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Abstract A Lagrangian-type numerical scheme called the “comoving mesh
method” or CMM is developed for numerically solving certain classes of moving
boundary problems which include, for example, the classical Hele-Shaw flow
problem and the well-known mean curvature flow problem. This finite element
scheme exploits the idea that the normal velocity field of the moving boundary
can be extended smoothly throughout the entire domain of definition of the
problem using, for instance, the Laplace operator. Then, the boundary as well
as the finite element mesh of the domain are easily updated at every time
step by moving the nodal points along this velocity field. The feasibility of the
method, highlighting its practicality, is illustrated through various numerical
experiments. Furthermore, in order to examine the accuracy of the proposed
scheme, the experimental order of convergences between the numerical and
manufactured solutions for the given examples are also calculated.

Keywords Hele-Shaw problem - quasi-stationary Stefan problem - comoving
mesh method - moving boundary problem - free boundary problem
1 Introduction

We are interested in the numerical approximation of solutions to certain classes
of moving boundary problems for d-dimensional (d = 2,3) bounded domains
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that includes, specifically, the so-called single phase Hele-Shaw problem. The
classical Hele-Shaw moving boundary problem seeks a solution to a Laplace’s
equation in an unknown region whose boundary changes with time. In the
present study, we are actually interested with the more general Hele-Shaw
problem that also arises in shape optimization problems.

Let T > 0 be fixed and B be an open bounded set in R? (d = 2, 3) with
a smooth boundary dB. For t € [0,T], consider a larger open bounded set
2(t) C R containing B with boundary I'(t) := 9£2(t) such that 9BNI'(0) =
(i.e., dist(0B,I'(0)) > 0). Denote by v the outward unit normal vector on
the boundary of 2(¢) \ B as illustrated in Fig. 1. Given the functions f :
RIx[0,T] = R, gg : 0Bx[0,T] = R, v : R¢x[0,T] — R%, the constant \ € R,
and the initial profile 2y of 2(t), with V;, := V,,(x,t), = € I'(t), describing
the outward normal velocity of the moving interface I'(t), we consider the
following moving boundary problem:

Problem 1 Find 2(t) D B and u(-, t): 2(t) \ B — R such that

—Au=f in 2(t)\ B, te0,T),
(I-a)u+aVu-v=gqp on 0B,
u=0 on I'(t), tel0,T],
Vo=(=Vu+~)-v+X onI(t), tel0,T],
£2(0) = £2,

(1.1)

where o € {0,1}.

Here, for simplicity, we assume that the boundaries B and I'(t) are smooth,
or equivalently, of class C*°. The topological situation illustrating the above
problem is depicted in Fig. 1. In (1.1), the parameter « indicates whether the
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Fig. 1: The moving domain {2(t) and fixed domain B

boundary condition on the fixed boundary 9B is a Dirichlet boundary condi-
tion (@ = 0) or a Neumann boundary condition (o = 1). The fourth equation
in (1.1) expresses the motion of the free boundary that evolves according to
Vo = (—=Vu++)-v+ A, where the function u satisfies the first three equations
n (1.1). Here, equation (1.1) with f = 0, v = 0 and A = 0 is also known
in the literature as the classical Hele-Shaw problem or simply the Hele-Shaw
problem (see, e.g., [17]).
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Let us discuss more about the case f = 0 and A\ = 0 in (1.1). If a =
1, gg > 0, and v = 0, problem (1.1) describes a model of the expanding
(two-dimensional) Hele-Shaw flow (see, e.g., [7,13,14,15,44]) which provides
a simple description either of the flow of a viscous Newtonian liquid between
two horizontal plates separated by a thin gap, or of a viscous liquid moving
under Darcy’s law in a porous medium [8] (see also [39]). In a typical situation,
u represents the pressure in an incompressible viscous fluid blob 2\ B, and
because the Neumann flux ¢p is positive, more fluid is injected through the
fixed boundary 0B. As a result, the blob expands in time and is modelled
by the moving boundary I'. The problem is sometimes formulated with the
prescribed pressure (i.e., ¢p is now interpreted as a given pressure instead
of a Neumann flux) on the fixed boundary, i.e., with the non-homogeneous
Dirichlet boundary condition u = ¢p on dB (see, e.g., [18]). This situation
corresponds to the case & = 0 in (1.1). For further classical applications of
(1.1) at the current setting, we refer the readers, for example, to [7,14,15,21].
In the case that v # 0, the given quantity may, in a sense, be interpreted
as an (external) background flow. Here, we do not consider the interesting
question of existence of unique classical solution to the general problem (1.1),
but readers may refer to [17] for existence result in the case of f = 0 and
gs > 0. Nevertheless, this issue will be the topic of our future investigation.
Meanwhile, results regarding existence of a weak solution to the Hele-Shaw
problem via variational inequalities can be found in [14,15,26]. Of course,
it would be nice if we could actually transform equation (1.1) into an elliptic
variational inequality formulation such as in the case of the classical Hele-Shaw
problem (see [15]). However, it seems that such method which employs the so-
called Baiocchi transform [6] does not apply directly to our problem due to
the presence of the external background flow . Moreover, we emphasize that
we are not aware of any existing solution methods to treat the given problem.
So, as in many past studies, this motivates us to at least find an approximate
numerical solution to the problem for concrete cases by providing a simple and
convenient numerical method to treat the problem.

Problem 1 is also related to the Bernoulli free boundary problem. Suppose
now that f = f(z), ¥ =0, and A < 0, and that the shape solution to (1.1)
happens to converge to a stationary point as t increases indefinitely, i.e., there
exists a domain 2* such that V,, = 0 on I'* = 02*, then we call (1.1) a
generalized exterior Bernoulli-like free boundary problem:

Problem 2 Given a negative constant A and a fized open bounded set B, find
a bounded domain 2 D B and a function u : 2\ B — R such that

—Au=f in2\B,
(1-a)u+aVu-v=qp ondB, (1.2)
u =0 and Vu-v=JA\ on I

Bernoulli problems find their origin in the description of free surface for
ideal fluids (see, e.g., [22,23]). However, it also arises in the context of optimal
design, such as in electro chemical machining and galvanization [7,37], as well
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as in insulation problems [1,19]. For some qualitative properties of solutions to
the Bernoulli problem, including existence, classifications, and uniqueness of
its solution, and some ideas about numerical approximations of its solutions via
fixed-point iterations, we refer the readers to [20], as well as to the references
therein (see also [43]).

As mentioned earlier, our main objective in this study is to present a simple
numerical scheme for solving the moving boundary problem (1.1). Of course,
there are already several numerical approaches to solve the present problem,
especially in the case of the Hele-Shaw flow V,, = —Vu - v (with f = 0,
¥=0,A=0a=1,and ¢gg > 0 in (1.1)). In fact, it is well-known that
the Hele-Shaw problem can be solved numerically using the boundary element
method (BEM) which was employed, for instance, in [27,33], or by the charge
simulation method (CSM) applied in [15]. Boundary tracking method employ-
ing BEM used in [33] can easily be applied to other two-dimensional moving
boundary problems. However, it is quite demanding to utilize in the case of
three-dimensional problems. Meanwhile, in [35], the authors proposed an im-
provement of CSM by combining it with the level-set method. Still, however,
to the best of our knowledge, no simple and effective numerical approach has
yet been developed to numerically solve the more general equation (1.1) with
f #£ 0 and v # 0 — except in the case for which the free boundary can be rep-
resented by a graph or a height function where adaptive mesh methods can be
used (see, e.g., [9]). The purpose of this investigation, therefore, is to develop a
numerical method to solve (1.1) with the following three main characteristics:

e firstly, as opposed to CSM, our proposed method is easier to implement,
can easily treat three-dimensional moving boundary problems, and does
not involve cumbersome ad hoc procedures;

e secondly, in contrast to existing traditional finite element methods used
to solve many moving boundary problems, our propose scheme does not
require mesh regeneration at every time step in the approximation process;

e and, lastly, our method can easily be adapted to solve other classes of
moving boundary problems, such as the mean curvature problem.

At this point, let us further see where our proposed scheme stands in the
literature. Numerical methods for treating moving boundary problems can be
categorized into two types: (i) moving-grid methods, and (ii) fixed-grid meth-
ods. Each method has its own advantages and disadvantages. In the context of
the latter type, we have the volume-of-fluid (VOF) method [2], the phase-field
(PF) approach (also known in the literature as the diffuse interface method,
see [11]), and the level-set (LS) method [10]. These methods can implicitly
capture the moving parts of the geometry. Therefore, these inteface captur-
ing methods have an advantage in mesh generation because they can handle
sharp corners, sharp edges, and changes in topology of the domain. PF and
LS methods are easy to implement, but they are not strictly mass or volume
conserving. In addition, as opposed to PF and LS methods, VOF methods are
strictly mass conserving, but tend to be the least accurate among the aforemen-
tioned fixed-grid methods [32]. Moving-grid methods, on the other hand, make
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use of boundary-fitted grid system. This type of computational approach has
the key advantage that the boundary condition is treated neatly and resolved
very accurately because the moving boundary coincides with one line of the
numerical grid. However, in spite of its simplicity, the method is not efficient
since grid regeneration for complicated geometries is not straightforward, not
to mention that mesh regeneration is time consuming and also require a great
deal of data interpolation. Velocity-based moving mesh methods (also known
as Lagrangian methods or in a wider context Arbitrary Lagrangian-Eulerian
methods [5]) fall in this category. These methods chiefly rely on the construc-
tion of suitable velocities at points of the moving domain at each time instant
and are commonly used for more general time-dependent moving boundary
problems (see, e.g., [30, Chapters 6-7]). In some situations, the height function
method (HFM) provides simple means to represent a free boundary. In HFM
the free boundary or surface is defined by introducing a height function at a
distance from a reference line as a function of position along the reference line.
However, such method is not applicable to multiple-valued surfaces [28]. The
numerical scheme developed in this work obviously falls into the first category.
CMM creates a pseudo flow field inside the domain by harmonic expansion of
the normal velocity, and the grid can be moved like the Lagrangian method
in fluid flow problems. Moreover, we point out that our scheme relies heavily
on the notion of harmonic extension via a Laplace equation. Our method is
somewhat related in spirit to an existing grid generation method through a
differential system called the elliptic-grid generation (EGG) method, see [38,
Chapter 6].

The rest of the paper is organized as follows. In Section 2, we formally intro-
duce and give the motivation behind our proposed method why we termed it
as the ‘comoving mesh method’. We also write out the structure of the numer-
ical algorithm for the method, and then illustrate its applicability in solving
the Hele-Shaw problem. Moreover, we evaluate the correctness and accuracy
of the scheme through the method of manufactured solution. Then, in Section
3, we will discuss how equation (1.1) is closely related to the so-called exterior
Bernoulli problem in connection with a shape optimization formulation of the
said free boundary problem (FBP). In addition, we numerically solve the FBP
using our propose scheme. Meanwhile, in Section 4, as further application of
CMM, we will also apply our method to curve shortening problem, thus show-
casing the versatility of the method. Furthermore, in Section 5, we state and
prove two simple qualitative properties of the proposed numerical approxima-
tion procedure. Finally, we end the paper by giving out a concluding statement
in Section 6 and a brief remark about our future work.

2 The Comoving Mesh Method for the Hele-Shaw Problem
This section is mainly devoted to the introduction of the proposed method. The

motivations behind its formulation are also given in this section. Moreover, the
structure of the algorithm that will be used in the numerical implementation



6 Yosuke Sunayama et al.

of the method is also provided here. This is followed by a presentation of
two simple numerical examples illustrating the applicability of the scheme in
solving concrete cases of problem (1.1), one with «(-,¢) = 0 and the other
one with (-, ¢) # constant # 0 on I'(t) (¢ € [0,T]). To check the accuracy of
the proposed scheme, we also examine the error of convergence or EOC of the
method with the help of the method of manufactured solutions [40].

2.1 Idea and motivation behind CMM

As alluded in Introduction, the main purpose of the present paper is the devel-
opment of a simple Lagrangian-type numerical scheme that we call “comoving
mesh method,” or simply CMM, for solving a class of moving boundary prob-
lems. To begin with, we give out a naive idea of the method. For simplicity,
we set @ = 1. Let T > 0 be a given final time of interest, Ny be a fixed
positive integer, and set the time discretization step-size as 7 := T/Np. For
each time-step index k =0,1,--- , N7, we denote the time discretized domain
by 2% ~ 2(k7) (similarly, I'* ~ I'(k7)) and the associated time discretized
function as uf ~ u(-, k), f¥ =~ f(-,k7), ¢ ~ qp(-,k7), and v* =~ ~(-, k7).
The rest of the notations used below are standard and will only be stressed
out for clarity.

After specifying the final time of interest 7' > 0 and deciding the value of
Np € N, a naive numerical method for the Hele-Shaw problem (1.1) consists
of the following three steps:

Conventional scheme for (1.1) ~
At each time ¢t = k7,

Step 1. The first step is to solve u* over the domain 2% \ B:
—Auf = fF in Q"\ B, Vu*-vF=¢f, onodB, uF=0 onI*

Step 2. Then, we define the normal velocity of I'* in terms of the function

u® and the normal vector v* to I'*| i.e., we set V,F := (—=VuF + ~+%) -
v® + Xon I'*.

Step 3. Finally, we move the boundary along the direction of the velocity
field V;*, i.e., we update the moving boundary according to I'**! :=

{z+ 7VF(@)* () | 2 € TF}.

%

However, there are two obstacles in the realization of this naive idea in a finite
element method (FEM). The first main difficulty is that if u* is a piecewise
linear function on a triangular finite element mesh, then V¥ only lives in
the space Py(I}) (here, of course, I’} denotes the exterior boundary of the
triangulation 28 \ By, of the domain 2 \ B with the maximum mesh size
h > 0, at the current time step k). This local finite element space is not
enough to uniquely define V¥ on nodal points of the mesh, and, in fact, it must
belong to the (conforming piecewise) linear finite element space P;(I}) in the
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third step. The second one is not actually an impediment in implementing
the method, but more of a preference issue in relation to mesh generation.
Typically, moving boundary problems require mesh regeneration when solved
using finite element methods as alluded in Introduction; that is, one needs to
generate a triangulation of the domain 2% \ B at each time step k after the
boundary moves. To circumvent these issues, we offer the following remedies.
We first address the second issue. In order to avoid generating a triangula-
tion of the domain at every time step, we move not only the boundary, but also
the internal nodes of the mesh triangulation at every time step. By doing so,
the mesh only needs to be generated at the initial time step & = 0. This is the
main reason behind the terminology used to name the present method (i.e.,
the ‘comoving mesh’ method). In order to move the boundary and internal
nodes simultaneously, we first create a smooth extension w* of the velocity
field V,*v* into the entire domain 2% \ B using the Laplace operator. This is
done more precisely by finding w¥ € Py (25 \ Bj,; R?) which is a finite element
solution to the following Laplace equation:
—AwF =0 in 28\ By, w" =0 on 9By, wh =V*E on IF, (2.1)

n

where, we suppose a polygonal domain .(7,’:, at t = k7, and its triangular mesh
Tr(28\By) = {KF}Ye, (KFis a closed triangle (d = 2), or a closed tetrahedron
(d = 3)), are given, and Py (2% \ By; R?) denotes the R%-valued piecewise linear
function space on 75, (25 \ By,). Then, 27 and T, (25 \ By) = {KFT1 Y
are defined as follows:

O\ By, = {x +rwh(2) ‘ v e 28\ Bh} , (2.2)
K= {z + 7w} (z) | ze K'Y}, (2.3)
forall k=0,1,---, Ny, see Fig. 2 for illustration.

Remark 1 If wﬁ is belongs to P, or higher order finite element space, then,

instead of (2.3), we set the triangular mesh 7 ({2} \ By) with the set of nodal
: k k1 Np

points N} = {pj}; %, :

i =+ Wi ()

]
T2\ By) = k1 k1 k &
K NN = KP NN

(2.4)

Note that the definition of the (discrete) time evolution of the annular domain
2\ B given in (2.2) clearly agrees with the original characteristic (at least for
the interior boundary) of its desired evolution. This is because the choice of
extension for the vector field V,,v fixes the boundary 0B of the interior domain
B throughout the entire time evolution interval [0, T']. It is worth to emphasize
here that a similar idea is adopted in the so-called traction method developed
by Azegami [3] for shape optimization problems (see also [1]). Moreover, as
mentioned in Introduction, elliptic grid generation (abbreviated here as EGQG)
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[36, Section 5.4] utilizes an elliptic transformation in a composite map to gen-
erate grids (or meshes). CMM can be seen as an elliptic grid generation applied

directly from the previous computational mesh (75 \ By, onto the new compu-

tational mesh QZ‘H \ Bp, which represents exactly the moving domain at the
next instant of time. However, unlike our method, EGG require the introduc-
tion of a parameter space from which a computational space is first mapped to
before an elliptic transformation is applied (see [48, Figure 1]). It goes without
saying that in EGG mesh adaptation takes place indirectly through changes in
parameters in the grid generation system rather than through direct changes
in the grid point locations (see [38,48,19]). Moreover, as we have expounded
earlier, the primary purpose of CMM is not only to extend the normal velocity
(defined originally only on the boundary nodes) onto the computational do-
main by extrapolation using a Laplace equation, but also to straightforwardly
evaluate V*1* numerically, even if it only lives in the finite element space
Po(I'F). Nonetheless, it is noteworthy to mention that CMM has advantages
in common with EGG in terms of mesh grid (re)generation in that they both
produce grids with smoothly varying cell sizes and have less danger of overlap-
ping grid lines. Furthermore, both methods can easily be adapted to general
boundary configurations.

x + rwk(x)

ARy KA
SRl TR
RSP BRI KXV
TN DAL AN
s s
s N s %

% 1%;'%&wﬂ§éﬁ§7 é‘

AR 2 ==L
Of\B— OFI\B
(a) Nodal points relocation (b) A superimposed sectional illustration

Fig. 2: Plot 2a: initial and deformed mesh after nodes relocation (scaled with
the time-step parameter 7 and moved in accordance with the direction of the
velocity field w); plot 2b: a superimposed comparison of corresponding sections
of the domains 2F \ B and QF+1\ B

Let us now put our attention to the first issue mentioned earlier. Here we
shall treat the Py (] ,’f )-function by using a Robin approximation eVw* - % +
wh = VFuF of wk = VP in (2.1), where € > 0 is a sufficiently small fixed
real number. In other words, given ¢ > 0, we define wi € Py(2F \ By; R?) as
the finite element solution to the following mixed Dirichlet-Robin boundary
value problem:

—AwF =0 in 28\ By,
wk =0 on OBy, (2.5)

eVwh vk +wh =VkEF on I
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In variational form, the system of partial differential equations (2.5) is given
as follows: find w* € Hjp (025 \ By;R?) such that

1
/ Vwk:VgodaH—f/ wh . ds
Q\Bu €/t

2 [ viveds Vee Hp (@ \BuRY, (20)
Iy
where Hjp o(£2\ B;R?) denotes the Hilbert space {¢ € H'(2\ B;RY) | ¢ =
0 on 9B}. Obviously, the integral equation in (2.6) can be evaluated even for
VEkuk € Py(IF).
To summarize the above idea, we provide the following algorithm for the
comoving mesh method.

Algorithm 1 Comoving mesh method

1: Specify T > 0, Ny € N, ¢ > 0, and set k = 0. Also, generate a finite element
mesh of the initial domain 29 \ By, =~ 29\ B.

2: while k¥ < N+ do

3:  Solve the finite element solution uf € Pi(£25 \ By) for the following:

—Au® = fF in .QZ\B;L, VuF v =¢% on dB, u* =0 on I}.
4:  Define the normal velocity as V;¥ := (=Vuf +~%) - v* + X on I'F.

5:  Create an extension of VR by solving the finite element solution wt €
P(02F\ Bi;R?) for the following:

—Aw* =0 in Qﬁ\?ﬁ, w* =0 on 0B, eVw' " +w* =V on 7.

Update the current domain by moving the mesh according to (2.2) and (2.3).
k<—k+1
end while

2.2 Application of CMM to a classical Hele-Shaw problem

In this subsection, we apply the comoving mesh method to solve two con-
crete examples of problem (1.1). First, let us consider the classical Hele-Shaw
problem:

—Au=0 in 2t)\ B, te[0,T],
Vu-v=1 on 0B,
u=0 on I'(t), te][0,T], (2.7)
Vo=—Vu-v onl(t), te]l0,T],
2(0) = £.
Note that, because of the maximum principle and the unique continuation
property [29], u is positive in {2\ B. This means that Vu-v < 0 on the moving

boundary, and, in this case, since the normal velocity V,, is always positive,
the hypersurface expands.
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Numerical Example 1 In this example, the initial profile 2y of the moving
domain 2(t) (t € [0,T)]) is given as an ellipse, as shown in Fig. 3a (along with
its mesh triangulation), and the final time of interest is set to T = 2. Algorithm
1 is executed using mesh sizes of uniform width h =~ 0.1 with parameter value

€ = 0.1 and time step size T = 0.1.

ivivavy;
VL7
ROLR
Sl
SRS it KRN K NNV YL LAY
B R ORI Y AL SE B0
Sy RO DLOORD
KPSRSERAY EERRAR, RS CE
- s RSB ey
SIRONE2, SRKRIEROLH
fo SRR s AT A s ) QR
RIS SRRSO PSR D, AN AV v
IS ISR o
LA IR
AN
9%y A A PR
R

(a) Initial mesh profile £29 (b) Mesh profile of QiVT at T =2

o initial location
= final location
- node trajectory

0 0.5 1 15 2

(c) Trajectory of boundary nodes
Fig. 3: Computational results of Example 1

(d) Time evolution of the moving boundary

The numerical results of the present experiment are shown in Fig. 3. Fig.
3b, in particular, shows the shape of the annular domain at the final time of
interest T = 2 (with its mesh profile). Meanwhile, Fig. 3c plots the trajectory
of the boundary nodes, and we see from this figure that the nodes are well-
spaced at every time-step. The last plot, Fig. 3d, depicts the evolution of
the (exterior) moving boundary I'. Here, the innermost exterior boundary
represents the initial profile of I'Y and the outermost corresponds to its final
shape. As expected, the annular domain §2(¢) \ B expands through time.
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2.3 EOC of CMM for the Hele-Shaw problem

To check the accuracy of CMM for Hele-Shaw problems of the form (1.1), with
a =1and X = 0, we use the method of manufactured solutions [46]. Therefore,
we construct a proper manufactured solution for the Hele-Shaw problem (1.1).

Proposition 1 We suppose ¢(x,t) is a smooth function with ¢ < 0 forx € B
and |V¢| # 0 on {¢ = 0}, fort € [0,T]. We define f := A¢, qp := -V v,
v = (—lv‘ﬁfé‘z — 1) V¢ (where ¢ means the partial derivative of ¢ with respect
to t), and 20 = {¢(x,0) < 0}. Then, u(z,t) = —d(x,t) and 2(t) := {z €
R? | p(z,t) < 0)} satisfy the moving boundary value problem (1.1) with a = 1
and A = 0.

Proof The proposition is easily verified by straightforward computation noting
that the normal velocity of the moving boundary V,, and the unit normal vector
v with respect to the moving boundary I'(¢) can be expressed in terms of the
level set function ¢; that is, V,, = —‘é—fﬂ and v = % (see, e.g., [34]). O

We check the experimental order of convergence (EOC) by comparing the ap-
proximate solution uf with the manufactured solution ¢*. In this case, ¢*
is viewed as the interpolated exact solution to the solution space of the dis-
cretized problem. Now, with regards to EOC, we define the numerical errors
as follows:

. k
err = s . dist(o, 1), ey = s {Juf — ko)

where X* € {L2(02F\ B), HX (28 \ B)}, and IT), : H'(2) — P(Tn(£2)) is the
projection map such that IT,u(p) = u(p) for all nodal points p € N, of T, (2).

Numerical Example 2 As an ezample, we perform a numerical experiment
with the following conditions: € € {1074,1072}, h ~ 7 = 0.05,

2 2
L1 T

oz, t) = —— +

s+ Tre1 b PE0A (@i=(ana),

so B:={z € R* | 2} + 23 < 0.5} and 2y := {x € R? | 0.52% + 23 < 1}.

The computational results of Example 2 are shown in Fig. 4. The initial profile
of I' is depicted in Fig. 4a, while its shape at time 7" =1 is shown in Fig. 4b.
Meanwhile, Fig. 4c and Fig. 4d plot the evolution of the moving boundary
I (on the first quadrant) from initial to final time of interest T' = 1 with
e =10"* and £ = 1072, respectively. Notice that we get more stable evolution,
in the sense that the boundary nodes are well-spaced at every time step, of
the moving boundary for a higher value of ¢ than with a lower value (refer, in
particular, to the encircled region in the plots). In fact, for higher values of &, we
observe better mesh quality than when ¢ is of small magnitude. Consequently,
we notice in our experiment the obvious fact that there is a trade-off between
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accuracy and stability of the scheme when € is made smaller compared to
the time step size 7 ~ h. In fact, as already expected, the scheme is stable
when the step size is taken relatively small compared to €. Results regarding
accuracy are illustrated in further illustrations below.

TR
ORISR KRS O
SRRSO

SRR VAR DR RAZ KA

R R F A
T B T A S N B0
R R R Kk PO SR E P CU A

SREEREINEER R A F A AYA

AN AVANAN AT S N SN I, BRI,

SERASROREESEIEE ¢ A ATV ATAYAV o A VAVAVA

RO RS SRS RRERRK

ATARAIRI CRRRSERISRNAN

(VAVAVa v AR RRROIRISARRY
ORI I RRIRS RSN
VATA VAN AT A BEINNN SIS
A D A A ATV TATAT A AV v o ATAT v sy A VA
RS P B A AR SN KERRICORO NSRRI S
T avar iy gy o R SOA R ATAVAS QS YA
T ATy, NS N SIS
KIS IIRAIN NS
VS g a3 g A AV Ny v v AT N AT S AV N
KRR R A RIS KISERRA
D VAT A AT ATAY ATV AV N
B e S

DO RIS
AR ANRRESE

(a) Initial mesh profile 29 (¢ =107%)  (b) Mesh profile of Q,]LVT at T=1(e=10"%)

15 T T T T T T T 15 T T T T T T T
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Fig. 4: Computational results for Example 2

We also check how the error changes with the magnitude of the time step
7 along with the maximum mesh size h of the triangulation 7, by calculating
the EOC of the present numerical example. Here, the mesh size h is as large as
the time step 7, i.e., h &= 7. The results are depicted in Fig. 5. Notice in these
figures that the orders are mostly linear when ¢ is sufficiently small, except,
of course, in Fig. 5b. Nevertheless, we can expect that the numerical solution
converges to the exact solution by reducing the time step as well as the mesh
size in the numerical procedure. Based on these figures, the error is evidently
reduced by choosing smaller . However, in Fig. 5b, for sufficiently small ¢, the
errors become saturated and the saturated values decrease with order O(7).

3 Bernoulli Free Boundary Problem

In this section, we showcase the practicality of the method for solving station-
ary free boundary problems.
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Fig. 5: Error of convergences for Example 2

3.1 Application of CMM in solving the Bernoulli free boundary problem

Here, we shall show that our proposed finite element scheme can actually be
applied to numerically solve the well-known Bernoulli problem, a prototype
of stationary free boundary problems [20]. The applicability of our method in
solving the said problem is not surprising since the kinematic boundary condi-
tion V,, = (=Vu++)-v+ A with v = 0 where A < 0, in fact provides a descent
direction for a gradient-based descent algorithm for solving the Bernoulli prob-
lem in the context of shape optimization. To see this, let us briefly discuss how
the Bernoulli problem can be solved using the method of shape optimization,
a well-established tool for solving FBPs [10].

The Bernoulli problem splits into two types: (i) the exterior case, similar
to the topological profile of the domain 2\ B examined in previous sections,
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and (ii) the interior case which is the exact opposite of the exterior problem
(i.e., the free boundary is the interior part of the disjoint boundaries). In
the discussion that follows, we shall focus on the former case which can be
described by the following overdetermined boundary value problem:

—Au=0 in2\B,
u=1 ondB, (3.1)
u=0 and Vu-r=X onl.

There are several ways to reformulate the above problem into a shape opti-
mization setting (see, e.g., [43] and the references therein), and the one we are
concerned with here is the minimization of the shape functional [16]

() = /Q (IV (@) + %) de,

where v = u(£2) is a unique weak solution to the underlying well-posed state
problem:

Find u € H},,(2\ B), with u = 1 on 9B, such that

_Vu:Vedr=0, Vo€ H}p(2\B). (3.2)
2\B
We like to emphasize here that the positivity of the Dirichlet data on the fixed
boundary 0B implies that the state solution u is positive in {2. This, in turn,
yields the identity |Vu| = —Vu-v on I" because u takes homogenous Dirichlet
data on the free boundary I'.
The solution to the exterior Bernoulli problem (3.1) is equivalent to finding
the solution pair (£2,u(f2)) to the shape optimization problem

m(}n J(02), (3.3)
where u(£2) € Hp,((£2\ B), with u = 1 on 9B, satisfies the variational problem

(3.2). This results from the necessary condition of a minimizer of the cost
functional J(£2), that is,

AV = L)

:/F[v_(vu.u)?]vndx:o, V= Vv,
e=0

has to hold for all sufficiently smooth perturbation fields V. Here, (2. stands
for a deformation of (2 along the deformation field V vanishing on dB. For
more details of how to compute d.J(£2)[V], and for more discussion on shape

optimization methods, in general, we refer the readers to [10] and [47].
To numerically solve (3.3), a typical approach is to utilize the shape gradient
(i.e., the kernel of the shape derivative dJ(£2)[V], see, e.g., [10, Thm. 3.6, p.

479-480]) in a gradient-based descent algorithm. For instance, given enough
regularity on the boundary I' and on the state u, we can take 0 % V =
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- {)\2 —(Vu- 1/)2} v € L3(I'). This implies that, formally, for small ¢ > 0, we
have the following inequality

7(2) = J(2) +t L)

2
e + O(t7)

e=0

= J(0) + t/ [Az — (Vu- uﬂ V, ds + O(t?)
r

=J() —t/ Vo> ds + O(t?) < J(02).

Here, we observe that we can simply take (—Vu-v+ \)v as the descent vector
V. This issues from the fact that Vu-v + X < 0 on I since |Vu| = —Vu - v
on I'. Indeed, with V = (=Vu - v + A)v, we see that

J(02,) = J(Q)+t/ (Vi v+ A) (V- v+ \) Vi ds + O(t2)
r

) +t/ (Va1 + ) Va2 ds + O(t2) < J(2),
N~———
<0

It is worth to mention here that simply taking the kernel of the shape derivative
of the cost function (multiplied to the normal vector on the free boundary)
as the deformation field V may lead to subsequent loss of regularity of the
free boundary, hence forming oscillations on the free boundary. To avoid such
phenomena, the descent vector is, in most cases, replaced by the so-called
Sobolev gradient [41]. A strategy to do this is to apply the traction method or
the H' gradient method which are popular smoothing techniques in the field
of shape design problems (see, e.g., [1]).

Now, the evolution of the free boundary I'(¢) of the Bernoulli problem
according to a shape gradient-based descent algorithm (see, e.g., [16]) describes
a similar evolutionary equation for the Hele-Shaw problem with the moving
boundary given as I'(t):

—Au=0 in 2(t)\ B, tel0,T],
u=1 on 0B,
u=0 on I'(t), t€][0,T], (3.4)
Vo==-Vu-v+X onl(t), te[0,7],
£2(0) = £,

where T' > 0. Before we give a concrete numerical example illustrating the
evolution of the solution of (3.4), note that the convergence of the solution
of the moving boundary problem in CMM to a stationary (non-degenerate)
shape solution will be given in Section 5 (see Proposition 3). Furthermore, we
infer from this claim that the convergence of £2(t) to §2*, as time ¢ increases
indefinitely, does not depend on the choice of the value of the parameter ¢ in
the e-approximation of the normal-velocity flow Vv of the moving boundary
I'(t).
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Numerical Example 3 Let us now consider a concrete example of the exte-
rior Bernoulli problem and apply CMM to approzximate its numerical solution.
We consider the problem with A = —10, and define the fixed interior domain as
the L-shaped domain B = (0.25,0.25)%\ [0.25,0.25]. Also, we solve the problem
for different choices of initial boundary I'(0). In particular, we consider it to
be a circle IY, a square with rounded corners IS, and a rectangle with rounded
corners I'Y. We carry out the approzimation procedure discretizing these do-
mains with (initial) triangulations having mesh of width h ~ 5 x 23. We set
the time step to T = 0.001 and take T =1 as the final time of interest. Hence,
the procedure terminates after N = 1000 time steps. Lastly, we set the CMM
parameter € to 0.1.

The results of the experiments are summarized in Fig. 6-Fig. 9. Fig. 6 depicts
the initial mesh triangulation of each mentioned test cases. Fig. 7, on the other
hand, shows the mesh profile after N time steps (i.e., the computational mesh
profile at time 7" = 1). Notice from these plots that the mesh quality actually
deteriorates in the sense that the area of some of the triangles become very
small (see the part of the discretized shape near the concave region of the
domain in Fig. 7). This is not actually surprising since we do not imposed any
kind of mesh improvement or re-meshing during the approximation process.
Of course, as a consequence, the step size may become too large in comparison
with the minimum mesh size of the triangulation after a large number of time
steps have passed, and this may cause instability within the approximation
scheme. Even so, we do not encounter this issue in these present test examples.
Meanwhile, to illustrate how the nodes changes after each time step, we plot
the boundary nodes’ trajectory from initial to final time step for each test cases,
and these are projected in Fig. 8. Moreover, in Fig. 9a, we plot the shapes at
T =1 (i.e., the shape I'*, i = 1,2, 3, at final time step k = Nr) against each of
the test cases. Notice that the computed shapes are slightly different, but are
nevertheless close to the shape obtained via shape optimization methods (see
[43]). This is primarily due to the fact that the number of triangles within the
initial mesh profile generated for each test cases are also different. Nonetheless,
as we tested numerically, the resulting shapes at time 7" = 1 for each cases
coincide at one another under smaller time steps and finer meshes. Lastly, Fig.
9b graphs the histories of the L?(I")-norms between Vu and A, for each cases.

We mention here that we also tested the case where the initial shape actu-
ally contains entirely the closure of the stationary shape (which is typically the
experimental setup examined in the literature), and, as expected, we also get
an almost identical shape with the ones obtained for the given cases. Here, we
opted to consider the above-mentioned test setups to see whether our scheme
works well in the case that the initial shape does not contain some regions of
the stationary shape.
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(a) Mesh profile of I

(b) Mesh profile of I'9

(c) Mesh profile of I')

Fig. 6: Initial computational meshes for each test case in Example 3
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Fig. 7: Computational mesh profiles for each test case in Example 3 at T =1

(a) Case I'(0) = I

(b) Case I'(0) = I'9

(c) Case I'(0) = I'Y

Fig. 8: Boundary nodes’ trajectories for each test case in Example 3

4 Mean Curvature Flow Problem

4.1 Application of CMM to mean curvature flow problem

As further application of CMM, we will showcase in this section how CMM
can easily be adapted to handle mean curvature flows:

Vo=—kK on I'(t),

(4.1)
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(a) Computed shapes (b) Histories of values of | Vu”* - vF — /\||L2(Flk)

Fig. 9: Plot 9a: Cross comparison of computed shapes at T = 1; plot 9b:
history of the L?-norm ||[Vu* - 1% — Mlz2(rry, i =1,2,3, for Example 3

where, k denotes curvature of I'(t) for d = 2, or the sum of principal curvature
of I'(t) for d > 3. The corresponding problem under this situation is often
referred to in the literature as the curve shortening problem when d = 2 (see,
e.g., [24,25]), and is called, in general (i.e., d > 3), as the mean curvature
flow problem (see, e.g., [12,31]). Here, we use the latter terminology in any
dimensional case. For other numerical methods used to solve the problem such
as the CSM coupled with the level-set method, or via a finite element method
using approximation by a reaction-diffusion equation, we refer the readers to
[35] and [42], respectively.

Now, let k¥ be the curvature of I'* = 902%. Similarly to (2.5), the smooth
extension of V,v according to CMM satisfies the following problem for Wﬁ :
0\ B, — R%:

—AwF =0 in 28\ By,
wk =0 on 0By, (4.2)
eVwFr - vk 4wk = —gFk on F}’f.

In variational form, the system of partial differential equations (4.2) is
given as follows: find w* € HéBp(Qk \ B;R?%) such that

1
/ Vwr : Ve dz 4 = wh . ds
2F\B gJrk

1
z—f/ KEUF o ds
g Jrk

1 —
=—- | divreds, Vee Hjp o2\ B;RY), (4.3)
Ik

where divr denotes the tangential divergence (see, e.g., [10, Chap. 9, Sec. 5.2,
eq. (5.6), p. 495] or [34, Chap. 3, Sec. 1, Def. 2.3, p. 53]). Evaluating the mean
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curvature term numerically is quite problematic, especially when implemented
in a finite element method. Here, however, we point out that to numerically
evaluate the integral consisting of the mean curvature x, one may utilize the
so-called Gauss-Green formula on I (see, e.g., [34, Chap. 2, Sec. 2, Thm. 2.18,
p. 56] or [10, eq. (5.27), p. 498]):

/mwv ds = / divp v ds, (4.4)
r r

which is valid for C? regular boundary I" and vector-valued function v : I' —
R? that belongs at least to C''(I';RY) space. Hence, the variational problem
(4.3) can be solved at once without the need to evaluate the mean curvature
kF at every time step k = 0,1,--- , Ny. Now, to implement in a finite element
method the right hand side integral appearing in the variational problem (4.3),
we remark that the identity divy ¢ = divep — (Ve -v)-v on I', actually holds
for smooth I" and ¢ : 2 — R?. So, for a polygonal mesh 2, and I}, := 0f2;,
with triangular mesh 7, and element @, € P(Tn) (i =1,2,...,d), l € N, we

have
/ divr, ¢, ds = / <div<ph _Oen : 1/> ds.
I I 31/

Numerical Example 4 With the above identity at our disposal, we perform
a numerical experiment for the mean curvature flow problem which we execute
with the parameter value € = 0.1, 7 = 5 - 1074, mazimum mesh size h ~ 0.2,

te0,7), T =1, QO::{(T,9)€R2‘O<T< 0<9<27r}, and B
is the circle C(0,0.5) as in Example 2.

2
2—cos(560) ?

The results of the experiment are summarized in Fig. 10. Here, the initial
situation, plotted with its mesh triangulation, is shown in Fig. 10a. On the
other hand, Fig. 10b plots the mesh profile at selected time steps. The third
figure, Fig. 10c, depicts the evolution of the moving boundary from its initial
profile (outermost exterior boundary) up to its final shape (innermost exterior
boundary), and at some intermediate time steps. Fig. 10d again plots the time
evolution of the moving boundary, but now viewed on the first quadrant and
with emphasis to the location of the boundary nodes at time steps k = 1007,
for j = 0,1,...,20. As expected, the curvature flow equation V,, = —k on
I'(t) has the effect of flattening uneven parts of the boundary, hence shrinking
the whole domain into the geometric profile of the interior boundary 0B (as
evident in the figures), after a sufficiently large time has passed.

4.2 EOC of CMM for the mean curvature flow problem

We also check the accuracy of CMM for curvature flows in the same way as
in subsection 2.3. That is, we construct a manufactured solution and then
compare the numerical solution obtained through the proposed scheme. In
this regard, we have the following proposition.
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Fig. 10: Computational results for Example 4

Proposition 2 We suppose ¢(z,t) is a smooth function with ¢ < 0 forx € B
and |Vé| # 0 on {¢ = 0} for t € [0,T]. We define g : R x [0,T] — R as

2
g = —% + % - W, and £2y := {$(x,0) < 0}. Then, the moving

domain 2(t) := {x € R? | ¢(z,t) < 0)} satisfy V,, = —k+g on I['(t), t € [0,T],
and £2(0) = £2.

Proof The proposition easily follows from straightforward computation of V,,
v, and the mean curvature  in terms of the level set function ¢. a

We now examine the EOC of the scheme when applied to solving the mean
curvature problem using Proposition 2. In this experiment, the domains are
initially discretized with uniform mesh size of width kA &~ 100 x 7, and we set
7 =1/(100 - 2™), where m = 0,1,...,5. The results are depicted in Fig. 11.
We observe from Fig. 11a an EOC of order one for 7 against the boundary
error errp. On the other hand, it seems that, for h ~ 100 x 7, we only have
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a sub-linear order for the EOC with respect to € against errp. In fact, the
plot shown in Fig. 11b shows that the behavior due to the change of ¢ is
similar to Fig. 5b. This is because CMM is an explicit method, and since the
right hand side of the variational problem (4.3) contains the mean curvature
term which is a second derivative, then the time step size 7 must be well less
than h to stabilize the numerical calculation. In relation to this, notice in Fig.
11a that there is no corresponding error value for 7 = 1/(100 - 2°) in case of
e = 1073. This is because the scheme is becoming unstable after several time
steps under this set of parameter values, causing the algorithm to stop. So, for
these reasons, we perform another experiment where h ~ 200 x 7 and consider
different values for 7. The results are summarized in Fig. 12 where we now
observe an almost linear convergence behavior of the scheme with respect to
€ against the boundary errp as conspicuous in Fig. 12b. However, for small
times steps, errp is already saturated for 7 of magnitude around or less than
1073 as evident in Fig. 12a. Nevertheless, the error values became smaller,
which implies that the numerical solution is improved by taking sufficiently
small time steps.

h =~ 1007
100 h & 1007

107

Ll—<
5]
: Vit )
o 1 :
/ 0(="5%) 7 = 1/(100 - 22)
-2 — 101 o7 = 1/(100 - 2%)
10 ~e=10" 7 =1/(100-2")
we=10 5 7 =1/(100 - 2°)
10
104 1078 102 103 102 107 10°
. [
(a) T vs errp (b) € vs errr

Fig. 11: Error of convergences when h ~ 100 x 7

5 Some Qualitative Properties of CMM

In this section, we state and prove two simple properties of CMM related to
the convergence to a stationary point I'* of the moving boundary I'(t), t > 0,
under a general description of the normal flow V,,, and another property we
call the e-approximation property of CMM. In relation to the former result,
let us consider the following abstract autonomous moving boundary problem.

Problem 3 Given the initial profile Iy and a real-valued function F(-;T) :
I' » R, find a moving surface I'(t) with the normal speed V,,, t > 0, which
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Fig. 12: Error of convergences when h ~ 200 X 7
satisfies

Vo(z,t) = F(z; (), =z=el'(t), t=>0,
{ I(0) = Iy,

The particular forms of F(xz;I'(t)) that are of interest here are as follows:

— F(z;I°(t)) = (—Vu+y) - v+ Ain (1.1);
— F(x;(t)) = —k in (4.1).

Next, we define a stationary solution to Problem 3.

Definition 1 A domain 2* is said to be a stationary solution to Problem 3
if I'* = 002*, and F(xz; I'*) = 0 for almost every x € I'*.

Then, we associate with Problem 3 the e-regularized moving boundary
problem given as follows:

Problem 4 Let B and {2 be two bounded domains with respective Lipschitz
boundary OB and I' := 912 such that B C £2. Given the initial profile I, a
real-valued function F(-;I') € L*(I"), and a fiz number € > 0, we seek to find
a moving surface I'(t), which satisfies

~Aw =0 in Qt)\ B, t=>0,
w=0 on 0B, (5.2)
eVw-v+w=F(-;I'(t))v onI(t), t=0, '
Vi=w-v on I'(t), t=0.

With respect to Problem 4, a stationary solution 2* is define as follows.
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Definition 2 A domain 2% is said to be a stationary solution to Problem j
if I'* = 002*, and w € Hyp o(2* \ B;R%) satisfies the variational equation.

e/ Vw: Ve dz + w- @ ds
2\B r

=/ F(5I™)v-@ds, Ve e Hypo(2°\B;RY),  (53)
and w-v=0 onlI™. (5.4)

For Lipschitz domain £2* \ B and F(-;I") € L*(I"), the variational problem
(5.3) can be shown to have a weak solution w € H'(£2* \ B;R?) via Lax-
Milgram lemma. With the above definition of a stationary point, we now state
and prove our first result.

Proposition 3 We suppose 2* D B, I'* = 002* is Lipschitz, and F(-;I") €
L3(I"). Then, the following conditions are equivalent:

(i) 2% is a stationary solution to Problem 3,
(i) £2* is stationary solution to Problem 4, for any e > 0,
(iii) 2% is stationary solution to Problem 4, for some e > 0.

Proof Consider equation (5.2) over the stationary shape 2* with Lipschitz

boundary I'*. For the implication (i) = (ii), we assume that L?(I") > F(-;T") =
0, and we need to show that w-» = 0 on I'*. To do this, we apply integration

by parts to (5.3), and note that w = 0 on 0B, to obtain

Og/ \w|2ds:—s/ 8—W~wds:—<€/ |Vw|? dz < 0.
I * al/ Q*\E

Evidently, w = 0 on £2*, and in particular, w - v = 0 on I"*.

The proof of the direction (i¢) = (i44) is trivial. Finally, for the implication
(#91) = (i), we need to prove that if w-v = 0 on I'*, where w satisfies the
system (5.2) on 2* \ B, then F = 0 on I'*. In (5.3), we take ¢ = w €
Hjp o(£2°\ B;R?) so that we get

5/ Vw:dex—i—/ |W|2d8=/ F(;I)v-wds=0.
Q*\§ * *

This implies, obviously, that w = 0 on 2*. Going back to (5.3), we see that
Jp- F(5T*)v - ds = 0, for all ¢ € Hjgo(2*\ B;RY), from which we
conclude that F' = 0 on I'*. This proves the assertion. a

In the rest of this section, we want to prove what we call the e-approximation
property of CMM. For this purpose, we again fix {2 and B and suppose that
I' and 0B are Lipschitz regular. Given a function g : I' — R?, our main
concern is the convergence of its Robin approximation to an original Dirichlet
boundary condition associated with the following Laplace equation with pure
Dirichlet boundary condition:

—~Av=0 in 2\ B, v=0 on JdB, v=g onl. (5.5)
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For a given data g € H'/2(I'; R?) and Lipschitz domain §2\ B, it can be shown
via Lax-Milgram lemma that the corresponding variational equation of (5.5)
admits a unique weak solution v € H'(2\ B;R%).

Now, we consider system (5.5) and denote its solution, depending on g €
H'Y2(I;RY), by v* := v(g'). Also, we define the Dirichlet-to-Neumann map
A: HY?(I';RY) — H-Y2(I';R?). Then, we have the following lemma whose
proof is given in the Appendix.

Lemma 1 The map (-, -)a : HY*(I;RY) x HY2(I;RY) — R defined as
(g',8%)a == (Ag",8%)2(rray, for g', g% € H'Y2(I';RY), is an inner product
on H'/2(I';RY), and is equivalent to the usual norm on HY?(I'; R?).

Now, for ¢ > 0 and g € HY?(I';R?), we define g_ such that cAg, +g. =
eVve-v+v, =: g, and consider the boundary value problem (5.5) with v and
g replaced by v, and g, respectively, and, instead of the Dirichlet condition,
we imposed on I' the Robin condition eVv, - v 4+ v. = g. More precisely, we
consider the mixed Dirichlet-Robin problem

—Av.=0 in2\B, v.=0 ondB, eVv.-v+v.=g onl. (5.6)
Let us define the bilinear form a®(-, -) as follows:

a“(p, ) == g12((eA+ D)@, Y) 1z = (@, ¥)a + (@, %) L2 (rira).-

Then, we may write a weak formulation on I" for g° as follows: find g& €
HY?(I';RY) such that

a*(g%.¢) = (8 @) r2(rwey,  for all € H'?(I';RY). (5.7)

Again, the existence of unique weak solution g® € H'/2 (I';RY) to the above
variational problem can be proven using Lax-Milgram lemma.

We now exhibit our second convergence result in the following proposition
which simply states the convergence of the Robin approximation to the original
Dirichlet data in L?(I") sense as the parameter € goes to zero provided that
the Neumann data Ag is square integrable.

Proposition 4 Let g € HY?(I';R?Y) and I’ be Lipschitz regular. If Ag €
L?(I';RY), then the following estimate holds ||g° — 8llz2(rrey < €148l L2 ray-

Proof Taking the test function in (5.7) as ¢ := g° — g € H/?(I'; R?) gives us
the following sequence of equations: a°(g° — g,8° — g) = (8,8° — &) L2(rre) —
£(g,8°—8)a— (88" —8)r2(rre) = —€(8,8° —8)a. This gives us the estimate
llge — g”iz(l—‘;Rd) < —¢(g,g° — g)a. Furthermore, if Ag € L?(I'; RY), then we
can write this inequality as [|g8° — gl|p2(p.pay < €[/482(p Ry, as desired. O
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6 Conclusion

We have developed a finite element scheme we called the ‘comoving mesh
method’ or CMM for solving certain families of moving boundary problems. We
applied the proposed scheme in solving the classical Hele-Shaw problem and
the exterior Bernoulli free boundary problem. In the latter case, we found that
the generalized Hele-Shaw problem with normal velocity flow V,, = —Vu-v+ A,
where A < 0 converges to a stationary point which coincides with the optimal
shape solution of the said free boundary problem. We have also demonstrated
the applicability of CMM in solving a moving boundary problem involving the
mean curvature flow equation V,, = —k. The numerical experiments performed
here showed that the experimental order of convergence of the approximate
solutions obtained using CMM are mostly linear for both the Hele-Shaw prob-
lem and the mean curvature problem. In case of the former problem, this
linear order of convergence was seen for time step sizes that is as large as the
mesh size value. On the other hand, for the mean curvature problem, it was
observed that the magnitude of the time step-size has to be well less than
the width of the mesh in order for the numerical scheme to be stable and ob-
tained a (nearly) linear order of convergence with respect to the parameter e
against the boundary shape error. Finally, we have also presented two simple
properties of CMM pertaining to its stationary solution and a convergence
result regarding the e-approximation of V,,. In our next investigation, we will
apply the method in solving more general moving boundary problems such as
the Stefan problem and the two-phase Navier-Stokes equations. Moreover, we
want to treat the Gibbs-Thomson law which assumes the condition © = ok on
the moving boundary.
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improve the paper.

A Proof of Lemma 1

Proof Let us now prove Lemma 1. Consider system (5.5) whose solution is given by v* :=
v(g?). Also, consider the Dirichlet-to-Neumann map A : HY/2(IRY) — H—V/2(I;RY).
Then, for g!,g2 € HY/2(I';R?%), the binary operation (g!,g?)4 := (Agl,gQ)ng;Rd) is an

inner product on Hl/Q(F; ]Rd). Indeed, we have the following arguments

(i) since, for any g® € H'Y2(I;R?) and ¢ € R, we have (A(cg! + g2),g3)L2(p;Rd) =
Jr(eVVt + Tv2) - v3ds = co(Agl,8%) 2 (rygay + (A2 89) pa(rgay, then (-, -)a is
linear with respect to its first argument;

(ii) the binary operation (-, -), is positive definite because, for any g2 € H1/2(F;]Rd)7 we
have (Ag,8)r2(rray = [p(VV-v)v ds = fﬁ\B |Vv|? dz > 0;

(iii) also, it is point-separating, that is (Ag,g)Lz(F:Rd) =0 if and only if g = 0; and,

(iv) lastly, the operation is symmetric because (Agl,gQ)sz;Rd) = [p(Vvl - v)v2 ds =
fap VYV i Vv de = [ vI(Vv? ) ds = (', A8%) 2 (pypa)-
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Additionally, for Lipschitz I", the inner product (-, -)4 is equivalent to the natural one
in H1/2(I'; R?). Here, H/2(I";R%) is viewed as the image of the trace operator vy on I’
(i-e., Im(yr) = v (H'(£2;R?))). Consequently, by Riesz representation theorem, together
with the embedding H~1/2(I';RY) D L2(I';RY) D HY/2(I';R%), we conclude that A €
Isom(H'/2(I'; RY), H—1/2(I"; R%)). This proves the lemma. O
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