0 ν◦

N · J−¦
0 ν◦

−
J
−1
0 ν◦ · (∇¹N)¦A(0)ν◦

N · J−¦
0 ν◦

+
ν◦ · A

(0)ν◦
(
N · J−¦

0 ν◦
)2

(

J
−¦
0 ν◦ · (∇¹N)¦J−1

0 N
)
]

ρ̃

=: −2A(0)ν◦ · ∇ρ̃−
(ν◦ · A

(0)ν◦)

N · J−¦
0 ν◦

N · J−¦
0 ∇ρ̃+ h(N, ∂yN)ρ̃.

Appendix E. Lemmata Proofs

For the benefit of the reader, we will prove some of the lemmas used in the paper here.
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E.1 Proof of Lemma 2.5

In the proof we require a simple matrix inequality. For A = (aij) ∈ R
d×d, we define ∥A∥ =

√
∑d

i,j=1 a
2
ij (i.e., ∥·∥

denotes the usual entry-wise matrix norm). Then, for A,B ∈ R
d×d, we have

∥AB∥2 =

d∑

i=1

d∑

j=1

(
d∑

k=1

aikbkj

)2

⩽

d∑

i=1

d∑

j=1

(
d∑

k=1

a2ik

)(
d∑

k=1

b2kj

)

= ∥A∥2 ∥B∥2 .

So, ∥AB∥ ⩽ ∥A∥ ∥B∥.

Proof of Lemma 2.5. Let k ∈ N, α ∈ [0, 1), and φ ∈ Ck+³
0 (Ω). Since φ ∈ Ck+³

0 (Rd), we consider the case Ω = R
d without

loss of generality. To show that ϕ ∈ Diffeok+³(Ω,Ω), we need to prove the following:

(i) ϕ is injective;
(ii) ϕ is surjective;

(iii) det(∇¦ϕ) ̸= 0 for x ∈ Ω.

Let us prove that ϕ is injective. That is, for every x, y ∈ Ω such that ϕ(x) = ϕ(y), we have x = y. So, let us suppose that
x+ φ(x) = y + φ(y). Then, we have the following sequence of computations:

|x− y| = |φ(y) − φ(x)| =

∣
∣
∣
∣

∫ 1

0

d

dt
[φ(x+ t(y − x))] dt

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ 1

0

[

∇¦φ(x+ t(y − x))
]

(y − x) dt

∣
∣
∣
∣

⩽

∫ 1

0

∥
∥
∥∇

¦φ(x+ t(y − x))
∥
∥
∥ |y − x| dt.

Because maxx∈Ω

∥
∥∇¦φ(x)

∥
∥ < 1, then there exists ε⋆ > 0 such that

∥
∥∇¦φ(x+ t(y − x))

∥
∥ ⩽ ε⋆ < 1. Hence,

|x− y| = |φ(y) − φ(x)| ⩽ ε⋆

∫ 1

0

|y − x| dt = ε⋆ |y − x| .

This implies that (1 − ε⋆) |y − x| = 0, or equivalently, y = x. This proves the injectivity of ϕ.
Next let us prove that ϕ is surjective. That is, for every y ∈ R

d, there exists x ∈ R
d such that ϕ(x) = y. Let us define

the map Ty : Rd → R
d where Ty(x) := y − φ(x). We want to solve the equation Ty(x) = x. Note that

|Ty(x) − Ty(z)| = |φ(x) − φ(z)| ⩽ ε⋆ |x− z| .

Because ε⋆ < 1, then by Contraction Mapping Theorem, there exists an x ∈ R
d such that x = Ty(x). This holds for

arbitrary y ∈ R
d, proving the surjectivity of ϕ.

Lastly, let us show that det(∇¦ϕ) ̸= 0 in R
d. Note that ∇¦ϕ = I + ∇¦φ, where I = I(x) = x is the identity

matrix/operator. If
∥
∥∇¦φ(x)

∥
∥ < 1, then det(I + ∇¦φ) ̸= 0. Let A(x) := ∇¦φ(x), A ∈ C0(Ω,Rd), ∥A(x)∥ ⩽ ε⋆ < 1,

for all x ∈ Ω, and Bn(x) :=
∑n

k=0(−A(x))k, Bn ∈ C0(Ω;Rd×d) and B(x) :=
∑∞

k=0(−A(x))k. Hence,

∥Bn(x)∥ ⩽

n∑

k=0

∥A(x)∥k ⩽

n∑

k=0

εk⋆ =
1 − εn+1

⋆

1 − ε⋆
⩽

1

1 − ε⋆
,

and {Bn} is a Cauchy sequence in C0(Ω;Rd×d) and B(x) = limn→∞ Bn(x). Therefore, B ∈ C0(Ω;Rd×d) and limn→∞ Bn =
B in C0(Ω;Rd×d). These arguments show that B(x) =

∑∞
n=0(−A(x))n uniformly converges in Ω where B ∈ C0(Ω;Rd×d)

and B(x) = (I + A(x))−1.
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Now, it follows that,

(I + A(x))B(x) = lim
n→∞

(I + A(x))Bn(x) = lim
n→∞

(I− (−A(x))n+1) = I,

or equivalently, I + A(x) = B
−1(x), for all x ∈ Ω. Taking the determinant of both sides of this equation, together with

the matrix inequality, we deduce that det(∇¦ϕ) ̸= 0 in R
d.

To conclude that det(∇¦ϕ) > 0 in R
d. We argue as follows. Consider the set O := {A ∈ R

d×d | ∥A∥ < 1}. Clearly, O
is a connected convex open set. Let us define F (A) := det(I + A). We already prove that F (A) ̸= 0 for all A ∈ O and
F ∈ C0(O;R). Evidently, the zero matrix O ∈ O and F (O) = det I = 1. Hence, it follows that F (A) > 0, for all A ∈ O,
as desired.

To finish the proof, let us note that, for every x ∈ Ω, we have ϕ(x) ∈ Ω. Indeed, if y = ϕ(x) ∈ Ωc, we have Ω ∋ x =
ϕ−1(y) = y ∈ Ωc, which is a contradiction. This concludes the proof.

E.2 Proof of Lemma 4.2

Proof of Lemma 4.2. We first show that for any y ∈ Ω, we have that Z(y) ∈ Ω(ρ). We prove this by contradiction. So,
suppose the statement is not true, then there is a point ya ∈ Ω such that Z(ya) ∈ Γ(ρ) ∪ Σ, Γ(ρ) = S(ρ) for sufficiently
small ρ > 0 (i.e., ∥ρ∥C2+³(Γ) < ε where 0 < εj 1). We have the following situations:

(i) there is a point za ∈ Ω such that Z(za) ∈ Ω(ρ);
(ii) there is a point zb ∈ Ω such that Z(zb) ̸∈ Ω(ρ);

(iii) there exists a curve C(za, zb) such that C(za, zb) \ {zb} ¢ Ω;
(iv) there is a point ya ∈ Ω ∩ C(za, zb) such that Z(ya) ∈ Γ(ρ) ∪ Σ.

However, we can find a point yb ∈ Γ ∪ Σ such that Z(yb) = Z(ya) because Z is a C2+³-diffeomorphism from ∂Ω onto
∂Ω(ρ). But, as we shall show next, the map is injective, i.e., we have that yb = ya, a contradiction.

Now, let us verify that the map is one-to-one. We need to show that for any point ya, yb ∈ Ω such that Z(yb) = Z(ya),
it must be that yb = ya. Let us note that for any pair of points ya, yb ∈ Ω, there exists a curve C(ya, yb) ¢ Ω of class
C1 such that |C(ya, yb)| ⩽ c(Ω)|yb − ya|, for some constant c(Ω) > 0. Hence, the equation Z(yb) = Z(ya) implies that
yb + N(yb)ρ̃(yb) = ya + N(ya)ρ̃(ya), and we get the inequality

|yb − ya| = |N(yb)ρ̃(yb) −N(ya)ρ̃(ya)| ⩽ c(Ω) max
y∈Ω

|∇(N(y)ρ̃(y))| |yb − ya| .

By successively applying the inequality, we will get |yb − ya| = 0, or equivalently, yb = ya. This completes the proof of
the lemma.

E.3 Proof of Lemma 7.2

Proof of Lemma 7.2. The existence result follows from [58], Section 3, Theorem 4, p. 1270, where the general linear
problem with the time-derivative in the boundary condition was studied. We emphasize that the assumption of the
negativity of b§ is an essential condition in the existence proof presented in [58] (see Eq. (3.4)). This same assumption
also serves as a crucial requirement in the proofs of Theorems 4.2 and 5.2 in [16] (see Rem. 4.3).

For the proof of the a priori estimate (7.4) we apply Schauder’s method. That is, using the estimate for the solution
to the corresponding model problem in a half-space [49], Chapter 3, Section 2, one first obtain an estimate of the form

|||Θ|||
(2+³)

Ω,Γ; [0,t]
⩽ c

(

|Θ|
(2)

Ω; [0,t]
+ |ψ2|

(2+³)

Σ; [0,t] + |Θ|
(1+³)

Γ; [0,t] + |ψ1|
(1+³)

Γ; [0,t]

)

,

for some constant c > 0. Here we apply the interpolation inequality (see, e.g., [49], Eq. (2.1), p. 117 or [42], Chap. 6,
Sect. 8)

|u|
(2)

Ω
⩽ ε1

∑

|k|=2

|Dku|
(³)

Ω
+ cε1max

Ω
|u| , (E.1)
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where ε1 > 0 is an arbitrary small number and cε1 → ∞ as ε1 → 0, to |Θ|
(2)

Ω
. We take ε1 small enough so that we will

get an estimate of the form

|||Θ|||
(2+³)

Ω,Γ; [0,t]
⩽ c

(

|Θ|
(1+³)

Γ; [0,t] + |ψ1|
(1+³)

Γ; [0,t] + |ψ2|
(2+³)

Σ; [0,t] + |Θ|∞Ω; [0,t]

)

. (E.2)

Now, to get further with our computation, we note the following equalities for u ∈ C2+³(Ω):







|u|
(1+³)

Ω
=

∑

|j|<1+³

max
Ω

∣
∣
∣D

ju(x)
∣
∣
∣+ [u]

(1+³)

Ω

= max
Ω

|u| +
∑

|j|=1

max
Ω

∣
∣
∣D

ju(x)
∣
∣
∣+

∑

|j|=1

max
x,x̂∈Ω

∣
∣Dju(x) −Dju(y)

∣
∣

|x− y|³

[Du]
(³)

Ω
=
∑

|j|=[³]

max
x,x̂∈Ω

∣
∣Dj+1u(x) −Dj+1u(y)

∣
∣

|x− y|³−[³]

=
∑

|j|=[1+³]

max
x,x̂∈Ω

∣
∣Dju(x) −Dju(y)

∣
∣

|x− y|1+³−[1+³]

≡ [u]
(1+³)

Ω
.

(E.3)

In above equalities, we apply the interpolation inequalities (see [49], Eq. (2.1), p. 117)

[Du]
(³)

Ω
⩽ ε2 |u|

(2)

Ω
+ cε2 |u|

(0)

Ω
and [u]

(³)

Ω
⩽ ε3 |u|

(1)

Ω
+ cε3 |u|

(0)

Ω
, (E.4)

together with (E.1) to get an estimate for |Θ|
(1+³)

Γ; [0,t]. We choose small enough values for ε2 > 0 and ε3 > 0 such that the

right-hand side of the inequality (E.2) contains only the norms of known functions and the quantity maxΩ|Θ(·, τ)|. Since
Θ is harmonic in Ω, we can then apply the maximum principle (see, e.g., [50], Chap. I.3, III, p. 7) on the aforesaid norm
to obtain

|Θ|∞Ω; [0,t] ⩽ |ψ2|
∞
Σ; [0,t] + |Θ|∞Γ; [0,t] .

We next estimate |Θ|∞Γ; [0,t]. Applying the fundamental theorem of calculus, together with the homogenous initial condition

for the function Θ
∣
∣
Γ
, we get

|Θ|∞Γ; [0,t] = max
0⩽Ä⩽t

max
Γ

∣
∣
∣
∣

∫ Ä

0

∂

∂s
Θ(·, s)ds

∣
∣
∣
∣
⩽

∫ t

0

max
Γ

∣
∣
∣
∣

∂

∂s
Θ(·, s)

∣
∣
∣
∣
ds. (E.5)

Inserting this estimate to (E.2), and letting Ψ(t) = |ψ1|
(1+³)

Γ; [0,t] + |ψ2|
(2+³)

Σ; [0,t], leads to

|||Θ|||
(2+³)

Ω,Γ; [0,t]
⩽ c

(

Ψ(t) +

∫ t

0

max
Γ

∣
∣
∣
∣

∂

∂s
Θ(·, s)

∣
∣
∣
∣
ds

)

. (E.6)

Because Ψ(t) is non-negative, then we may apply Grönwall’s inequality (see, e.g., [65], Appendix. 5.1, p. 498) to (E.6)
deducing the desired estimate (7.4).

E.4 Proof of Lemma 8.1

Proof of Lemma 8.1. For some α ∈ (0, 1), let Ω ¢ R
d be an open, connected, bounded set of class C2+³ and u ∈ C2+³(Ω).

Then, Ω satisfies the cone condition and, in particular, the (interior/exterior) ball condition. Let us suppose that, in
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specific, Ω has cone property with the cone having the opening angle θ̂ := θ̂(Ω) and height h. To prove estimates (8.1)
and (8.2), it is enough to show that the following inequalities are true:

[u]
(1)

Ω
⩽ ε1+³[u]

(2+³)

Ω
+
c7
ε
|u|

(0)

Ω
, (E.7)

[u]
(2)

Ω
⩽ ε³[u]

(2+³)

Ω
+
c8
ε2

|u|
(0)

Ω
. (E.8)

We will only verify in detail inequality (E.8), but (E.7) can be shown in a similar fashion. To this end, let us consider
another cone C1 := C1(θ̂, 1) with the same opening angle, but with cone height equal to 1. Using the interpolation
inequality (E.15) (with ε = 1) in Lemma E.1, we get

[u]
(2)
C1

⩽ [u]
(2+³)
C1

+ c(d, θ̂) |u|
(0)
C1
, (E.9)

for any function u ∈ C2+³(C1), where c(d, θ̂) > 0 is a constant that depends on d and θ̂. To get the desired coefficients
in the inequality condition, we observe that for any constant µ̃ > 0 and function ũ(x̃) = u(µ̃x) we have the equality

[ũ]
(l)

Ω
= µ̃l[u]

(l)

Ω
, (E.10)

for all 0 ⩽ l ⩽ 2 + α. So, for u ∈ C2+³(Cε), where the cone Cε := Cε(θ̂, ε) with its vertex at the origin, we apply the
change of variables x̃ = x/ε, 0 < ε ⩽ h, and consider the function ũ(x̃) = u(εx̃) = u(x). Obviously, ũ ∈ C2+³(C1), and
(E.9) also holds for ũ. Applying identity (E.10) to our case, we get

[ũ]
(2)
Cε

⩽ [ũ]
(2+³)
Cε

+ c̃(d, θ̂)|ũ|
(0)
Cε

⇐⇒ [u]
(2)
Cε

⩽ ε³[u]
(2+³)
Cε

+
c̃(d, θ̂)

ε2
|u|

(0)
Cε
, (E.11)

for some constant c̃(d, θ̂) > 0. Now, note that for any x ∈ Ω ∈ C2+³, we can construct a cone Cε with vertex x and such
that Cε ¢ Ω. Hence, using (E.11), we can further get the estimate

[u]
(2)
Cε

⩽ ε³[u]
(2+³)

Ω
+

c̃

ε2
|u|

(0)

Ω
.

Because x ∈ Ω is taken arbitrarily, we conclude that

[u]
(2)

Ω
⩽ ε³[u]

(2+³)

Ω
+
c7
ε2

|u|
(0)

Ω
,

for some constant c7 > 0, proving (E.8). Using the definition of the norm |·|
(l)

Ω
, we finally recover inequality (8.2). The

other interpolation inequality (E.7) from which (8.1) relies can be shown in a similar manner as above with the help of
the interpolation inequality (E.14) in Lemma E.1 (stated in the Sect. E.5 below).

E.5 Interpolation inequalities

We justify in this subsection the interpolation inequalities used to proved Lemma 8.1. Similar and more general
interpolation inequalities are given and proved in [42], Section 6.8, pp. 130–136 (see also [53], Cor. 5.3.4, p. 144 for
analogous results).

Lemma E.1. Let Br be a ball in R
d with radius r and consider a function u ∈ C1+³(Br), α ∈ (0, 1). For any real

number ε ∈ (0, r], the following inequalities hold:

[u]
(1)
Br

⩽ ε³[u]
(1+³)
Br

+
cd
ε

|u|
(0)
Br
, (E.12)

[u]
(³)
Br

⩽ ε[u]
(1+³)
Br

+
cd
ε³

|u|
(0)
Br
, (E.13)
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where cd is a positive constant that depends only on the dimension d. Moreover, if u ∈ C2+³(Br), then we further have

[u]
(1)
Br

⩽ ε(1+³)[u]
(2+³)
Br

+
cd
ε

|u|
(0)
Br
, (E.14)

[u]
(2)
Br

⩽ ε³[u]
(2+³)
Br

+
cd
ε2

|u|
(0)
Br
. (E.15)

Proof. Consider a ball Br ¢ R
d with radius r and let x ∈ Br. Let us choose a point in Br, say x0, such that x ∈

Bε/2(x0) ¢ Br. Over Bε/2(x0), we integrate ∂xiu and apply Green’s formula to obtain

∫

Bε/2(x0)

∂xiu dx =

∫

∂Bε/2(x0)

u cos(ν∂Bε/2
, xi) ds, (E.16)

where ν∂Bε/2
is the outward unit normal vector to the boundary ∂Bε/2. Because u ∈ C1+³(Br), then the Mean Value

Theorem can be applied and it tells us that there is a point x̄ ∈ Bε/2 such that

∂xiu(x̄) =
1

∣
∣Bε/2

∣
∣

∫

Bε/2(x0)

∂xiu dx,

from which, together with (E.16), we can obtain the estimate (cf. [42], Eq. (2.1), p. 22)

|∂xiu(x̄)| =
1

∣
∣Bε/2

∣
∣

∣
∣
∣
∣
∣

∫

Bε/2(x0)

∂xiu dx

∣
∣
∣
∣
∣
⩽

∣
∣∂Bε/2

∣
∣

∣
∣Bε/2

∣
∣

⩽

2πd/2

Γf (d/2)

( ε

2

)d−1

πd/2

Γf (d/2 + 1)

( ε

2

)d
|u|

(0)
Br

=
2d

ε
|u|

(0)
Br
,

where Γf denotes the gamma-function. For x̄ ̸= x, we can then make the following estimation of |∂xiu(x)|:

|∂xiu(x)| ⩽ |∂xiu(x) − ∂xiu(x̄)| + |∂xiu(x̄)| ⩽
|∂xiu(x) − ∂xiu(x̄)|

|x− x̄|³
|x− x̄|³ +

2d

ε
|u|

(0)
Br

⩽ ε³[∂xiu]
(³)
Br

+
2d

ε
|u|

(0)
Br
.

This verifies estimate (E.12).

Next, we validate (E.13) using (E.12). For any x, x̂ ∈ Br, x ̸= x̂, we have either |x− x̂| < ε or |x− x̂| ⩾ ε which would
give us the inequalities

|u(x) − u(x̂)|

|x− x̂|³
= |x− x̂|1−³ |u(x) − u(x̂)|

|x− x̂|
< ε1−³ |u|

(1)
Br
,

and

|u(x) − u(x̂)|

|x− x̂|³
⩽

1

ε³

(

max
x∈Ω

|u(x)| + max
x̂∈Ω

|u(x̂)|

)

=
2

ε³
|u|

(0)
Br
,

respectively. In either case, we get the estimate

|u(x) − u(x̂)|

|x− x̂|³
⩽ ε1−³ |u|

(1)
Br

+
2

ε³
|u|

(0)
Br
.

Combining the above estimate with (E.12), we obtain (E.13).
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We next prove (E.14) and (E.15) using (E.12) and (E.13), respectively. To this end, let us assume that u ∈ C2+³(Br).
Then, (E.13) implies that

[u]
(1+³)
Br

⩽ ε1[u]
(2+³)
Br

+
cd
ε³1

|u|
(1)
Br
, (E.17)

for any ε1 ∈ (0, r]. Let us denote ε = ε2 in (E.12) and use the resulting inequality to estimate the quantity |u|
(1)
Br

in
(E.17). These lead us to

(

1 − cd

(
ε2
ε1

)³)

[u]
(1+³)
Br

⩽ ε1[u]
(2+³)
Br

+
cd

2

ε³1 ε2
|u|

(1)
Br
. (E.18)

To force a single parameter ε ∈ (0, r] in the above inequality, we apply a scaling technique. To this end, we introduce the
scaling ε1 = t1ε and ε2 = t2ε, where t1, t2 ∈ (0, 1) and substitute these quantities to (E.18) to obtain

1

t1

(

1 − cd

(
t2
t1

)³)

[u]
(1+³)
Br

⩽ ε[u]
(2+³)
Br

+
cd

2

t1+³
1 t2ε1+³

|u|
(0)
Br
. (E.19)

Now, we only need to choose the values of t1 and t2 such that t−1
1

(
1 − cd

(
t2t

−1
1

)³)
= 1 and denote by c̃d :=

cd
2(t1+³

1 t2)−1 > 0 to obtain

ε³[u]
(1+³)
Br

⩽ ε1+³[u]
(2+³)
Br

+ c̃d |u|
(0)
Br
.

Using the above estimate for the quantity ε³[u]
(1+³)
Br

in (E.12), and after some change of notations, we finally get (E.14).
Of course, the inequality holds for any ε ∈ (0, r] since we choose t1, t2 ∈ (0, 1).

We apply the same technique to prove (E.15) using (E.12) and (E.14). That is, using (E.12) with u ∈ C2+³(Br), and

then applying (E.14) to estimate ε |u|
(1)
Br

, we obtain

ε2[u]
(2)
Br

⩽ ε2+³[u]
(2+³)
Br

+ cdε |u|
(1)
Br

⩽ (1 + cd)ε2+³[u]
(2+³)
Br

+ cd
2 |u|

(0)
Br
.

Again, to force the constant, which is dependent only on the dimension d, to appear only as a coefficient of |u|
(0)
Br

, we
consider the scaled free parameter tε̃ = ε ∈ (0, r], where t ∈ (0, 1), to obtain

ε̃2[u]
(2)
Br

⩽ (1 + cd)t³ε̃2+³[u]
(2+³)
Br

+
( cd
t

)2

|u|
(0)
Br
.

We choose t ∈ (0, 1) such that (1 + cd)t³ = 1 and let c̃d :=
(
cdt

−1
)2

in order to finally get

[u]
(2)
Br

⩽ ε̃³[u]
(2+³)
Br

+
c̃d
ε̃2

|u|
(0)
Br
,

which holds for all ε̃ ∈ (0, r]. This verifies the last estimate (E.15), completing the proof of the lemma.
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