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Abstract
The exterior Bernoulli problem – a prototype stationary free boundary
problem – is rephrased into a shape optimization setting using an energy-
gap type cost functional that is subject to two auxiliary problems: a pure
Dirichlet problem and a mixed Dirichlet-Robin boundary value problem.
It is demonstrated here that depending on what method is used, the
shape gradient of the cost functional may appear in a di昀昀erent form. The
dissimilarity in structure comes from the way the adjoint variable was
utilized in the computation – then resulting to a di昀昀erent adjoint prob-
lem. The shape derivative is 昀椀rst obtained via Delfour-Zolésio’s minimax
formulation, and then by using the weak form of the Eulerian deriva-
tive of the states coupled with the adjoint method. The latter approach
is accomplished by 昀椀rst showing the existence of the derivatives. A fast
iterative scheme based on 昀椀nite element method is then formulated to
numerically solve the proposed shape optimization formulation. The fea-
sibility of the method – highlighting its e昀케ciency and practicality – is
illustrated through numerical examples in two and three dimensions.
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2 Numerical solution to the exterior Bernoulli problem

1 Introduction
Let A be a given open (non-empty) bounded and connected domain in Rd,
d ∈ {2, 3}, with a 昀椀xed boundary Γ := ∂A, and λ < 0 be a given 昀椀xed constant.
The exterior Bernoulli free boundary problem is described as a problem of
昀椀nding an open bounded connected domain B ⊂ Rd, B , ∅, with a boundary
Σ := ∂B, containing the closure of A, and an associated state function u := u(Ω),
where Ω = B \ A, such that the following overdetermined boundary problem is
satis昀椀ed:

−∆u = 0 in Ω, u = 1 on Γ, u = 0 and ∂nu = λ on Σ, (1)

where ∂nu := ∇u · n denotes the (outward) normal derivative of u. For any
λ < 0, problem (1) is known to admit a classical solution for simply connected
bounded domain Ω. In addition, the shape solution Ω∗ is unique for bounded
convex domains A [1], and the free boundary Σ∗ is C2,α (α ∈ (0, 1)) regular (see
[2, Thm 1.1]). For more details about the qualitative properties of solutions
to (1) and their numerical approximations, we refer the readers to [1] (see also
[3] for a related Bernoulli problem with a geometric constraint).

The exterior Bernoulli problem (1) (a.k.a. the Alt-Ca昀昀arelli problem, see
[4]) originates from the description of free surfaces for ideal 昀氀uids [5]. It also
arises in numerous other applications, for example in the context of optimal
design, electro chemistry, and electro statics [1, 6].

A well-established approach to solve a free boundary problem is to for-
mulate it into a shape optimization setting. Such approach can be done in
di昀昀erent ways. For example, one can choose one of the boundary conditions
on the free boundary to obtain a well-posed state equation and then track the
remaining boundary data in a least-squares sense (see [7–13]). Alternatively,
one can consider an energy-gap type cost function which consists of two aux-
iliary states: one that is a solution of a pure Dirichlet problem and one that
satis昀椀es a mixed Dirichlet-Neumann problem (see [14–18]). Modi昀椀cations of
these classical formulations were recently o昀昀ered in [19, 20], including a new
boundary integral type cost functional minimization approach put forward in
[21]. In these formulations, the mixed Dirichlet-Neumann problem is replaced
by a mixed Robin-Neumann problem, and it was found through multifarious
numerical experiments that such a modi昀椀cation provide some computational
advantages over the classical formulations in solving the free boundary prob-
lem (1). One may also apply the so-called coupled complex boundary method
[22] to write the overdetermined problem as an optimization problem with a
complex valued state problem, see [23].

Motivated by the above-mentioned works, we consider here the following
shape optimization reformulation of (1)

J(Ω) =
1

2

∫

Ω

|∇(uD − uR)|2 dx −→ inf, (2)
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where the state variables uD and uR satisfy the following PDE systems

− ∆uD = 0 in Ω, uD = 1 on Γ, uD = 0 on Σ; (3)
− ∆uR = 0 in Ω, uR = 1 on Γ, ∂nuR + βuR = λ on Σ, (4)

respectively, and β := β(x) > 0 is a 昀椀xed Lipschitz (non-identically zero) func-
tion in Rd. For β ≡ 0 in (4), we recover the classical Kohn-Vogelius1 method to
(1) which has already been extensively studied in [14, 15, 18, 25]. By this con-
nection, the minimization problem (2) may be viewed as a small generalization
of the Kohn-Vogelius method.

Observe that the minimizer of J is the solution of (1). To validate this
claim, let us consider the functional space

V(Ω) = {v ∈ H1(Ω) | v = 0 on Γ}

endowed with the norm

‖ · ‖V(Ω) :=

(∫

Ω

| · |2 dx +

∫

Σ

| · |2 ds

)1/2

.

On the one hand, if (Ω, u(Ω)) satis昀椀es (1), then uD = uR = u, and uR = 0 and
∂nuR = λ on Σ; therefore, J(Ω) = 0. On the other hand, since uD−uR ∈ V(Ω), the
shape functional J(Ω) is well-de昀椀ned. If J(Ω) = 0, then 0 =

∫
Ω
|∇(uD − uR)|2 dx =

−
∫
Σ

(β|uR|2 + uR(∂nuD − λ)) ds. This equation obviously holds when uR = 0 on
Σ, and so ∂nuR = λ on Σ. It is also true when ∂nuD = λ on Σ, from which it
is evident that uR = 0 on Σ. In fact, since the semi-norm | · |H1(Ω) is a norm on
V(Ω), then J(Ω) = 0 indeed implies that uD = uR and u = uD = uR is a solution
of (1). Hence, (Ω, u(Ω)) is a solution of (1) if and only if J(Ω) = 0. Consequently,
we see that solving (1) is equivalent to 昀椀nding (Ω, u(Ω)) such that

J(Ω) = min
Ω̃

J(Ω̃).2 (5)

Because of the equivalence of the shape optimization problem (5) to the
overdetermined boundary value problem (1), the existence of solution to the
aforementioned shape problem is guaranteed. Nevertheless, the question of
existence of optimal solution to (5) can be addressed rigorously using, for
example, the ideas developed in [10, 26, 27] and apply the tools furnished, for
instance, in [28–30].

Note that since (16) and (18) are uniquely solvable in H1(Ω), one can de昀椀ne
the map Ω 7→ (uD(Ω), uR(Ω)) whose graph is given by

F = {(Ω, uD, uR) : Ω ∈ Oad, uD(Ω) and uR(Ω) solves (16) and (18) on Ω}.

1This case is often attributed to Kohn and Vogelius [24] since they were among the 昀椀rst to use
the functional in the context of inverse problems.

2Here, it is understood that the minimization is carried out over some set of admissible domains.
This admissible set will be speci昀椀ed at the beginning of Section 2.
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Problem (5) is then equivalent to minimizing J(Ω) = J(Ω, uD, uR) on F . To
prove the existence of solution to this minimization problem, the set F needs
to be endowed with a topology for which it is compact and then prove that
J is lower semi-continuous. We will not give the details of the proof here, but
a similar approach used in [20] can be applied, at least for the case of two
dimensions. For the three dimensional case, a more general approach using the
concept of convergence of sets in the sense of Hausdor昀昀 [31] combined with
(uniform) cone property (see [32]) can be used.

Further motivation of this work will be given in this paragraph. The shape
optimization problem (5) was 昀椀rst studied in [33]. However, it lacks of any
numerical investigation that could somehow evince the quality of the formu-
lation when employed in practice. This fact clearly warrants further research
on the present formulation. The main purpose of this investigation, therefore,
is to give a numerical realization of (5). In the latter section of the paper, we
will show that the present formulation actually provides a fast numerical ap-
proximation of the solution to (1) (this highlights the numerical part of this
study) when solved via a Lagrangian-type 昀椀rst-order gradient-based iterative
scheme. Accordingly, the structure of the so-called shape gradient is a requi-
site in this exposition. This expression can be obtained in various ways, which
depends – among other requirements – on the degree of smoothness of the do-
main. For example, when the boundary of the domain is C2,1 regular, one may
apply the minimax formulation [34] (see also [35, Chap. 10.6]) to obtain the
boundary integral representation of the shape derivative of J. The expression
can also be obtained through the chain rule approach as done in [33]. Con-
trary to the minimax formulation, the said technique demands the knowledge
of the shape derivative of the states which are quite tedious to establish, es-
pecially in the case of more complicated state constraints (see, e.g., [17] and
[21, Appx. A]). The method developed in [34], however, naturally requires the
use of appropriate adjoint state systems in order to characterize the shape
derivative of the cost, thereby bypassing the use of the shape derivative of the
states. It is worth to mention here that both the aforementioned approaches
require a C2,1 regularity of the domain (and of the deformation 昀椀eld) in order
to derive the boundary integral expression of J. Nevertheless, it is possible to
obtain the shape derivative of the cost with Ω belonging only to the C1,1 class
of domains. This can be done either through the method developed in [36]
or by using the Eulerian derivative of the states3 – the latter which we will
demonstrate here with the help of the adjoint method.

To sum up, the main points and contributions of this note are as follows:
• to provide a rigorous derivation of the shape derivative of J along the

lines of argumentation (by the minimax formulation) used in [34, Sec. 6]
– bypassing the need to use the strong form of the shape derivative of the
states;

3For a related study regarding the existence of such a derivative, but for the case of stationary
nonlinear heat equation, one may refer to [37].
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• to characterize the boundary integral form of the shape derivative of J –
under the very mild C1,1 regularity assumption on Ω – by means of only
the weak form of the Eulerian derivative of the states coupled with the
adjoint method;
• to carry out – in a fast and e昀케cient manner – the numerical realization of

(5) via a Lagrangian-type gradient-based numerical scheme using 昀椀nite
element methods (FEMs) without remeshing.

Additionally, in this investigation we want to demonstrate that the shape
gradient of J may take a di昀昀erent structure depending on what approach is
used to derive the expression (i.e., e.g., via the minimax formulation or through
the Eulerian derivative of the state). The di昀昀erence in structure essentially
comes from the way the adjoint variable is utilized in the computation.

Notice in (4) that we have the freedom to choose the Robin parameter β,
as long as it is non-negative and at least Lipschitz continuous. In our numer-
ical experiments, we will consider taking β as the mean curvature κ of the
free boundary Σ. Although it is not yet clear at this point the motivation in
considering such choice, the matter will be made more transparent after the
expression for the shape gradient of J is obtained; see Proposition 2.1.1 and
Proposition 2.2.5 (refer also to Remark 6 for a related note). We also want to
emphasize in advance that the said choice of β seems to provide fast approx-
imation of the optimal shape solution to the shape problem (5) as observed
in subsection 3.2. The main point, on the other hand, of the second objective
stated above is to demonstrate how to apply the adjoint method to deal with
the derivative of a Robin problem that appears naturally in the structure of
the shape gradient that was obtained through the Eulerian derivative of the
states. Meanwhile, a numerical realization of the present shape optimization
problem (carried out here via FEM) is demanded to check the correctness of
the shape derivatives and to showcase the feasibility and practicality of (2) in
resolving (1). We mention in advance that, as opposed to previous works, we
do not employ in our numerical scheme any remeshing process such as adap-
tive mesh re昀椀nement. We do this to evaluate to some extent the stability of
our method.

The remaining part of the paper is outlined as follows. In the next section,
we derive the 昀椀rst-order shape derivative of J by minimax formulation (sub-
sections 2.1), and then via the Eulerian derivative of the states coupled with
the adjoint method (subsection 2.2). In Section 3, we carry out the numeri-
cal realization of problem (5). First, we detail in subsection 3.1, the algorithm
used to numerically solve (5), and then present some numerical tests in sub-
sections 3.2–3.4. Since most of the previous studies only dealt with problems
in two dimensions (except in [7, 23], and also in [38] where a Newton scheme
with a Dirichlet energy functional was employed to solve a slightly more gen-
eral Bernoulli free boundary problem), we also put our attention on testing
the proposed method to three dimensional cases (see subsection 3.4). Finally,
we give a short conclusion in Section 4.
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2 Shape derivatives of the cost
Let us consider a hold-all set U ⊂ Rd (which is at least Lipschitz regular)
strictly containing Ω (the closure of Ω) and de昀椀ne Tt as the perturbation of
the identity id given by the map

Tt = Tt(V) = id + tV,

where V is a t-independent deformation 昀椀eld belonging to the admissible space

Θ
k := {V ∈ Ck,1(Ω)d | V = 0 on Γ ∪ ∂U}, 4 (6)

and k is a natural number (later on speci昀椀ed depending on what is needed).
Here, and throughout the paper, t is assumed su昀케ciently small such that Tt is
a di昀昀eomorphism from Ω ∈ Ck,1 onto its image. That is, the reference domain
Ω and its perturbation Ωt have the same topological structure and regularity
under the transformation Tt. To be more speci昀椀c, we let ε > 0 be a su昀케ciently
small real number such that [t 7→ Tt] ∈ C1(I,C1,1(U)d), where I := [0, ε].

By de昀椀nition, we also have the perturbation Σt := Tt(Σ) and Γt := Tt(Γ) ≡ Γ.
The latter identity is due to the fact that V = 0 on Γ which means that,
essentially, Γ remains a part of Ωt for all t. Moreover, Ω0 = Ω and Σ0 = Σ.
Accordingly, the set of all admissible domains Oad is given as follows

Oad =

{
Tt(V)(Ω) ⊂ U | Ω ∈ Ck,1, k ∈ N, t ∈ I,V ∈ Θk

}
. (7)

The functional J : Oad → R has a directional 昀椀rst-order Eulerian derivative
at Ω in the direction of the 昀椀eld V if the limit

lim
t↘0

J(Ωt) − J(Ω)

t
=: dJ(Ω)[V] (8)

exists (cf. [35, Sec. 4.3.2, Eq. (3.6), p. 172] and [40, Def. 2.1]). If the map
V 7→ dJ(Ω)[V] is linear and continuous, then the shape functional J is shape
di昀昀erentiable at Ω. In this case, the map is referred to as the shape gradient
of J at Ω.

Throughout the paper, for simplicity, we assume that β is a positive
constant (unless otherwise stated). Moreover, we write V · n as Vn.

2.1 Delfour-Zolésio’s minimax formulation approach
We derive here the shape derivative of J via a minimax formulation with
k = 2 in (7).5 Because we are considering domains of class of C2,1, we can also
characterized the shape derivative of J in terms of a boundary integral.

4For discussions about open sets of class Ck,l, k ∈ N, l ∈ (0, 1], see [39].
5A Lipschitz regularity for Γ is enough to establish the shape derivatives, however, for simplicity,

we assume that Γ and Σ are both Ck,1 regular, where k = 1 or 2.
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Proposition 2.1.1 Let Ω ∈ C2,1, V ∈ Θ2, uD be the solution to (3), and uR satisfy (4).
Then, J is shape di昀昀erentiable, and its shape derivative is dJ(Ω)[V] =

∫
Σ
Gβn · V ds,

where the shape gradient Gβ is given by6

Gβ := −1

2
(∂nuD)2

+ ∂τuR∂τpR − ∂nuR(κ − β)pR +
1

2

(
(∂nuR)2

+ (∂τuR)2
)
, (9)

and the adjoint state pR ∈ H1(Ω) satis昀椀es the PDE system

−∆pR = 0 in Ω, pR = 0 on Γ, ∂n pR + βpR = βuR − λ on Σ. (10)

Moreover, at the shape solution Ω∗ of (1), we have Gβ ≡ 0 on Σ∗ and it holds that

dJ(Ω∗)[V] = 0, for all V ∈ Θ2.

Before we prove the proposition, we 昀椀rst introduce a few additional no-
tations. We denote by DTt the Jacobian matrix of Tt and write the inverse
and inverse transpose of this matrix by (DTt)

−1 and (DTt)
−>, respectively. For

convenience, we de昀椀ne

It := det DTt, At := It(DT−1
t )(DTt)

−>, and Bt := It |(DTt)
−>

n|.

For t ∈ I, It is positive. At t = 0, it is evident that I0 = 1, A0 = id, B0 =

1. Moreover, on I, the maps t 7→ It, t 7→ At, and t 7→ Bt are continuously
di昀昀erentiable. That is, for t ∈ I, we have (see, e.g., [11, 36])



[t 7→ It] ∈ C1(I,C(Ω)),

[t 7→ At] ∈ C1(I,C(Ω)d×d),

[t 7→ Bt] ∈ C1(I,C(Σ)).

(11)

Additionally, [t 7→ It] ∈ C1(I,C0,1(U)) and [t 7→ At] ∈ C(I,C(U)d×d). The
derivatives of the above maps are respectively given as follows:

d

dt
It

∣∣∣
t=0
= lim

t→0

It − 1

t
= div V,

d

dt
At

∣∣∣
t=0
= lim

t→0

At − id

t
= (div V)id − DV − (DV)> =: A,

d

dt
Bt

∣∣∣
t=0
= lim

t→0

Bt − 1

t
= divΣ V = div V

∣∣∣
Σ
− (DVn) · n,

(12)

where divΣV denotes the tangential divergence of the vector V on Σ.
For later use, we assume in addition that for t ∈ I, we have

0 < Λ1 6 It 6 Λ2 and 0 < Λ3|ξ|2 6 Atξ · ξ 6 Λ3|ξ|2, (13)

6The vector τ here represents the unit tangent vector on Σ.
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for all ξ ∈ Rd, for some constants Λ1, Λ2, Λ3, and Λ4 (Λ1 < Λ2, Λ3 < Λ4).
Moreover, for u, v ∈ H1(Ω) and t ∈ I, we introduce the following forms

at(u, v) =

∫

Ω

At∇u · ∇v dx +

∫

Σ

Btβuv ds, and bt(v) =

∫

Σ

λBtv ds

For t = 0, we write a0(·, ·) = a(·, ·) and b0(·) = b(·), where

a(u, v) =

∫

Ω

∇u · ∇v dx +

∫

Σ

βuv ds and b(v) =

∫

Σ

λv ds,

respectively. Also, for brevity, we occasionally write

(∇u,∇v)Ω =

∫

Ω

∇u · ∇v dx and 〈u, v〉Σ =
∫

Σ

uv ds.

So, we may write a(u, v) = (∇u,∇v)Ω + 〈βu, v〉Σ.
Lastly, as we do not care about exact estimates, we use in this paper the

notation “.” which means that if P . Q, then we can 昀椀nd some constant
c > 0 such that P 6 cQ. Of course, Q & P is de昀椀ned as P . Q.

Proof of Proposition 2.1.1 Let us assume, for the mean time, that Ω ∈ C1,1 and
V ∈ Θ1. To start, we observe that

J(Ω) = JD(Ω) + JDR(Ω) + JR(Ω),

where JD(Ω) = 1
2 (∇uD,∇uD)Ω, JDR(Ω) = −(∇uD,∇uR)Ω, and JR(Ω) = 1

2 (∇uR,∇uR)Ω.
By Green’s formula, together with (3), we can actually write JDR as JDR(Ω) =

−
∫
Γ
∂nuR ds. Since V = 0 on Γ, the shape derivative of JDR vanishes, and therefore

does not contribute any value to the shape gradient. From this observation, we may
disregard the functional JDR and consider, instead of (5), the minimization problem
J(Ω) = min

Ω̃
JD(Ω̃) + min

Ω̃
JR(Ω̃). This tells us that, essentially, we have dJ(Ω)[V] =

dJD(Ω)[V]+dJR(Ω)[V]. However, we keep JDR in our argumentation for some technical
reasons (see, e.g., Remark 1).

The proof which proceeds in four steps is now in order.

Step 1. We 昀椀rst construct appropriate functionals corresponding to JD and JR

over the perturbed domain Ωt. Taking into account the extra constraints uDt = 1 on
Γ and uDt = 0 on Σt for JD(Ωt), and similarly, uRt = 1 on Γ for JR(Ωt), we introduce
the functionals

GD(t, ϕ, ψ) := FD(Ωt, ϕ) + LD(Ωt, ϕ; ψ), where ϕ ∈ H1(Ωt) and ψ ∈ H1
0 (Ωt),

GR(t, ϕ, ψ) := FR(Ωt, ϕ) + LR(Ωt, ϕ; ψ), where ϕ ∈ H1(Ωt) and ψ ∈ V(Ωt).

Here7

FD(Ωt, ϕ) =
1

2

∫

Ωt

|∇ϕ|2 dxt,

7We have used here the identity
∫
∂Ωt

ϕ∂nψ dst =

∫
Ωt

(ϕ∆ψ + ∇ϕ · ∇ψ) dxt, where we actually assumed
that ϕ ∈ H2(Ωt) and ψ ∈ H1

0
(Ωt) ∩ H2(Ωt). The aforesaid higher regularity of the variables is justi昀椀ed

in Step 2 of the proof.
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FR(Ωt, ϕ) =
1

2

∫

Ωt

|∇ϕ|2 dxt −
∫

Γ

∂nϕ ds,

LD(Ωt, ϕ; ψ) =

∫

Ωt

(ψ∆ϕ + ϕ∆ψ + ∇ϕ · ∇ψ) dxt −
∫

Γ

∂nψ ds,

LR(Ωt, ϕ; ψ) =

∫

Ωt

∇ϕ · ∇ψ dxt +

∫

Σt

(βϕ − λ)ψ dst −
∫

Γ

(ϕ − 1)∂nψ ds.

Henceforward, we let

V1(Ω) = {v ∈ H1(Ω) | v = 1 on Γ},
W(Ω) = {v ∈ H1(Ω) | v = 1 on Γ and v = 0 on Σ},

and use similar notations for functional spaces de昀椀ned on perturbed domains.
Now, at t = 0, we have that

JD(Ω) = min
ϕ∈H1(Ω)

sup
ψ∈H1

0
(Ω)

GD(0, ϕ, ψ); JR(Ω) = min
ϕ∈H1(Ω)

sup
ψ∈V(Ω)

GR(0, ϕ, ψ),

since, respectively, we have

sup
ψ∈H1

0
(Ω)

GD(0, ϕ, ψ) =

{
F(Ω, uD) if ϕ = uD,

+∞ otherwise;
(14)

sup
ψ∈V(Ω)

GR(0, ϕ, ψ) =

{
F(Ω, uR) if ϕ = uR,

+∞ otherwise. (15)

Let us check our claim for JR(Ω) (the same argument applies for con昀椀rming claim
(15)). Indeed, at t = 0, we get

GR(0, ϕ, ψ) = FR(Ω0, ϕ) + LR(Ω0, ϕ; ψ),

where ϕ ∈ H1(Ω0) and ψ ∈ V(Ω0). Since Ω0 = Ω, we can write

GR(0, ϕ, ψ) =
1

2

∫

Ω

|∇ϕ|2 dx −
∫

Γ

∂nϕ ds

+

∫

Ω

∇ϕ · ∇ψ dx +

∫

Σ

(βϕ − λ)ψ ds −
∫

Γ

(ϕ − 1)∂nψ ds,

for ϕ ∈ H1(Ω) and ψ ∈ V(Ω). Taking ϕ = uR ∈ H1(Ω) gives us

GR(0, ϕ, ψ) =
1

2

∫

Ω

|∇uR|2 dx −
∫

Γ

∂nuR ds

+

∫

Ω

∇uR · ∇ψ dx +

∫

Σ

(βuR − λ)ψ ds −
∫

Γ

(uR − 1)∂nψ ds,

for ψ ∈ V(Ω). The last integral over Γ above vanishes since uR = 1 on Γ. Meanwhile,
the third and fourth integrals also vanish. To see this, we multiply the Laplace
equation in (4) by any function ψ ∈ V(Ω) and apply integration by parts to obtain
a(uR, ψ) = b(ψ) (cf. problem (18) below). Clearly, GR(0, ϕ, ψ) = FR(Ω, ϕ), for ϕ = uR.
On the other hand, if ϕ , uR, then the supremum of GR(0, ϕ, ψ) blows-up because it is
convex continuous with respect to ϕ (note that FR(Ω, ϕ) is non-negative) and concave
continuous with respect to ψ. This veri昀椀es assertion (15).

Now, by a similar observation, GD(0, ϕ, ψ) is also convex continuous with respect
to its 昀椀rst argument ϕ and concave continuous with respect to the second argument
ψ. Hence, in accordance with [41, Chap. IV], these functionals both admit a saddle
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point. Particularly, GD has the saddle point (uD, pD) provided it satis昀椀es the following
variational problems:


昀椀nd uD ∈ W(Ω) such that

(∇uD,∇ψ)Ω = 0, ∀ϕ ∈ H1
0 (Ω);

(16)

昀椀nd pD ∈ V(Ω), pD = −uD on Σ, such that

(∇pD,∇ψ)Ω = 0, ∀ϕ ∈ H1
0 (Ω).

(17)

On the other hand, GR has the saddle point (uR, pR) provided that it is a solution to
the following variational problems:


昀椀nd uR ∈ V1(Ω) such that

a(uR, ϕ) = b(ϕ), ∀ϕ ∈ V(Ω);
(18)


昀椀nd pR ∈ V(Ω) such that

a(pR, ϕ) = 〈βuR, ϕ〉Σ − b(ϕ), ∀ϕ ∈ V(Ω).
(19)

The saddle points (uD, pD) and (uR, pR) are actually unique due to the unique solv-
ability of the variational problems (16)–(19).8 Note here that equations (16) and (18)
are in fact the respective weak formulations of the state equations (3) and (4).

A similar analysis also holds on the transformed domain Ωt, and we have
JD(Ωt) = min

ϕ∈H1(Ωt)
sup

ψ∈H1
0
(Ωt)

GD(t, ϕ, ψ),

JR(Ωt) = min
ϕ∈H1(Ωt)

sup
ψ∈V(Ωt)

GR(t, ϕ, ψ).
(20)

The saddle point (uDt, pDt) := (uD(Ωt), pD(Ωt)) of GD(t, ϕ, ψ) is characterized by the
following system of equations

LD(Ωt, uDt; ϕ) = 0, ∀ϕ ∈ H1
0 (Ωt), (21)

dFD(Ωt, uDt; ϕ) + dLD(Ωt, uDt; pDt; ϕ) = 0, ∀ϕ ∈ H1
0 (Ωt). (22)

Obviously, at t = 0, equations (21) and (22) respectively coincide with (16) and
(17). On the other hand, the saddle point (uRt, pRt) := (uR(Ωt), pR(Ωt)) of GR(t, ϕ, ψ) is
characterized by the set of equations

LR(Ωt, uRt; ϕ) = 0, ∀ϕ ∈ V(Ωt), (23)
dFR(Ωt, uRt; ϕ) + dLR(Ωt, uRt; pRt; ϕ) = 0, ∀ϕ ∈ V(Ωt), (24)

which, when t = 0, are equivalent to problems (18)–(19).

Step 2. Our goal is to get the derivative of the functionals GD(t, ϕ, ψ) and GR(t, ϕ, ψ)

with respect to the parameter t > 0 through the application of Theorem A.1 furnished
in [43]. The application of the said theorem, however, is not actually straightforward
because the function spaces appearing in (20) also depend on t. To circumvent this
issue, we employ the so-called function space embedding technique put forward in
[35, Chap. 10.6].9

8In a slightly more general case, the existence of (unique) weak solution to the variational form
of the Robin problem (4) also follows from Lax-Milgram lemma provided, in particular, that the
Robin term β := β(x) ∈ L∞(Σ), and is positive almost everywhere in the free boundary (cf., e.g, [42,
Lem. 7.36.3, p. 617]).

9In this method, a large enough set that contains all admissible transformations of Ω is intro-
duced, making the Lagrangians involved in the formulation to admit non-singleton sets of saddle
points.
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Before we proceed, let us discuss shortly the regularity of the saddle points. For
a domain Ω of class Ck,1, k > 1, the saddle point (uD, pD) belongs to [Hk+1(Ω)]2

(see, e.g., [16, Thm. 29]). Analogously, the saddle point (uR, pR) is also an element
of [Hk+1(Ω)]2 whenever Ω is of class Ck,1 (see, e.g., [44, Rem. 3.5]).10 Furthermore,
if V ∈ Θk, then we can also say that the pairs (uDt, pDt) and (uRt, pRt) both belong to
[Hk+1(Ωt)]

2 since Tt is a Ck,1 di昀昀eomorphism.
Now, by our initial assumption on Ω and V, we can get the H2 regularity of the

saddle points. Because Rd ⊃ U ⊃ {Ωt | t ∈ I}, then we can write
Ji(Ωt) = min

Φ∈H2(Rd)
sup

Ψ∈H2(Rd)

Gi(t,Φ,Ψ), (25)

for each index i ∈ {D,R}, where the indices D and R correspond to every expressions or
terms associated with the pure Dirichlet problem and mixed Dirichlet-Robin problem,
and to the Lagrangians GD and GR, respectively.11 In above min-sup expression, the
functional Gi(t,Φ,Ψ) is de昀椀ned as

Gi(t,Φ,Ψ) = F(Ωt,Φ) + Li(Ωt,Φ,Ψ), (26)
where (Φ,Ψ)|Ωt

= (uit, pit), for each i ∈ {D,R}.
The set of saddle points of Gi(t,Φ,Ψ), i ∈ {D,R}, which we denote here by S i(t),

are not singletons since S i(t) = Xi(t) × Yi(t) ⊂ [H2(Rd)]2, where
Xi(t) = {Φ ∈ H2(Rd) | Φ|Ωt

= uit} and Yi(t) = {Ψ ∈ H2(Rd) | Ψ|Ωt
= pit},

for each i ∈ {D,R}. Here, the pair (uDt, pDt) ∈ [H2(Ωt)]
2∩ [W(Ωt)×H1

0
(Ωt)] is the unique

solution to the system of equations (21)–(22), and (uRt, pRt) ∈ [H2(Ωt)]
2 ∩ [V1(Ωt) ×

V(Ωt)], on the other hand, solves the other system of equations (23)–(24).
Step 3. Our next objective is to 昀椀nd an expression for the limit given in (8). For

this purpose, we apply Theorem A.1 so to obtain the shape gradient of the given
cost functional J. Under appropriate assumptions (to be veri昀椀ed in the next step),
Theorem A.1 states that

dJ(Ω)[V] = min
Φ∈XD(0)

sup
Ψ∈YD(0)

∂tGD(t,Φ,Ψ) + min
Φ∈XR(0)

sup
Ψ∈YR(0)

∂tGR(t,Φ,Ψ). (27)

Since the sets S D(0) and S R(0) have been identi昀椀ed, we only need to compute the par-
tial derivative of the Lagrangians Gi(t,Φ,Ψ), i ∈ {D,R} with respect to t, given in (26).
To this end, we now assume that Ω is of class C2,1 and V ∈ Θ2. So, we can choose to
consider the saddle points to be [H3(Rd)]2 regular. This higher regularity is crucial,
especially for the integrand having the Laplacian term. Because the saddle points
have su昀케cient regularities, we can apply Hadamard’s domain and boundary di昀昀er-
entiation formulas (see [35, Thm. 4.2, p. 483] and [35, Thm. 4.3, p. 486], respectively,
see also [45, 46]):

d

dt

∫

Ωt

f (t, x) dxt

∣∣∣∣∣∣
t=0

=

∫

Ω

∂t f (0, x) dx +

∫

∂Ω

f (0, σ)Vn ds, (28)

d

dt

∫

∂Ωt

f (t, σ) dst

∣∣∣∣∣∣
t=0

=

∫

∂Ω

∂t f (0, σ) ds +

∫

∂Ω

(∂n f (0, σ) + κ f (0, σ)) Vn ds, (29)

to obtain – noting that V = 0 on Γ – the partial derivative

∂tGi(t,Φ,Ψ) =

∫

Σt

Gi(Φ,Ψ)V · nt dst, i ∈ {D,R},

10For more details about existence and uniqueness of solutions to mixed Robin-Dirichlet
problems in W s,2 for bounded domains in Rd, d ∈ {2, 3}, one may consult [42, Sec. 7.36].

11From this point onwards, we occasionally use this notation to shorten some statements, and
for brevity.
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where

GD(Φ,Ψ) =
1

2
|∇Φ|2 + Ψ∆Φ + Φ∆Ψ + ∇Φ · ∇Ψ,

GR(Φ,Ψ) =
1

2
|∇Φ|2 + ∇Ψ · ∇Φ + ∂n((βΦ − λ)Ψ) + κt(βΦ − λ)Ψ,

and κt denotes the mean curvature of Σt while nt is the outward unit normal to Σt.
Notice from above derivative that the integral is de昀椀ned only on the boundary Σt

which will not depend on Φ and Ψ outside of Ωt. Since the restriction of the elements
of S D(0) and S R(0) are unique, then we can actually drop the min and sup in (27).
Doing so leads us to the following expression for the shape derivative of J

dJ(Ω)[V] =

∫

Σ

1

2

(
(∂nuR)2 − (∂nuD)2

+ (∂τuR)2
)

Vn ds

+

∫

Σ

(∇ΣuR · ∇ΣpR + ∂nuR∂n pR) Vn ds

+

∫

Σ

(β∂nuR pR + (βuR − λ)(∂n pR + κpR)) Vn ds.

In above, we have used the fact that pD = −uD and uD = 0 on Σ. The former equation
implies that ∂n pD = −∂nuD on Σ while the latter implies that |∇uD|2 = (∂nuD)2 on Σ.
Here, the operator ∇Σ stands for the tangential gradient (see, e.g., [35, Chap. 9, Sec.
5.2, eq. (5.17), p. 497]) on Σ de昀椀ned as ∇Σ(·) = ∇(·)|Σ − [∇(·) · n]n.

In summary, we obtain the characterization of the shape derivative of J given by
dJ(Ω)[V] =

∫
Σ
Gβn · V ds, where the kernel Gβ is speci昀椀ed by (9). Notably, the com-

puted expression for dJ(Ω)[V] accords with the Hadamard-Zolésio structure theorem
(see, e.g., [35, Thm. 3.6, p. 479]); that is, there exists – for a C2,1 domain Ω – a scalar
distribution Gβ ∈ D1(Σ) such that dJ(Σ)[V] = 〈Gβ,Vn〉.

Step 4. To 昀椀nish the proof of the proposition, the four assumptions of Theorem
A.1 have to be veri昀椀ed. We only sketch the argumentations since they are similar to
[35, Chap. 10, Sec. 6.4, pp. 566–570].

The 昀椀rst hypothesis (H1) is easily veri昀椀ed by the use of linear and continuous
extensions Π : Hk(Ω) → Hk(Rd) and Πt : Hk(Ωt) → Hk(Rd), k ∈ N, (see, e.g., [47, p.
146]) from which we can get the existence of elements of S D(t) and S R(t).

Meanwhile, the second hypothesis (H2) is checked without di昀케culty by utilizing
– after transforming the integrals over the reference domain – the regularities of the
maps t 7→ It, t 7→ At, and t 7→ Bt given in (11) and together with the H3 regularity of
the state and adjoint states.

To check conditions (H3)(i) and (H4)(i), we put into use the bounds in (13) to 昀椀rst
show that ut

D
= uDt ◦Tt, ut

R
= uRt ◦Tt, pt

D
= pDt ◦Tt, and pt

R
= pRt ◦Tt – the transported

solutions from Ωt to Ω of equations (21)–(24) – are bounded in H1(Ω). Since H1(Ω) is
a Hilbert space, we can extract weakly convergent subsequences converging to some
points (u0

D
, p0

D
), (u0

R
, p0

R
) ∈ [H1(Ω)]2. However, the limit points (u0

D
, p0

D
) and (u0

R
, p0

R
)

will coincide with the solutions (uD, pD) and (uR, pR) of (16)–(17) and (18)–(19),
respectively. This follows from the linearity of the transported versions of equations
(21)–(24) with respect to (ut

D
, pt

D
) and (ut

R
, pt

R
), the continuity of It, At, and Bt, and

the fact that the aforementioned systems have unique solutions [H1(Ω)]2.
Next, we need to exhibit that the weak convergences in H1(Ω) are actually strong.

To do this we estimate the norms ‖ut
D
− uD‖H1(Ω), ‖ut

R
− uR‖H1(Ω), ‖pt

D
− pD‖H1(Ω), and

‖pt
R
− pR‖H1(Ω) and then deduce the H1(Ω)-strong convergences ut

D
→ uD, ut

R
→ uR,
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pt
D
→ pD, and pt

R
→ pR using the fact that It → 1, At − id → 0, and Bt → 1, as t → 0.

The details of the computation is standard so we skip them.
Now, given that Ω ∈ C2,1 and V ∈ Θ2, we can also show by means of classical

regularity theorems [48] that ut
D

, ut
R
, pt

D
, and pt

R
are also bounded in H3(Ω) since

these functions also live in the space H3(Ω). Therefore, we also have the continuity
of the functions in H3(Ω).

In light of [35, Thm. 6.2, p. 568], we see that the convergences ΠtuDt → ΠuD,
ΠtuRt → ΠuR, Πt pDt → ΠpD, and Πt pRt → ΠpR all hold strongly in H3(Rd). Thus,
assumptions (H3)(i) and (H4)(i) are satis昀椀ed for the H3(Rd)-strong topology.

Lastly, to verify conditions (H3)(ii) and (H4)(ii), we write

∂tGi(t,Φ,Ψ) =

∫

Ωt

div (Gi(Φ,Ψ)V) dxt =:

∫

Ωt

div (Fi(Φ,Ψ)) dxt,

for each i ∈ {D,R}. Clearly, the map

(Φ,Ψ) 7−→ Fi(Φ,Ψ) : [H3(Rd)]2 −→ H1(Rd)

is bilinear and continuous, for each i ∈ {D,R}. In addition, the mapping

(t,Fi) 7−→
∫

Σt

Fi · nt dst =

∫

Ω

div (Fi) ◦ TtIt dx,

is also continuous from I × H1(Rd) to R, for each i ∈ {D,R}. Finally, the map

(t,Φ,Ψ) 7→ ∂tGi(t,Φ,Ψ) =

∫

Σt

Fi(Φ,Ψ) · nt dst

is continuous, for each i ∈ {D,R}. Thus, conditions (H3)(ii) and (H4)(ii) are also
veri昀椀ed. This completes the veri昀椀cation of the assumptions of Theorem A.1 proving
that equation (27) holds true.

The last statement of the proposition can easily be inferred from (9). Indeed, if
Ω = Ω

∗, where Ω∗ solves (1), then it holds that u = uD = uR on Ω∗. Hence, u = 0 and
∂nu = λ on Σ∗. This means, in particular, that ∂τuR = 0, ∇uR = ∂nuRn, and (∂nuR)2

= λ2

on Σ∗. It therefore follows that Gβ ≡ 0 which in turn implies that dJ(Ω)[V] = 0 at
Ω = Ω

∗. This completes the proof of Proposition 2.1.1. �

Remark 1 For β ≡ 0, the shape gradient reduces to

G0 = −
1

2
(∂nuD)2

+ ∂τuR∂τpR − λκpR +
1

2
λ2
+

1

2
(∂τuR)2.

Note that the adjoint pR can actually be expressed in terms of the state uR on
Σ. In fact, we have pR = −uR on Σ. Indeed, from (24) with t = 0 (i.e., the case
where integration is carried out over the reference domain Ω), one easily 昀椀nds that∫
Ω
ϕ∆(pR + uR) dx = 0, for all ϕ ∈ C∞

0
(Ω), with ∂nϕ = 0 on Γ. Varying ϕ, the equation

leads to −∆pR = ∆uR = 0 in Ω. Now, let us choose that ϕ ∈ H2(Ω) ∩ V(Ω) with
∆ϕ = 0 in Ω. So, again from (24) with t = 0, and by Green’s identity, we have∫
Ω
∇(pR + uR) · ∇ϕ dx −

∫
Γ
∂nϕ ds =

∫
Γ

pR∂nϕ ds +
∫
Σ

(pR + uR)∂nϕ ds = 0, for any ϕ ∈
H2(Ω)∩V(Ω) such that ∆ϕ = 0 in Ω. Varying the normal trace ∂nϕ on Γ, we 昀椀nd that
pR = 0 on Γ. Similarly, varying the trace of the normal derivative ∂nϕ on Σ, we get
pR = −uR on Σ. Hence, we may actually write G0 above as

G0 =
1

2

(
λ2 − (∂nuD)2

+ 2λκuR − (∂τuR)2
)
, (30)
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which is exactly the shape gradient of the Kohn-Vogelius cost functional

J0(Ω) :=
1

2

∫

Ω

|∇(uD − uN)|2 dx,

where uN = uR is now the solution to the mixed Dirichlet-Neumann problem (4) with
β ≡ 0 (cf. [16, Thm. 33, eq. (142)], [14, Thm. 2, eq. (19)], [18, Thm. 1, eq. (4)]).

In the conclusion drawn in [16], the authors stated that the strategy – sometimes
referred to as the rearrangement method – they used to compute the shape gradient
of J0 does not require the introduction of the adjoint variables. This is contrary
to the computation of the shape gradient (derived using the same method) for the
Dirichlet- and Neumann-data tracking functionals presented respectively in [9] and
[11]. Although it was not stated in [16], it should be apparent here that the very
reason why the computation presented in [16] did not require the used of adjoint
variables is that the Kohn-Vogelius functional with the associated states uD and uN
(where uN denotes the solution of (4) when β = 0) is actually self-adjoint. This means,
in a sense, that the corresponding adjoint variables to uD and uN can actually be
expressed in terms of the latter states alone.

Remark 2 Note that when β = κ where κ the mean curvature of Σ, the shape gradient
Gβ given by (9) becomes

Gκ :=
1

2

(
(∂nuR)2 − (∂nuD)2

+ 2∂τuR∂τpR + (∂τuR)2
)
. (31)

Remark 3 Recall in Step 3 of the proof that we required Ω to be of class C2,1 and
choosed V ∈ Θ2 in order to apply Hadamard’s domain and boundary di昀昀erentiation
formulas. These regularity assumptions can be relaxed if we apply the rearrangement
method (see [36]) to get the shape derivative of J. In this case, we only need the
reference domain as well as its perturbations be of class C1,1. We have only used the
minimax formulation in order to demonstrate that J – associated to the case where
β = 0 – is self-adjoint. Moreover, we note that the computed shape derivative of the
cost already make sense for Ω of class C1,1. In fact, if Ω ∈ C1,1, then κ is well de昀椀ned
almost everywhere on Σ, and actually belongs to L∞ (for a proof of this statement,
see [49]). Thus, we infer that Gβ is not just a distribution, but is also in L2(Σ).

Remark 4 Another rigorous way to exhibit the boundary integral form of dJ – requir-
ing only the mild C1,1 regularity for Ω and on V – is to use the variational equations
satis昀椀ed by the Eulerian derivative of uD and uR. This is as opposed to the approach
used in [33] which not only requires the shape derivative of the states, but also uses
their strong forms in order to write dJ in terms of a boundary integral – that is, in
accordance with the Hadamard-Zolésio structure theorem.

We note that the chain rule approach actually provides a shorter more elegant
way of obtaining the shape derivative of the cost. However, applying the method
means requiring more regularity of the states; see, for example, [45, Thm 5.5.2].

2.2 The Eulerian derivative approach
In this subsection, we formally show that the maps t 7→ ut

D
and t 7→ ut

R
are

C1 in a neighborhood of 0 (Proposition 2.2.1), and characterize their Eulerian
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derivatives at 0 in the direction of the 昀椀eld V. For this purpose, we 昀椀x V ∈ Θ1.
Afterwards, we prove the same for the map t 7→ J(Ωt) (see Proposition 2.2.5).

Proposition 2.2.1 The mappings t 7→ ut
D
∈ H1(Ω) and t 7→ ut

R
∈ H1(Ω) are C1 in a

neighborhood of 0. Moreover, their respective Eulerian derivatives at 0, denoted by
ũD and ũR, satisfy the properties that ũD ∈ H1

0
(Ω), ũR ∈ V(Ω), and are respectively

solutions of the following variational problems:

(∇ũD,∇v)Ω = −(A∇uD,∇v)Ω, ∀v ∈ H1
0 (Ω), (32)

a(ũR, v) = −(A∇uR,∇v)Ω −
∫

Σ

β(divΣ V)uRv ds

+

∫

Σ

λ(divΣ V)v ds, ∀v ∈ V(Ω). (33)

Lemma 2.2.2 The bilinear form at de昀椀ned on V(Ω) × V(Ω) is bounded and coercive
on V(Ω) × V(Ω) for t ∈ I.

Proof This is shown easily using the continuity of At and Bt for t ∈ I. �

Lemma 2.2.3 The functions ut
D

and ut
R

are respectively the unique solutions in H1(Ω)

of the following equations

ut
D = 1 on Γ, ut

D = 0 on Σ, (At∇ut
D,∇v)Ω = 0, ∀v ∈ H1

0 (Ω), (34)
ut

R = 1 on Γ, at(ut
R, v) = b(v), ∀v ∈ V(Ω). (35)

Proof We only prove the latter because the 昀椀rst one can be shown in a similar
manner. The function uRt ∈ H1(Ωt) is the solution of the variational problem

uRt = 1 on Γ,
∫

Ωt

∇uRt · ∇ϕt dxt +

∫

Σt

βuRtϕt dst =

∫

Σt

λϕt dst, ∀ϕt ∈ V(Ωt),

where V(Ωt) = {ϕt ∈ H1(Ωt) | ϕt = 0 on Γ}. Using the relation ut
R
= uRt ◦ Tt, the

identity (∇ϕt) ◦ Tt = DT−>t ∇ϕt, which holds for any ϕt ∈ H1(Ωt) and ϕt ∈ H1(Ω), and
the change of variables (see [35, subsec. 9.4.2–9.4.3, pp. 482–484]), the variational
equation above transforms into

at(ut
R, ϕ

t) = bt(ϕt), ∀ϕt ∈ V(Ω),

and ut
R
= 1 on Γ. Hence, taking v = ϕt we get (35). As shown previously, the bilinear

form at(·, ·) : V(Ω)×V(Ω)→ R is bounded and coercive. We let u0 ∈ H1(Rd) be a 昀椀xed
function such that u0 = 1 on Γ. Clearly, zt := ut

R
− u0 ∈ V(Ω), and so, by (35), we have

at(zt, v) = −at(u0, v) + bt(v), ∀v ∈ V(Ω). (36)

For t ∈ I, it can be veri昀椀ed that the following estimates hold

|−at(u0, v) + bt(v)| . ‖v‖H1(Ω).

Hence, by Lax-Milgram lemma, zt ∈ V(Ω) uniquely solves (36).
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Now, let ut
R
= zt
+ u0 ∈ H1(Ω). Then, we have

at(ut
R, v) = at(zt

+ u0, v) = bt(v), ∀v ∈ V(Ω).

Because zt ∈ V(Ω), ut
R
= zt
+ 1 = 1 on Γ. Uniqueness of ut

R
follows from the uniqueness

of zt. Therefore, ut
R

is the unique solution of (35) in H1(Ω). �

Lemma 2.2.4 The maps t 7→ ut
D

and t 7→ ut
R

are C1 in a neighborhood of 0.

Proof We prove using the implicit function theorem (IFT) the result for the map
t 7→ ut

R
, the proof for t 7→ ut

D
being similar. Using (35), we note that zt

R
:= ut

R
− uR is

the unique element in V(Ω) that satis昀椀es

at(zt
R, v) = −at(uR, v) + bt(v), ∀v ∈ V(Ω).

Denoting by 〈 · , · 〉V the duality pairing between V(Ω) and its dual space V′(Ω), we
consider the function Φ : I × V(Ω)→ V′(Ω) de昀椀ned by

〈Φ(t,w), v〉V := at(w + uR, v) − bt(v),

for all v,w ∈ V(Ω). Then, we have that zt
R

the unique element in V(Ω) such that
Φ(t, zt

R
) = 0. Note that Φ is C1 because of (11). Moreover, we have

〈DwΦ(0, 0)w, v〉V = at(w, v).

As was shown earlier, the right side expression above is bounded and coercive on
V(Ω). By the Lax-Milgram lemma, we deduce that DwΦ(0, 0) is an isomorphism from
V(Ω) to V′(Ω). Thus, by virtue of IFT, we conclude that the mapping t 7→ zt

R
is C1 in

a neighborhood of 0. Now we let ũR ∈ V(Ω) be its derivative at t = 0. Di昀昀erentiating
the identity Φ(t, zt

R
) = 0 with respect to t we get
〈
DwΦ(0, 0)ũR, v

〉
+ 〈∂tΦ(0, 0), v〉 = 0, ∀v ∈ V(Ω).

This yields equation (33). �

Next, we prove the di昀昀erentiability of the map t 7→ J(Ωt) and characterize
its derivative.

Proposition 2.2.5 The mapping t 7→ J(Ωt) is C1 in a neighborhood of 0, and its
derivative at 0 is given by dJ(Ω)[V] =

∫
Σ
G̃βn · V ds where G̃β is given by

G̃β =
1

2

(
(∂nuR)2 − (∂nuD)2

+ 2λκuR − (∂τuR)2
)

+ (∇ΣqR · ∇ΣuR − λκqR + β (∂nuR + κuR) (qR − uR)) ,

(37)

where the adjoint variable qR ∈ V(Ω) satis昀椀es

a(qR, ϕ) =

∫

Σ

βuRϕ ds, ∀ϕ ∈ V(Ω), (38)

and κ is the mean curvature of Σ.
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Remark 5 Observe from (38) that when β = 0, qR ≡ 0 on Ω. Moreover, G̃β reduces
to G0. That is, we obtain [16, Thm. 33, eq. (142)] (see also [14, Thm. 2, eq. (19)],
[18, Thm. 1, eq. (4)]) as a corollary of Proposition 2.2.5. Meanwhile, if we take β = κ,
then ∂nuR + κuR = λ on Σ, and G̃β becomes

G̃κ =
1

2

(
(∂nuR)2 − (∂nuD)2

+ 2∇ΣqR · ∇ΣuR − (∂τuR)2
)
. (39)

Moreover, at the shape solution Ω∗ of the exterior Bernoulli problem (1), we have
that G̃β = 0 on Σ∗, regardless of the choice of β.

To prove Proposition 2.2.5, we need the following lemma. The C1,1 regular-
ity of Ω which implies that uD, uR ∈ H2(Ω) will be used subsequently without
further notice.

Lemma 2.2.6 Let V ∈ Θ1. Then, the solutions uD and uR of problems (3) and (4)
respectively satisfy the equations

(A∇uD,∇uD)Ω = −
∫

Σ

(∇uD · n)2Vn ds, (40)

(A∇uR,∇uR)Ω =

∫

Σ

|∇uR|2Vn ds + 2

∫

Σ

(βuR − λ)(V · ∇uR) ds. (41)

Proof Let us 昀椀rst note that for bounded Lipschitz domain Ω ⊂ Rd, the identity

−
∫

Ω

(div v)φ dx =

∫

Ω

v · ∇φ dx −
∫

Σ

φ(v · n) ds,

holds for any vector 昀椀eld v ∈ C1(Ω)d and scalar function φ ∈ W1,1(Ω). Recalling that
A = (div V)id−DV−(DV)> (see (12)), we note that for harmonic functions u, v ∈ H2(Ω)

and vector 昀椀eld V ∈ Θ1 we have

−(A∇v,∇u)Ω =

∫

Σ

(∂nv(V · ∇u) + ∂nu(V · ∇v) − (∇v · ∇u)Vn) ds; (42)

see, e.g., the proof of Lemma 32 in [16] or the proof of Lemma 5 in [14].
Because ∇uD · ∇uR ∈ W1,1(Ω), ∇uD = (∇uD · n) n, ∇uR · n = −βuR + λ, and −∆uD =

−∆uR = 0, we get (40) and (41) from the above formulas with u = v = uD and
u = v = uR, respectively. �

Proof of Proposition 2.2.5 In the proof, for notational convenience, we write

wt := ut
D − ut

R and w := uD − uR.

Now, by change of variables, we have

J(Ωt) =
1

2

∫

Ω

At∇wt · ∇wt dx.

Using (11) and Lemma 2.2.4, we deduce that the map t 7→ J(Ωt) is also C1 in a
neighborhood of 0. Then, we can di昀昀erentiate J(Ωt) above with respect to t and get

dJ(Ω)[V] =
1

2

∫

Ω

A∇w · ∇w dx +
1

2

∫

Ω

∇w · (∇ũD − ∇ũR) dx.



Paper accepted to Numerical Algorithms (DOI: 10.1007/s11075-023-01497-x.)

18 Numerical solution to the exterior Bernoulli problem

Let us write the second integral above in terms of the state variables alone. First, we
take ϕ = ũD ∈ H1

0
(Ω) in (16) and (18) to get

(∇uD,∇ũD)Ω = 0, and a(uR, ũD) = b(ũD).

Next, we take v = uD − uR ∈ V(Ω) in (33), and note that uD = 0 on Σ, to obtain

a(ũR,w) = −
∫

Ω

A∇uR · ∇w dx +

∫

Σ

β divΣ V|∇uR|2 ds −
∫

Σ

λ(divΣ V)uR ds.

These computations lead to

dJ(Ω)[V] =
1

2

∫

Ω

(A∇uD · ∇uD − A∇uR · ∇uR) dx

−
∫

Σ

β divΣ V|∇uR|2 ds +

∫

Σ

λ(divΣ V)uR ds −
∫

Σ

βuRũR ds.

(43)

The above representation of the shape derivative of J in the direction of V at Ω is
actually not useful for practical applications, especially in the numerical realization
of the minimization problem (5). The main di昀케culty arises from the fact that (33)
has to be solved for each velocity 昀椀eld V in order to evaluate dJ(Ω)[V]. A way to
resolve this issue is to apply the adjoint method. To do this, we introduce the adjoint
variable qR ∈ V(Ω) satisfying the variational problem given in (38). Then, we take
ϕ = ũR ∈ V(Ω) in (38) and let v = qR ∈ V(Ω) in (33) of Proposition 2.2.1 to obtain

∫

Σ

βuRũR ds = −
∫

Ω

A∇uR · ∇qR dx −
∫

Σ

β(divΣ V)uRqR ds +

∫

Σ

λ(divΣ V)qR ds.

This gives us the expression

dJ(Ω)[V] =
1

2

∫

Ω

(A∇uD · ∇uD − A∇uR · ∇uR) dx

−
∫

Σ

β|∇uR|2 divΣ V ds +

∫

Σ

λuR divΣ V ds

+

∫

Ω

A∇uR · ∇qR dx +

∫

Σ

βuRqR divΣ V ds −
∫

Σ

λqR divΣ V ds.

(44)

The above integral already make sense, but we opt to write it in terms of a
boundary integral form with the help of Lemma 2.2.6 and through the application of
following version of the tangential Green’s formula12, which is valid when Σ is C1,1,

∫

Σ

(∇φ · V + φ divΣ V) ds =

∫

Σ

(∂nφ + φ divΣ n) Vn ds. (45)

The function φ here is W2,1 regular in the hold-all domain U. To proceed, we 昀椀rst
apply Lemma 2.2.6 so that, after a few rearrangements, we get

dJ(Ω)[V] = −1

2

∫

Σ

(
(∇uD · n)2

+ |∇uR|2
)

Vn ds

−
∫

Σ

β
(
uR(V · ∇uR) + |∇uR|2 divΣ V − uRqR divΣ V

)
ds

+

∫

Ω

A∇uR · ∇qR dx +

∫

Σ

λ (∇uR · V + uR divΣ V − qR divΣ V) ds

:= I1 + I2 + I3 + I4.

12A proof of this formula – also referred to as surface integration by parts formula – can be
found in [49].
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We apply formula (45) to rewrite the integrals I2 and I4 as follows:

I2 =

∫

Σ

(∂nqR (∇uR · V) − βuR (∇qR · V)) ds

+

∫

Σ

β (qR∂nuR + uR∂nqR + uRqR divΣ n) Vn ds

−
∫

Σ

(
2βuR∂nuR + β divΣ n|∇uR|2

)
Vn ds

I4 =

∫

Σ

λ ((∂nuR + uR divΣ n − ∂nqR − qR divΣ n) Vn + ∇qR · V) ds

Meanwhile, since qR ∈ H2(Ω), then by (42), we can express I3 in the following form

I3 = −
∫

Σ

(∂nqR(V · ∇uR) + ∂nuR(V · ∇qR) − (∇uR · ∇qR)Vn) ds.

Adding the above integrals to I1, and then using the identities |∇uR|2 = (∇uR · n)2
+

(∇uR · τ)2, ∇uR · ∇qR = ∇ΣuR · ∇ΣqR + ∂nuR∂nqR, and divΣ n = κ, and applying twice
the equation ∂nuR + βuR = λ on Σ, we get, after some rearrangements, the desired
characterization of the shape derivative of J with the shape gradient G̃β given by
(37). This proves the proposition. �

Remark 6 In [33], Bacani obtained the expression
1

2

(
(∂nuR)2 − (∂nuD)2

+ 2λκuR − (∂τuR)2
)
− βuR (∂nuR + κuR) − βuRu′R,

for dJ via the chain rule approach, where u′
R

solves the system of equations (see [50])


−∆u′
R
= 0 in Ω,

u′
R
= 0 on Γ,

∂nu′R + βu′R = divΣ(Vn∇ΣuR) + λκVn − β (∂nuR + κuR) Vn on Σ.
(46)

The (unique) existence of u′
R

in H1(Ω) is guaranteed for Ω of class C2,1.
Similar to what has been pointed out in the proof of Proposition 2.2.5, we em-

phasize here that it is not practical to use u′
R

in an iterative procedure to numerically
solve (5) because (46) has to be solve for each 昀椀eld V which is apparently not easy.
Nonetheless, there is actually an advantage in considering (46), particularly when
the Robin coe昀케cient β is chosen cleverly. In fact, if β = κ, then u′

R
actually vanishes

when Σ is the free boundary (cf. [50, Lem. 1]). In this way, those shape optimization
reformulations of (1) that utilizes a state constraint with the Robin condition be-
comes easier to solve numerically via a second-order method. For some related works
in this direction, see [20, 21, 50].

Remark 7 Observe that the computed expressions for dJ given by (9) and (37) di昀昀er
in structure, particularly with respect to the adjoint system. In the minimax formu-
lation, the corresponding adjoint system (10) to the min-sup problem (25), at i = R,
is obtained by characterizing the saddle point of the Lagrangian functional GR. Thus,
it arises naturally in the proof of Proposition 2.1.1. On the other hand, the adjoint
system introduced in the proof of Proposition 2.2.5 is constructed for the purpose of
getting rid of ũR in (43). The appearance of the Eulerian derivative obviously could
not be avoided – as opposed to applying the minimax formulation – due to the fact
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that we are considering a Robin condition on the free boundary. In spite of the di昀昀er-
ence in structure, we point out that both of the computed shape derivatives vanish
at the shape solution Ω∗ of (1), and thus satis昀椀es the necessary optimality condi-
tion dJ(Ω∗)[V] = 0 for all V. Meanwhile, regarding the use of the computed shape
gradients in a numerical procedure, we shall see in subsection 3.2 that they actu-
ally provide nearly identical sequence of approximants to the optimal solution (with
comparable speed of computation) of problem (5). Furthermore, we notice that we
only introduced one adjoint system in the computation of the shape derivative of the
cost via the Eulerian derivative of the states. In the minimax formulation, we ob-
tained two adjoint systems, each correspond to the functional GD and GR. Even so,
the adjoint variable pD associated with GD turns out to be zero on Σ, and therefore,
does not appear in the expression for the shape gradient.

3 Numerical Approximation
As planned, we want to employ a gradient-based descent iterative procedure
to numerically solve (5). The implementation is realized along the lines of the
author’s previous work, see [19–21], but with a few notable changes detailed
in the following subsection (tailored for two dimensional cases).

To generate a sequence of approximants {Ωk}k>0 such that J(Ωk+1) 6 J(Ωk),
we will apply an explicit time linearization technique.

3.1 Numerical algorithm
Choice of descent direction. Let Ωk be the shape of the domain at the kth
iteration. At the (k + 1)th iteration, the shape Ωk is updated as Ωk+1 := Ωtk+1

=

(id + tkVk)Ωk, for some small step size tk > 0, where Vk represents the descent
deformation 昀椀eld at the kth iterate.

For the descent direction, we can take Vn = −Gβ on Σ. In practice, however,
this choice may cause undesirable oscillations on the free boundary which
is due, primarily, on the lack of su昀케cient regularity of Gβ to preserve the
smoothness of free boundary. To avoid such di昀케culty, we instead compute V

as the solution in Y(Ω) := [V(Ω)]2 of the variational problem

a(V,ϕ) = −
∫

Σ

Gβn · ϕ ds, ∀ϕ ∈ Y(Ω),

where a is a bounded coercive bilinear form on Y(Ω).13 Here, we de昀椀ne

a(ϕ,ψ) :=

∫

Ω

∇ϕ : ∇ψ dx + cΣ

∫

Σ

(∇Σϕ : ∇Σψ + ϕ · ψ) ds, (47)

13Here, the notation [X(·)]2 denotes the Sobolev space [X(·)]2 := {ϕ := (ϕ1, ϕ2) | ϕ1, ϕ2 ∈ X(·)} and is
equipped with the norm ‖ϕ‖2

[X(·)]2
= ‖ϕ1‖2X(·) + ‖ϕ2‖2X(·).
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where ϕ,ψ ∈ Y(Ω), and cΣ > 0 is some 昀椀xed real number. In this sense,
the Sobolev gradient V (see, e.g., [51]) becomes a smoothed preconditioned
extension of −Gβn over the entire domain Ω.14

Computation of the discrete gradient. Now, taking into account the above
computation of the extended-regularized descent direction, the sequence of
discrete gradients {Vk}k>0 := {V(ξk)}k>0 is generated according to the following
elliptic PDE problem on Ωk:



昀椀nd Vk ∈ Y(Ωk) such that

ak(Vk,ϕ) = −
∫

Σk

Gβknk · ϕ dsk, ∀ϕ ∈ Y(Ωk),
(48)

where ak is essentially the bilinear form a given in (47) with Ω = Ωk.
As a result, the new computational domain Ωk+1 is obtained from the

explicit update ξk+1 = ξk + tVk. Note, however, that in general the resulting
descent direction may not provide a decrease in the cost function. This suggests
the necessity to employ a backtracking procedure for computing the step size
t in the approximation process.

Remark 8 The case without the boundary integral in a already provides a good
extension-regularization of −Gβn in Ω. We only introduced the boundary integral
expression with the weight parameter cΣ to control and add more regularity to the
resulting extension (higher values of cΣ provides smoother extension of the gradient).
On another note, we shall take β = κ in all of our experiments we will conduct in
subsection 3.2 focusing on a test case with strictly non-convex 昀椀xed boundary Γ. This
choice of the Robin parameter might appear inappropriate when approximating an
optimal shape solution that is strictly non-convex (and might actually violate the
sign requirement for β during the approximation process), but, as we shall see in
subsection 3.2, this seems to be not an issue (refer particularly to Figure 4(b)).

Remark 9 In our numerical experiments (particularly, in two dimensions), we will
test our method with a similar problem setup considered in [53], and to this end,
we will in fact compute the minimum curvatures of the computed optimal shape
solutions for the given problems and compare them with the ones obtained in [53]. As
we will be using FEMs, the curvatures are computed through the boundary nodes of
the free boundaries whose degree of non-smoothness and irregularities, on the other
hand, are of course in昀氀uenced by the smoothing process that we have proposed above.
It goes without saying that the discretization errors that accumulated throughout
the iteration process a昀昀ect the calculation of the minimum curvatures, and so, to
minimize these expected errors, the introduction of the boundary integral in the
de昀椀nition of the bilinear form a with the smoothing parameter cΣ is imperative in
our case.

Step-size computation. The step size tk can be decided in various ways. The
simplest way is to set it to a 昀椀xed small positive real number. This, however,

14See [52] for more discussion about discrete gradient 昀氀ows for shape optimization.
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may result to a slow convergence behavior for the approximation process. A
better way to update tk is to apply a back-tracking procedure based on Armijo-
Goldstein condition. Suppose that 0 , Vn = −Gβ ∈ L2(Σ), then formally, for
small t > 0, J(Ωt) ' J(Ω0) + tdJ(Ω0)[V] = J(Ω0) − t‖Gβ‖2L2(Σ0)

< J(Ω0), where
Ω0 = Ω. Assuming that J(Ωt) = (1 − µ)J(Ω0), for some µ ∈ (0, 1), then t can
be computed as t = µJ(Ω0)/‖Gβ‖2L2(Σ0)

. In our case, however, since V is de昀椀ned
via (48), the denominator has to be replaced by ak(Vk,Vk) resulting to the
formula tk = µJ(Ωk)/ak(Vk,Vk) (see [21, p. 281]). That being so, it is natural
to 昀椀x µ ∈ (0, 1) at initialization and update the step size according to the
following rule: take tk as in the proposed formula whenever J(Ωk+1) < J(Ωk);
otherwise, scale down tk and reinitialize the iteration with the previous shape
Ωk. We carry out the latter by scaling µ by half in the recalculation process.
Essentially, at each iteration step k, tk is set initially to µJ(Ωk)/ak(Vk,Vk). We
also cut µ by half if reversed triangles are detected within the mesh update.
In our experiments, we set µ = 0.5.

The main steps in computing the kth domain Ωk is given in the following
algorithm:

Algorithm 1 Domain variation algorithm
1. Initialization Choose an initial shape Ω0.
2. Iteration For k = 0, 1, 2, . . .,

2.1 solve the state and adjoint state systems on Ωk;
2.2 compute Vk via (48), and set tk = J(Ωk)/2ak(Vk,Vk);
2.3 Update the current domain by Ωk+1 = (id + tkVk)Ωk.

3. Stop test Repeat the Iteration until convergence.

Stopping condition. To be more precise with the Stop test, we terminate
the iterative procedure as soon as

max
( √

a(V,V), ‖V‖C(Σ)

)
< Tol, (49)

for some su昀케ciently small tolerance value Tol > 0, or after a 昀椀nite number of
iterations.

Evaluating the mean curvature. In Step 2.2 of the Iteration, the mean
curvature κ of Σ needs to be computed at every iteration. Theoretically, for
Ω of class C2, there exists a unitary C1 extension ñ of n such that the mean
curvature may be de昀椀ned as κ = ∇Σ · n = ∇ · ñ (see [45, Prop. 5.4.8, p. 218] or
[48, Lem. 16.1, p. 390]). Numerically, a way to compute the mean curvature,
is to evaluate it as the divergence of some vector N, where N ∈ [H1(Ω)]2 is an
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extension of n
15 computed, for example, as the solution of the equation

cN

∫

Ω

∇N : ∇ϕ dx +

∫

Σ

(∇ΣN : ∇Σϕ + N · ϕ) ds =

∫

Σ

n · ϕ ds, (50)

for all ϕ ∈ [H1(Ω)]2, for some small real number cN > 0 (cf. [54]). Needless
to say, this extension of the (outward) unit normal vector to Σ is not unitary,
however, the approximation ∇·N of the mean curvature κ seems e昀昀ective in our
case. A more accurate numerical computation of the mean curvature could be
given, but here we are satis昀椀ed with our results using this calculation. Besides,
this approach can be extended without any di昀케culty in three dimensional
setup and we do not actually care about the accuracy of this approximation
of κ in the computation of the extension V. So, in our numerical experiments,
we will apply the said idea, and take cN = 10−6. We remark here that the
tangential gradient terms appearing in the boundary integrals above is added
to create a more regular extensions than the ones used in previous works.

Remark 10 One of the challenges of existing mesh-based methods (e.g., FEMs) is
the computationally expensive process of remeshing needed to carry out between
optimization updates – especially in the case of three dimensions. In our numerical
algorithm, however, we do not employ any sort of a remeshing procedure (as op-
posed to [19–21]), and as we shall see, our scheme even provides fast computation
of the approximate solution though it is a domain discretization method. We point
out, however, that in the case of two dimensions, remeshing is not costly. On a re-
lated subject concerning a fast numerical approach, but based on boundary element
method which only requires discretization of the boundaries, see [53].

Remark 11 As remarked previously, we avoid the generation of a new triangulation
of the domain at each iterative step. In practice, this is achieved by moving not only
the boundary, but also the internal nodes of the mesh triangulation at every iteration.
By doing so, the mesh only needs to be generated at initial iteration. To move the
boundary and internal nodes simultaneously, we solve the discretized version of (48)
and then move the domain in the direction of the resulting vector 昀椀eld scaled with
the step size tk. That is, we 昀椀nd V

h
k
∈ P1(Ωh

k
)d such that it solves the equation



−∆V
h
k
= 0 in Ωh

k
,

V
h
k
= 0 on Γh,

∇V
h
k
· nh

k
+ cΣV

h
k
− cΣ∆ΣV

h
k
= −Gk

β
n

h
k

on Σh
k
.

where we suppose a polygonal domain Ωh

k and its triangulation Th(Ω
h

k) = {Kk
l
}Ne

l=1

(where Kk
l

are the elements of the triangulation and Ne is the number of elements) are
given, and P1(Ωh

k
)d denotes the Rd-valued piecewise linear function space on Th(Ω

h

k).
Then, we update the domain or equivalently, move the nodes of the mesh by de昀椀n-
ing Ωh

k+1
and Th(Ω

h

k+1) = {Kk+1
l
}Ne

l=1
respectively as Ωh

k+1 :=

{
ξ + tkV

h
k
(ξ)

∣∣∣∣∣ ξ ∈ Ω
h

k

}
and

Kk+1
l

:=
{
ξ + tkV

h
k
(ξ)

∣∣∣ ξ ∈ Kk
l

}
, for all k = 0, 1, . . ..

15Observe that this follows the same narrative in computing the Sobolev gradient V using (48).
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Let us note that in Step 2.3 of Iteration, we have to 昀椀nd a suitable parametrization
of Ω using a 昀椀nite number of parameters. In accordance with the previous discussions,
it is apparent that here we utilize the positioning of boundary (and internal) nodes
of a partition into 昀椀nite elements as design parameters or optimization variables.

Additional details of the computational setup. The numerical simulations
we conduct below are obtained using the programming software FreeFem++
(see [55]). We use P1 昀椀nite element discretization to solve the variational
problems. In deforming the shape of the domain, the function movemesh of
FreeFem++ is utilized in the procedure. On a side note, a study on an adap-
tive FEM for shape optimization can be found in [56]. Lastly, all computations
are performed on a 1.6 GHz Intel Core i5 Macintosh computer with 4GB RAM
processors.

The computational setup stated above are tailored for the numerical ex-
ample in two dimension which will be issued in the next subsection. For three
dimensional problems, some details given in above discussion will be modi昀椀ed.
The exact speci昀椀cations will be given in subsection 3.4.

The computational or CPU times for the experiments will be shown in
several tables below, and in all situations, the unit of time used to display the
values are in ‘seconds’.

3.2 Numerical examples in 2D
To assess the quality of the proposed scheme, we consider the same problem
examined in [53] where Γ = ∂D is de昀椀ned as the boundary of a strictly non-
convex domain D which is given by the following parametrization

D := {(0.45 cos θ, 0.3 sin θ(1.25 + cos 2θ)), 0 6 θ 6 2π}.

In this experiment, we compute the optimal domain for all integers λ =
−1,−2, . . . ,−10. We choose the circle C(0, 0.6) as the initial guess for all test
cases where the interior and exterior boundaries are discretized with Nint =
100 and Next = 120 discretization points, respectively. Moreover, the initial
computational mesh have the maximum and minimum mesh width hmax ≈
0.0623 and hmin ≈ 0.0155 (see uppermost left plot in Figure 5). This choice of
the initial mesh pro昀椀le is course enough for the 昀椀nal mesh (of each test cases)
not to have very 昀氀at triangles.

For λ = −1,−2,−3,−4, we stop the iteration process with Tol = 0.001 in
(49), and the rest with Tol = 0.01. The computed exterior boundaries are
shown in Figure 1 where the outermost boundary corresponds to λ = −1

and the innermost boundary to λ = −10. The evolution of the free boundary
corresponding to the case when λ = −3 and λ = −10 are shown in Figure
2 with emphasis on the location of the boundary nodes at each iteration.
Figure 3, on the other hand, depict the optimization histories for the same
λ’s as well as the histories of Sobolev gradient norms computed as ‖V(G)‖ :=

max{
√

a(V,V), ‖V‖C(Σ)}. Meanwhile, Figure 5 and Figure 6 respectively show
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that computational mesh pro昀椀les at selected iterates for the aforementioned
cases.

We also computed the minimum curvature κ2 of each of the computed
optimal free boundary, the percentage error with respect to the computed
minimum curvature κ∗

2
in [53] (calculated as |κ∗

2
− κ2|/|κ∗2|), and the over-all

computing times (or CPU times) for each test cases. All these values which
were obtained using the shape gradient Gκ given by (31) are tabulated in Table
1. Looking at the table, we see that our method provides accurate and fast
computations of the optimal free boundary.

We also ran our algorithm with the shape gradient G̃β given by (37), and
again with β = κ (see (39)). For this experiment, however, we stopped the al-
gorithm with Tol = 0.001 for λ = −1,−2,−3, and the rest with Tol = 0.01.
The optimal free boundaries obtained for these experiments are identical with
those plotted in Figure 1. The computational results, on the other hand, are
summarized in Table 2. A superimposed comparison of the histories of curva-
tures for the cases λ = −3 and λ = −10 are plotted in Figure 4. In these plots,
the solid lines with black-colored markers correspond to the results obtained
using Gκ while the dotted lines with markers 昀椀lled with white color correspond
to the case when G̃κ is used in the algorithm. Notice that the computed cur-
vatures at each iteration are nearly the same for the methods used. In fact,
the evolutions of the free boundaries obtained via the shape gradient G̃κ are
almost identical to those obtained using Gκ in the algorithm.

In terms of computational time per iteration, we can say that the two
shape gradients provide comparable computational performance and are both
e昀昀ective in computing the optimal free boundary. Moreover, based from the
experimental results, it seems that the optimization approach (2) is more
robust compared to the classical Kohn-Vogelius method. The corresponding
computational results obtained from implementing the latter formulation in
our algorithm are provided in subsection 3.3 which contained further numerical
experimentation focusing on the e昀昀ect of the smoothing parameter cΣ.

As mentioned in passing, a Newton scheme, which requires also the knowl-
edge of the shape Hessian, was used in [53] in order to solve the same free
boundary problem. The shape optimization formulation used in the said in-
vestigation, however, is di昀昀erent (i.e., it utilizes a Dirichlet-energy functional)
and the numerical realization is carried out via boundary element methods.
Although it cannot be compared directly to [53], we mention that the present
algorithm requires less computational time per iteration (and overall comput-
ing time) to 昀椀nish the optimization procedure than that of the aforementioned
work. Of course, however, we cannot say that our method is faster than [53].

3.3 Parameter testing
To make our numerical 昀椀ndings in previous subsection more convincing, we
tabulated here the numerical results obtained from using di昀昀erent values of
cΣ in our approximation scheme (under the same computational setup used in
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Figure 1: Optimal free boundaries Σ∗

−λ cΣ κ2 κ∗
2

[53] % error iter. CPU

1 4.100 0.683962 0.69 0.88 15 4.83
2 0.055 0.299734 0.30 0.09 14 4.11
3 0.160 -0.469733 -0.47 0.06 15 4.17
4 0.020 -1.399963 -1.40 0.00 12 3.83
5 0.050 -2.340385 -2.34 0.02 12 3.53
6 0.265 -3.196068 -3.19 0.19 13 3.80
7 0.355 -3.897400 -3.90 0.07 19 5.34
8 0.160 -4.591331 -4.59 0.03 18 5.11
9 0.060 -5.210978 -5.21 0.02 15 4.15
10 0.045 -5.497944 -5.52 0.40 19 5.94

Table 1: Computational results obtained using Gκ given by (31)

−λ cΣ κ2 κ∗
2

[53] % error iter. CPU

1 4.300 0.683757 0.69 0.90 15 4.86
2 0.045 0.300272 0.30 0.09 14 4.14
3 0.160 -0.469907 -0.47 0.02 15 4.14
4 0.025 -1.399385 -1.40 0.04 12 3.30
5 0.050 -2.340234 -2.34 0.01 12 3.42
6 0.225 -3.185848 -3.19 0.13 12 3.62
7 0.365 -3.895794 -3.90 0.11 19 5.20
8 0.175 -4.593019 -4.59 0.07 18 5.21
9 0.050 -5.169641 -5.21 0.77 17 5.74
10 0.045 -5.509279 -5.52 0.19 20 5.53

Table 2: Computational results obtained using G̃κ given by (39)
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(a) λ = −3 (b) λ = −10

Figure 2: Evolution of the free boundary (with emphasis on boundary nodes)
for the case when λ = −3 and λ = −10 plotted on the 昀椀rst quadrant
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Figure 3: Histories of the cost values and norms of the Sobolev gradients
corresponding to the case λ = −3 (left plot) and λ = −10 (right plot)

the previous subsection). The main point of the informations shown in tables
Table 3–5 is to numerically support our claim that our proposed approach (2)
of (1) provides a somewhat more robust method in approximating a solution
to (1) compared to the classical Kohn-Vogelius method.

Here, we tested our algorithm with the shape gradients Gκ, G̃κ, and G0 = G̃0

given by (31), (39), and (30), respectively. The choice of cΣ that gives the most
accurate minimum curvature (in comparison with the ones obtained in [53])
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(a) λ = −3 (b) λ = −10

Figure 4: Histories of curvatures of the free boundaries plotted in Figure 2.

among the ones projected in the tables are highlighted in light gray color. For
Table 3 and Table 4, the results are obtained with the same computational
setup and assumptions given in the previous subsection. Based from these
tables, it appears that both the shape gradients Gκ and G̃κ provide stable and
accurate approximation of the optimal shape solution – in the sense that the
approximate optimal domains computed for λ = −1, . . . ,−10 with Γ := ∂D have
the corresponding minimum curvatures almost equal to the ones computed in
[53]. Meanwhile, the results summarized in Table 5 were obtained using the
same tolerance values with the case when G̃κ is utilized in the algorithm (i.e.,
Tol = 0.001 is used for λ = −1,−2,−3, and Tol = 0.01 for the rest of the λ′s
considered).

In the experiments performed using G0, we noticed that our algorithm
works well on dealing with the cases λ = −4, . . . ,−10. However, it seems that
with G0, it is quite di昀케cult to 昀椀ne-tune the smoothing parameter cΣ to be
used in the algorithm and get an accurate approximation of the optimal do-
mains having an error of less than 1% for the minimum curvature of the free
boundary. This is contrary to the case of using either Gκ or G̃κ in the algo-
rithm where we experience no issue in choosing the best value for cΣ. Moreover,
for the cases λ = −1,−2, and −3, we observed that it is di昀케cult to achieve
a good approximation of the optimal domain at the current computational
setup, speci昀椀cally with Σ0 = C(0, 0.6) (see the highlighted result for λ = −3

which were obtained using the same computational setup for λ = −4, . . . ,−10).
Apparently, the cost function J0 becomes insensitive (with respect to large de-
formation) after several iterations for the cases λ = −1,−2, and −3. Figure 7
plots the histories of the cost values and Sobolev gradient norms – computed
as ‖V(G)‖ := max{

√
a(V,V), ‖V‖C(Σ)} – for the case λ = −3. As a result, the al-

gorithm using G0 as the shape gradient converges prematurely and achieves a
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Figure 5: Mesh history at selected iterates when λ = −3
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Figure 6: Mesh history at selected iterates when λ = −10
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less accurate optimal domain for the said values of λ (see Figure 7(a)). Nev-
ertheless, with the initial guess Σ0 replaced by C(0, 1.0), we get an accurate
approximation of the optimal free boundaries with respect to their correspond-
ing minimum curvatures that we compared with those obtained in [53]. Based
on this, it seems that the shape optimization approach (2) is somewhat more
robust compared to the classical Kohn-Vogelius method when utilized in a
Lagrangian-type gradient-based numerical scheme using 昀椀nite element meth-
ods – such as ours. Even so, our numerical scheme, regardless of which shape
gradient Gκ, G̃κ, or G0 = G̃0 is used in the algorithm, provides fast compu-
tations of optimal free boundaries for the given problem, as evident in the
computational times shown in tables 3–5.

Overall, we see that the proposed approach and the Kohn-Vogelius method
nearly have the same computational times needed to complete the optimiza-
tion procedure. However, in some cases, we see the advantage of employing
the proposed formulation since it requires less CPU time for larger values of
λ (i.e., cases when λ = −3,−2,−1).

(a) Histories of the cost values (b) Histories of Sobolev gradient norms

Figure 7: Histories of the cost values and norms of the Sobolev gradients
corresponding to the case λ = −3 with Γ0 = C(0, 0.6)

3.4 Numerical examples in 3D
In this subsection, we test our algorithm in solving three dimensional cases.
We 昀椀rst test the methods to a simple axisymmetric 3D-case with an analytical
solution (of convex shape) and then to more complex cases (with a concavity
and is only Lipschitz smooth) where an approximation procedure such as
Algorithm 1 is better suited.
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−λ cΣ κ2 κ∗
2

[53] % error iter. iter. [53] CPU CPU [53]

3.900 0.683798 0.90 15 4.19
4.000 0.683703 0.91 15 4.74

1 4.100 0.683962 0.69 0.88 15 9 4.83 92
4.200 0.683598 0.93 15 4.78
4.300 0.683894 0.88 15 4.75

0.040 0.297898 0.70 14 4.13
0.045 0.298734 0.42 14 4.14
0.050 0.299600 0.13 14 4.19

2 0.055 0.299734 0.30 0.09 14 7 4.11 73
0.060 0.300663 0.22 14 4.15

0.150 -0.471218 0.26 15 4.10
0.155 -0.469105 0.19 15 4.16

3 0.160 -0.469773 -0.47 0.06 15 7 4.17 79
0.165 -0.470371 0.08 15 4.31
0.170 -0.471018 0.22 15 4.21

0.015 -1.407416 0.53 12 3.87
0.020 -1.399963 0.00 12 3.84

4 0.025 -1.398331 -1.40 0.12 12 6 3.39 70
0.030 -1.394629 0.38 12 3.34
0.035 -1.393288 0.48 12 3.30

0.045 -2.345335 0.23 12 3.45
5 0.050 -2.340385 -2.34 0.02 12 7 3.53 89

0.055 -2.338277 0.07 12 3.42
0.060 -2.336251 0.16 12 3.34
0.065 -2.334961 0.22 12 3.40

0.245 -3.202245 0.38 13 3.96
6 0.250 -3.199881 -3.19 0.30 13 6 3.79 80

0.255 -3.200115 0.32 13 3.82
0.260 -3.198089 0.25 13 3.79
0.265 -3.196068 0.19 13 3.80

0.340 -3.907415 0.19 18 5.09
0.345 -3.930059 0.77 22 6.42 100
0.350 -3.909607 0.25 19 5.38

7 0.355 -3.897400 -3.90 0.07 19 8 5.34
0.360 -3.916318 0.42 20 5.91

0.150 -4.617258 0.59 18 5.05
0.155 -4.568364 0.47 17 4.80

8 0.160 -4.591331 -4.59 0.03 18 7 5.11 92
0.165 -4.579966 0.22 19 5.68
0.170 -4.570499 0.42 16 4.64

0.045 -5.229026 0.37 15 4.11
0.050 -5.222427 0.24 15 4.09
0.055 -5.216895 0.13 15 4.10

9 0.060 -5.210978 -5.21 0.02 15 7 4.15 90
0.065 -5.205470 0.09 15 4.53

0.040 -5.555609 0.65 20 6.00
10 0.045 -5.497944 -5.52 0.40 19 8 5.94 102

0.050 -5.478265 0.76 18 6.03
0.055 -5.479253 0.73 18 5.28
0.060 -5.476906 0.78 16 5.02

Table 3: Computational results obtained using the shape gradient Gκ given by
(31) under di昀昀erent values of the smoothing parameter cΣ
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−λ cΣ κ2 κ∗
2

[53] % error iter. iter. [53] CPU CPU [53]

3.900 0.683331 0.97 15 4.98
4.000 0.683590 0.93 15 4.87
4.100 0.683164 0.99 15 4.85
4.200 0.683461 0.95 15 4.94

1 4.300 0.683757 0.69 0.90 15 9 4.86 92

0.040 0.299439 0.19 14 4.25
2 0.045 0.300272 0.30 0.09 14 7 4.14

0.050 0.300364 0.12 14 4.22
0.055 0.300501 0.17 14 4.20 73
0.060 0.301423 0.47 14 4.23

0.150 -0.469596 0.09 15 4.31
0.155 -0.469284 0.15 15 4.16

3 0.160 -0.469907 -0.47 0.02 15 7 4.14 79
0.165 -0.470554 0.12 15 4.61
0.170 -0.469432 0.12 15 4.41

0.015 -1.408178 0.58 12 3.42
0.020 -1.404289 0.31 12 3.37

4 0.025 -1.399385 -1.40 0.04 12 6 3.30 70
0.030 -1.395728 0.31 12 3.35
0.035 -1.394467 0.40 12 3.68

0.045 -2.342605 0.11 12 3.42
5 0.050 -2.340234 -2.34 0.01 12 7 3.42 89

0.055 -2.336792 0.14 12 3.47
0.060 -2.333441 0.28 12 3.38
0.065 -2.331489 0.36 12 3.56

0.210 -3.201953 0.37 14 4.18
0.215 -3.204295 0.45 14 4.09
0.220 -3.200458 0.33 14 3.96

6 0.225 -3.185848 -3.19 0.13 12 6 3.62 80
0.230 -3.182508 0.23 12 3.67

0.355 -3.918150 0.47 19 5.48
0.360 -3.892460 0.19 19 5.49

7 0.365 -3.895794 -3.90 0.11 19 8 5.20 100
0.370 -3.882040 0.46 19 5.19
0.375 -3.884001 0.41 19 5.30

0.165 -4.584300 0.12 17 5.12
0.170 -4.599789 0.21 18 5.10

8 0.175 -4.593019 -4.59 0.07 18 7 5.21 92
0.180 -4.586269 0.08 16 4.52
0.185 -4.616170 0.57 22 6.33

0.060 -5.121169 1.71 18 4.00
0.065 -5.140184 1.34 17 5.39
0.070 -5.132413 1.49 16 4.87

9 0.075 -5.169641 -5.21 0.77 17 7 4.83 90
0.080 -5.121169 1.71 18 5.34

0.040 -5.505169 0.27 18 5.96
10 0.045 -5.509279 -5.52 0.19 20 8 5.53 102

0.050 -5.546782 0.49 18 5.07
0.055 -5.484489 0.64 21 6.19
0.060 -5.478805 0.75 21 6.03

Table 4: Computational results obtained using the shape gradient G̃κ given by
(39) under di昀昀erent values of the smoothing parameter cΣ
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−λ cΣ κ2 κ∗
2

[53] % error iter. iter. [53] CPU CPU [53]

0.875 0.684941 0.73 24 18.73
0.900 0.685302 0.68 24 18.70
0.925 0.685664 0.63 24 19.43

1 0.950 0.686037 0.69 0.57 25 9 19.00 92
0.975 0.672496 2.54 11 16.86

0.095 0.286868 4.38 21 17.94
0.100 0.294453 1.85 20 17.69

2 0.105 0.301428 0.30 0.47 20 7 18.37 73
0.110 0.307203 2.40 20 18.15
0.115 0.311780 3.93 21 17.21

0.035 -0.457657 2.63 20 15.90
0.040 -0.454966 3.20 20 16.03

3 0.045 -0.473090 -0.47 0.66 21 7 16.71 79
0.050 -0.456539 2.86 21 16.04
0.055 -0.446174 5.07 21 16.80
0.000 -0.263695 43.89 19 7.53
0.025 -0.622141 32.37 26 8.64
0.050 -0.578362 23.06 23 7.77

3 0.075 -0.576556 -0.47 22.67 23 7 7.86 79
0.100 -0.590829 25.71 27 10.45
0.030 -1.436623 2.61 19 7.60

4 0.035 -1.407973 -1.40 0.57 18 6 7.06 70
0.040 -1.381807 1.30 19 7.24
0.045 -1.383943 1.15 18 7.35
0.050 -1.378626 1.53 20 7.36

0.030 -2.398938 2.52 18 6.65
0.035 -2.369408 1.26 18 6.90

5 0.040 -2.341182 -2.34 0.05 17 7 6.40 89
0.050 -2.293651 1.98 17 6.71
0.055 -2.271973 2.19 17 6.47

0.015 -3.262436 2.27 9 4.96
6 0.020 -3.189927 -3.19 0.00 9 4.95 80

0.025 -3.188130 0.06 16 5.72
0.030 -3.133338 1.78 16 5.74
0.035 -3.086156 3.26 15 5.65

0.040 -3.809256 2.33 9 5.41
0.045 -3.981180 2.08 9 5.83

7 0.050 -3.922250 -3.90 0.57 8 8 5.29 100
0.055 -3.869310 0.79 8 5.33
0.060 -3.659898 6.60 11 5.53

0.065 -4.301394 5.53 9 5.31
0.070 -4.294949 6.43 9 5.66

8 0.075 -4.543171 -4.59 1.02 9 7 5.29 92
0.080 -4.501519 1.92 9 5.21
0.085 -4.826300 5.15 10 5.14

0.035 -4.899750 5.95 9 4.96
9 0.040 -5.163080 -5.21 0.90 9 7 5.08 90

0.045 -5.107782 1.95 9 4.84
0.050 -5.058550 2.90 9 5.62
0.055 -5.016147 3.72 9 5.20

0.000 -5.601663 1.48 9 4.85
0.005 -5.444040 1.37 9 4.34
0.010 -5.613588 1.70 9 4.58

10 0.015 -5.509235 -5.52 0.20 9 8 4.81 102
0.020 -5.421308 1.79 9 4.31

Table 5: Computational results obtained using the classical Kohn-Vogelius cost
functional approach under di昀昀erent values of the smoothing parameter cΣ
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Because the performance of the shape gradients Gβ and G̃β given in (9) and
(37), respectively, are comparable as we have seen in previous subsection, we
focus only on comparing the proposed method with the shape gradient G̃β and
the classical Kohn-Vogelius method with the shape gradient G0 = G̃0. In the
experiments conducted below, we speci昀椀cally compare the results obtain with
the shape gradients G0, G̃β, and G̃κ, where β is a 昀椀xed (positive) real number.

To shorten many statements and for brevity, we refer to the proposed
method with 昀椀xed β by DRb, and by DRk when β = κ. Meanwhile, we refer
to the Kohn-Vogelius method simply by KV.

Example 1 (Axisymmetric case in 3D) Let us consider the spheres S(0, r) := {ξ ∈ R3 :

|ξ| = r} and S(0,R) := {ξ ∈ R3 : |ξ| = R} centered at origin 0 with radius r > 0 and
R > r, respectively. With u(r) = 1 and u(R) = 0, the solution to the Dirichlet problem
(3) is exactly given by u(ρ) = r(R − ρ)/[ρ(R − r)], ρ ∈ (r,R) with normal derivative
∂ρu(ρ) = −Rr/[ρ2(R−r)]. So, on the exterior surface, we have ∂ρu(R) = −r/[R(R−r)] =: λ.
Thus, problem (1) with Γ = S(0, r) and λ = −r/[R(R − r)] has the unique exact free
boundary solution Σ∗ = S(0,R∗).

For a concrete example, we let r = 0.3 and R∗ = 0.5, giving us λ = −3, and choose
the sphere S(0, 0.6) for the initial guess. Moreover, we set cΣ = 0.1 in the formula used
to compute the descent direction, and take µ = 0.1 (if not stated) for the calculation
of the step size. The interior and exterior surface are discretized with maximum mesh
size h = 0.1 and tetrahedrons of volume 0.01; see illustrated 昀椀gure in Figure 8.

(a) Mesh pro昀椀le (b) Cross section

Figure 8: Initial mesh pro昀椀le for Example 1

Discussion for Example 1. The computational results for Experiment 1 are
shown in Figure 9–Figure 11. Figure 9, in particular, shows the histories of
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Hausdor昀昀 distances of the approximate shapes Σk with respect to the exact so-
lution Σ∗ for each of the three methods (with β = 0.1 for DRb). Based from the
昀椀gures, it seems that with an appropriate choice of step size parameter µ, the
convergence behavior of the methods being tested are comparable. More pre-
cisely, with µ = 2.0 for DRb, µ = 1.5 for DRk, and µ = 0.3 for KV, we observed
that the three approaches converge after (around) 昀椀ve iterations. In addition,
we notice that KV is insensitive with large step sizes and it seems that the
algorithm converges prematurely to a point that is far from the optimal so-
lution. The CPU times (displayed in seconds) for the conducted experiments
are shown in Table 6, and we see from this table that the CPU times needed
by DRb and DRk to complete the iteration process is less compared to KV.
This could be due to the part where the algorithm is performing the back-
tracking procedure. By this observation, we can say that – to some extent –
the proposed method (2) by some means provides additional preconditioning
of the descent direction.

Meanwhile, Figure 10 plots the histories of Hausdor昀昀 distances for DRb
for some speci昀椀c values of β taken on the interval (0, 1] with µ = 0.1. Looking
at the plot, it appears that the convergence behavior of DRb is improved as
β gets larger. So, since when β = 0 we recover KV from DRb, it appears that
the modi昀椀cation of the Neumann problem of KV by the Robin problem in
DRb somehow accelerates the convergence behavior of the classical method.
The computational times for these experiments are tabulated in Table 7. In
the table we notice that the average CPU times when β > 0.5 is slightly larger
compared to when β ∈ (0, 0.5]. The slight di昀昀erence in the average CPU times
could again be due to the backtracking procedure employed in the algorithm.

Lastly, Figure 11 shows the mesh pro昀椀les of the computed shapes when µ =
2.0 in DRb. Looking at the resulting 昀椀gure, it appears that the approximation
procedure is stable (in the sense that we do not observe any oscillations on
the free surface during and after the approximation process) in the case when
DRb is employed. We mention that we observe the same for the other two
methods, particularly when µ < 1.8 in DRk and µ < 0.5 in KV.

Some modi昀椀cations of the scheme. The computational setup used in the
previous example is the same with the ones used in the previous section. For
the rest of our examples, however, we simplify two parts of our algorithm.
Firstly, in (48), we simply take a as the usual inner product in [H1(Ω)]2-space.
Secondly, in (50), we drop the tangential gradients and simply choose cN = 1.
Furthermore, we replace the formula µJ(Ωk)/a(Vk,Vk) for computing the step
size tk with µJ(Ωk)/‖Vk‖2[L2(Σk)]2 to further increase the size of the step length.
Such choice of the step size has already been used and found to be e昀昀ective
in [19].

We now proceed with our next test case which is slightly similar to the
example problem considered in [38] where a Newton method for a Bernoulli’s
free boundary problem in three dimensions was proposed (see also the model
problem [7]).
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Figure 9: Histories of Hausdor昀昀 distances

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DRb 19.68 18.66 18.75 18.80 18.57 18.95 19.22 18.70 21.06 20.17

DRk 18.92 18.37 18.49 18.27 19.00 19.51 22.31 24.81 24.73 23.13

KV 32.37 33.24 31.16 27.70 33.07 - - - - -

µ 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

DRb 21.65 22.58 23.47 23.45 23.15 24.90 24.27 24.00 30.73 25.69

DRk 26.16 26.17 25.89 28.26 28.21 28.10 27.62 28.24 - -

KV - - - - - - - - - -

Table 6: CPU times corresponding to the plots shown in Figure 9

β 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

CPU 19.95 20.26 19.31 19.88 19.65 20.24 20.53 21.28 21.11 21.60

β 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

CPU 23.82 25.60 25.57 23.97 24.76 23.30 24.20 24.80 25.39 26.84

Table 7: CPU times corresponding to the plots shown in Figure 10
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Figure 10: Histories of Hausdor昀昀 distances for β = 0.05, 0.10, 0.15, . . . , 1.00.

(a) Mesh pro昀椀le (β = 0.1, µ = 2.0) (b) Exterior surface (β = 0.1, µ = 2.0)

Figure 11: Computed shape for Example 1 via DRb method

Example 2 (L-block 昀椀gure) We consider Σ as the surface of an L-block 昀椀gure, and
consider the values λ = −3,−2,−1. The L-block domain is given as follows:

S = ([−0.5, 0.5] × [−1, 1]2) \ ([−0.5, 0.5] × [0, 1]2).

For all cases, we choose the sphere of radius 1.7 for the initial guess and (initially)
discretize the computational domain with maximum mesh size hmax = 0.2 for λ = −3

and hmax = 0.4 for λ = −2,−1. In all cases, the (maximum) volume of the tetrahedrons
are set to 0.001. See Figure 12 for an illustration of the initial mesh pro昀椀le and a
cross-sectional view of the computational mesh when λ = −1. Meanwhile, the step
size parameter µ > 0 is chosen small enough such that the algorithm is stable (does
not converge prematurely, at least for DRb and DRk) and that there is no oscillations
on the free boundary. We compare the approximation results obtained using DRb,
DRk, and KV. For the DRb method, we 昀椀x β to the unit value (i.e. we take β = 1).
We take the sphere S(0, 1.7) as an initial guess for the experiments.
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(a) Mesh pro昀椀le (b) Cross section

Figure 12: Initial mesh pro昀椀le for Example 2 (in the case of λ = −1)

Discussion for Example 2. The results of the experiments are shown in the
rest of the 昀椀gures below.

Figure 13 shows the cross sectional views of the computed optimal free
boundaries obtained via the DRb method where the innermost exterior bound-
ary corresponds to λ = −3 and the outermost exterior boundary to λ = −1.
The computational mesh corresponding to the case λ = −3 is also shown in
the said 昀椀gure.

Meanwhile, Figure 14, Figure 15, and Figure 16 respectively depict the
mesh pro昀椀le of the computed optimal exterior free boundaries for each λ =

−3,−2,−1. The 昀椀rst, second, and third rows of plots in Figure 14–Figure 16
respectively show that computed exterior free boundaries obtained via DRb,
DRk, and KV. Notice from these 昀椀gures that the computed shapes for DRb
and DRk almost coincide (as expected). However, the computed shape for KV
seems more convex compared to the ones obtained through DRb and DRk. In
fact, it is evident in Figure 17 which shows a superimposed comparison of DRb
and KV (at di昀昀erent cross sections), that the concave parts of the computed
optimal exterior surface under KV method is less pronounced than the case of
DRb and DRk. Thus, it appears that under the current computational setup
(with Σ0 = S(0, 1.7)), the KV method provides a bit less accurate optimal
free boundary when λ = −1. This scenario is somewhat similar to the case
we experience in the experiments we performed in subsection 3.3 where we
observe some di昀케culty in obtaining an accurate approximation of the optimal
free boundary for the case λ = −3 when using the same classical method (refer
to Table 5). Nevertheless, after repeating the approximation procedure, but
now with Σ0 = S(0, 1.8), we got a good agreement between DRb, DRk, and
KV, see Figure 18 (see also Figure 19 for a superimposed comparisons of the
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cross sections of the approximate optimal shapes obtained using the proposed
method DRb and the classical method KV).

The optimization histories as well as the histories of [L2(Σ)]2 norms of the
Sobolev gradients are depicted in Figure 20 for the case when Σ0 = S(0, 1.7)

and Figure 21 when Σ0 = S(0, 1.8). Notice that in the latter 昀椀gure, we observe
a bit faster convergence behavior for the DRb and DRk methods than KV.
Moreover, looking at Table 8, it appears that the computational time needed
to complete the iteration process when employing DRb or DRk is generally
less compared to KV.

To end our discussion, we summarize below our key observations in the
above performed experiments:

• our proposed method DR is more sensitive than KV in terms of large
variations;

• in some instances – depending on the choice of the initial guess – the KV
method tends to converge prematurely to a less accurate optimal solution;

• the convergence speed of DR and KV can be made comparable by
choosing appropriate value for the step size parameter µ;

• however, in general, KV seems to converge in a fewer number of steps
than DR;

• nonetheless, as in the case of 2D, DR requires less computational time to
昀椀nish the iteration procedure.

The latter two observations could be due to the e昀昀ect of the backtracking
procedure implemented in the algorithm which, on the other hand, is depen-
dent on the computed maximal step size provided by each method at each
iterations.

Overall, we found some merits in considering the proposed shape optimiza-
tion formulation (2) of the exterior free boundary problem (1).

Lastly – although it cannot be compared directly – we remark that the
computational cost of our proposed algorithm is less compared to the one
used in [38]. Even so, this does not suggests that our proposed approach is
absolutely faster than the method used in the aforementioned study.

λ −3 −2 −1 −1

r 1.7 1.7 1.7 1.8

DRb 405 471 450 559

DRk 471 416 475 560

KV 312 477 482 605

Table 8: CPU times corresponding to the plots shown in Figure 14–Figure 16
(the cases when Σ0 = S(0, r) = S(0, 1.7)), and Figure 18 (Σ0 = S(0, 1.8))
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(a) Cross sectional view (for all λ’s) (b) Cross sectional view (λ = −1)

Figure 13: Cross sectional views of the computed shapes for the DRb method
(innermost exterior boundary: λ = −3, outermost exterior boundary: λ = −1)

4 Concluding Remark
We proposed an e昀케cient shape optimization scheme for the numerical reso-
lution of the exterior Bernoulli problem. The formulation examined in this
study can be viewed as a small generalization of the so-called Kohn-Vogelius
method. Moreover, the Robin term introduced in the formulation somehow
acts as an acceleration of the classical method which also provides further pre-
conditioning of the descent direction. Numerical experiments showed that the
proposed approach is fast and e昀昀ective in solving the exterior Bernoulli free
boundary problem – at least for the problems considered in this investigation.
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A Correa-Seeger Theorem
Let ε > 0 be a 昀椀xed real number and consider a functional

G : [0, ε] × X × Y → R,
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(a) Mesh pro昀椀le (β = 1, µ = 0.125) (b) Exterior surface (β = 1, µ = 0.125)

(c) Mesh pro昀椀le (β = κ, µ = 0.150) (d) Exterior surface (β = κ, µ = 0.150)

(e) Mesh pro昀椀le (β = 0, µ = 0.070) (f) Exterior surface (β = 0, µ = 0.070)

Figure 14: Computed shapes for Example 2 when λ = −3
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(a) Mesh pro昀椀le (β = 1, µ = 0.275) (b) Exterior surface (β = 1, µ = 0.275)

(c) Mesh pro昀椀le (β = κ, µ = 0.300) (d) Exterior surface (β = κ, µ = 0.300)

(e) Mesh pro昀椀le (β = 0, µ = 0.175) (f) Exterior surface (β = 0, µ = 0.175)

Figure 15: Computed shapes for Example 2 when λ = −2
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(a) Mesh pro昀椀le (β = 1, µ = 0.25) (b) Exterior surface (β = 1, µ = 0.25)

(c) Mesh pro昀椀le (β = κ, µ = 0.30) (d) Exterior surface (β = κ, µ = 0.30)

(e) Mesh pro昀椀le (β = 0, µ = 0.20) (f) Exterior surface (β = 0, µ = 0.20)

Figure 16: Computed shapes for Example 2 when λ = −1



Paper accepted to Numerical Algorithms (DOI: 10.1007/s11075-023-01497-x.)

Numerical solution to the exterior Bernoulli problem 45

Figure 17: Cross comparisons of DRb (red lines) and KV (green lines) for
λ = −3 (top row), −2 (mid row), −1 (bottom row) with Σ0 = S(0, 1.7) (blue
lines)

for some topological spaces X and Y. For each t ∈ [0, ε], we de昀椀ne

M(t) := min
x∈X

sup
y∈Y

G(t, x, y) and m(t) = sup
y∈Y

min
x∈X

G(t, x, y),

and the associated sets

X(t) :=











x̂ ∈ X : sup
y∈Y

G(t, x̂, y) = M(t)











Y(t) :=

{

ŷ ∈ Y : min
x∈X

G(t, x, ŷ) = m(t)

}

.
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(a) Mesh pro昀椀le (β = 1, µ = 0.9) (b) Exterior surface (β = 1, µ = 0.9)

(c) Mesh pro昀椀le (β = κ, µ = 0.9) (d) Exterior surface (β = κ, µ = 0.9)

(e) Mesh pro昀椀le (β = 0, µ = 0.3) (f) Exterior surface (β = 0, µ = 0.3)

Figure 18: Computed shapes for Example 2 when λ = −1 with Σ0 = S(0, 1.8)
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Figure 19: Cross comparison of DRb (red lines) and KV (green lines) for λ = −1

with Σ0 = S(0, 1.8) (blue lines)

0 10 20 30 40
Iteration

10−1

100

Co
st
s

DRb
DRk
KV

(a) Histories of the cost values

0 10 20 30 40
Iteration

10−2

10−1

100
Gr
ad

ie
nt
 N
or
m
s

DRb
DRk
KV

(b) Histories of Sobolev gradient norms

Figure 20: Computational results corresponding to λ = −3 when Σ0 = S(0, 1.7)
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Figure 21: Computational results corresponding to λ = −3 when Σ0 = S(0, 1.8)
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We introduce the set of saddle points

S (t) = {(x̂, ŷ) ∈ X × Y : M(t) = G(t, x̂, ŷ) = m(t)},

which may be empty. In general, we always have the inequality m(t) 6 M(t),
and when m(t) = M(t), the set S (t) is exactly X(t) × Y(t).

We have the following theorem (see [35, Thm. 5.1, pp. 556–559]).

Theorem A.1 (Correa and Seeger, [43]) Let the sets X and Y, the real number ε >
0, and the functional G : [0, ε] × X × Y → R be given. Assume that the following
assumptions hold:

(H1) for 0 6 t 6 ε, the set S (t) is non-empty;
(H2) the partial derivative ∂tG(t, x, y) exists everywhere in [0, ε], for all (x, y) ∈
(

⋃

t∈[0,ε] X(t) × Y(0)
)

⋃

(

X(0) ×⋃t∈[0,ε] Y(t)
)

;
(H3) there exists a topology TX on X such that for any sequence {tn : 0 < tn 6

ε}, tn → t0 = 0, there exist an x0 ∈ X(0) and a subsequence {tnk
} of {tn}, and for each

k > 1, there exists xnk
∈ X(tnk

) such that (i) xnk
→ x0 in the TX-topology, and (ii)

for all y in Y(0), lim inft↘0, k→∞ ∂tG(t, xnk
, y) > ∂tG(0, x0, y);

(H4) there exists a topology TY on Y such that for any sequence {tn : 0 < tn 6

ε}, tn → t0 = 0, there exist y0 ∈ Y(0) and a subsequence {tnk
} of {tn}, and for each

k > 1, there exists ynk
∈ Y(tnk

) such that (i) ynk
→ y0 in the TY -topology, and (ii)

for all x in X(0), lim supt↘0, k→∞ ∂tG(t, x, ynk
) 6 ∂tG(0, x, y0);

Then, there exists (x0, y0) ∈ X(0) × Y(0) such that
dg(0) = min

x∈X(0)
sup

y∈Y(0)

∂tG(0, x, y) = ∂tG(0, x0, y0) = sup
y∈Y(0)

min
x∈X(0)

∂tG(0, x, y).

Thus, (x0, y0) is a saddle point of ∂tG(0, x, y) on X(0) × Y(0).
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