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A B S T R A C T

The ‘‘comoving mesh method’’ or CMM is a Lagrangian-type numerical scheme recently
developed for numerically solving classes of moving boundary problems. The scheme is well-
suited for solving, for example, the Hele-Shaw flow problem, the curve-shortening problem, and
the well-known Bernoulli free boundary problem. This finite element method exploits the idea
that the normal velocity field of a moving boundary can be extended smoothly throughout the
entire domain of the problem’s definition using, for instance, the Laplace operator. By doing
so, the finite element mesh of the domain is easily updated at every time step by moving
the nodal points along this velocity field. As a result, one avoids the need to generate a new
computational mesh at every time step. In this exposition, we further develop and demonstrate
the practicality of the method by solving moving boundary problems set in higher dimensions
and its application to solving the Stefan problem in two dimensions. Numerical examples are
provided for illustration purposes.

1. Introduction

The main objective of this work is to reintroduce the comoving mesh method (CMM) [27] and showcase its application to time-
dependent moving boundary problems (MBPs). While a previous study [27] focused on two-dimensional and time-independent
problems, our aim is to demonstrate the method’s versatility in higher dimensions and for time-dependent cases. Specifically, we
are interested in examining the mean-curvature flow problem (MCF) and the well-known one-phase Stefan problem.

1.1. Background and model problems

Let 𝑇 > 0 be fixed and 𝐵 be an open bounded set (which can be empty) in R𝑑 (𝑑 = 2, 3) with a smooth boundary 𝜕𝐵. For
𝑡 ∈ 𝐼𝑇 ∶= [0, 𝑇 ], consider a larger open bounded set 𝛺(𝑡) ⊂ R𝑑 containing 𝐵 with smooth boundary 𝛤 (𝑡) ∶= 𝜕𝛺(𝑡) such that
dist(𝜕𝐵, 𝛤 (0)) > 0.

Given the functions 𝑓 ∶ R𝑑 × 𝐼𝑇 → R, 𝑞𝐵 ∶ 𝜕𝐵 × 𝐼𝑇 → R, 𝑔 ∶ R × 𝐼𝑇 → R, 𝜸 ∶ R𝑑 × 𝐼𝑇 → R𝑑 , the constant 𝜆 ∈ R, and the initial
profile 𝛺0 ∶= 𝛺(0) of 𝛺(𝑡), with 𝑉𝑛 ∶= 𝑉𝑛(𝑥, 𝑡), 𝑥 ∈ 𝛤 (𝑡), describing the outward normal velocity of the moving interface 𝛤 (𝑡), we
consider the following MBP:
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Problem 1.1.1. Find 𝛺(𝑡) ⊃ 𝐵 and 𝑢(⋅, 𝑡) ∶ 𝛺(𝑡) ⧵ 𝐵 → R such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝛥𝑢 = 𝑓 in 𝛺(𝑡) ⧵ 𝐵, 𝑡 ∈ 𝐼𝑇 ,
(1 − 𝛼)𝑢 + 𝛼∇𝑢 ⋅ 𝜈 = 𝑞𝐵 on 𝜕𝐵,

𝑢 = 𝑔 on 𝛤 (𝑡), 𝑡 ∈ 𝐼𝑇 ,
𝑉𝑛 = (−∇𝑢 + 𝜸) ⋅ 𝜈 + 𝜆 on 𝛤 (𝑡), 𝑡 ∈ 𝐼𝑇 ,

𝛺(0) = 𝛺0,

(1)

where 𝛼 ∈ {0, 1} which indicates a Dirichlet (𝛼 = 0) or a Neumann boundary condition (𝛼 = 1) is used, and 𝜈 denotes the outward
unit normal vector on the boundary of 𝛺(𝑡) ⧵ 𝐵.

A particular case of Problem 1.1.1 is the well-known Hele-Shaw problem (see, e.g., [10]) which is recovered by taking 𝑓 ≡ 0,
≡ 0, 𝜸 ≡ 𝟎 and 𝜆 = 0 in Eq. (1). Meanwhile, if one takes 𝑓 = 𝑓 (𝑥), 𝑔 ≡ 0, 𝜸 ≡ 𝟎, and 𝜆 < 0 in (1), then the system of equation is

elated to the exterior case of the Bernoulli problem [11,12,20] (a.k.a. the Alt-Caffarelli problem). In fact, if one supposes that the
olution to (1) converges to a stationary point 𝛺∗ (i.e., 𝛺∗ is a domain such that 𝑉𝑛 = 0 on 𝛤 ∗ = 𝜕𝛺∗) as 𝑡 goes to infinity, then
roblem 1.1.1 rewrites into the following free boundary problem.

roblem 1.1.2. Given a constant 𝜆 < 0 and a fixed open bounded set 𝐵, find a bounded domain 𝛺 ⊃ 𝐵 and a function 𝑢 ∶ 𝛺⧵𝐵 → R
such that

⎧

⎪

⎨

⎪

⎩

−𝛥𝑢 = 𝑓 in 𝛺 ⧵ 𝐵,
(1 − 𝛼)𝑢 + 𝛼∇𝑢 ⋅ 𝜈 = 𝑞𝐵 on 𝜕𝐵,

𝑢 = 0 and ∇𝑢 ⋅ 𝜈 = 𝜆 on 𝛤 .
(2)

Numerical methods for solving specific cases of Problem 1.1.1 have been extensively studied. The Hele-Shaw problem, for
xample, has been addressed using the boundary element method (BEM) [15,17,19], the charge simulation method (CSM) or
ethod of fundamental solutions [24–26]. The method from [17] is applicable to other two-dimensional MBPs but becomes

omputationally demanding in three dimensions. Generalizing these methods to more complex problems, especially in three
imensions, is challenging. Another method suitable for cases where the free boundary can be represented by a graph or a height
unction was proposed in [5]. This adaptive mesh method efficiently applies to two-dimensional scenarios.

Drawing inspiration from the aforementioned studies, we aim to demonstrate in this study the practicality and flexible nature of
MM when applied to diverse moving boundary problems. In doing so, we will illustrate the following attributes of this approach:

• firstly, the method easily applies to higher dimensional MBPs, and does not involve cumbersome ad hoc procedures;
• secondly, the scheme does not require mesh regeneration;
• and, lastly, it can easily be adapted to solve time-dependent MBPs.

ethods for numerically solving MBPs can be categorized into two groups: (i) moving-grid methods, and (ii) fixed-grid methods.
27] provides a brief overview of where CMM stands in the literature. As described in [27], CMM is a type of moving-grid approach.
t involves moving nodal points within a discretized domain according to the boundary motion in the normal direction. This method
ligns with the concept of the Lagrangian method used in fluid flow problems and relies on smooth extensions. CMM is closely related
o the elliptic-grid generation (EGG) method, as outlined in [21, Chapter 6], and the traction method developed by Azegami [1] for
hape optimization problems (see also [2]).

The rest of the paper is organized as follows. In the next Section 1.2, we review some properties obtained in a previous study [27].
ubsequently, in Section 1.3, we recall the motivation and the main idea behind CMM. Moving on to Section 2, we present the
pplication of CMM to solving MCF problems, including its corresponding numerical algorithm. We illustrate the feasibility of the
ethod through numerical examples. In Section 3, we discuss how CMM can solve the one-phase Stefan problem and examine

he order of the error of its convergence using numerical examples. Additionally, in Section 4, we investigate a smooth extension
f normal flows obtained via the linear elasticity equation, revealing more properties of CMM. Lastly, we conclude the paper in
ection 5 and provide a statement of future work.

.2. Properties of CMM

Prior to unveiling the new features of CMM that we aim to present in this study, we will initially provide a concise overview of
ts qualitative characteristics that were previously established in [27]. The initial concern pertains to the convergence towards

stationary point 𝛤 ∗ of the moving boundary 𝛤 (𝑡), 𝑡 ⩾ 0. This is discussed within a broader context that involves a general
epresentation of the normal flow 𝑉𝑛. On the other hand, the second concern, known as the 𝜀-approximation property of CMM [27],
elates to the scheme’s characteristics concerning the well-known Bernoulli problem [8]. This property is applicable to CMM and
an be found in Section 3.1 of [27].

Hereafter, we consider the following abstract autonomous moving boundary problem.

roblem 1.2.1. Given an initial surface 𝛤 0 and a real-valued function 𝐹 ( ⋅ ;𝛤 ) ∶ 𝛤 → R, find a moving surface 𝛤 (𝑡) with the normal
peed 𝑉𝑛, 𝑡 ⩾ 0, which satisfies

{

𝑉𝑛(𝑥, 𝑡) = 𝐹 (𝑥;𝛤 (𝑡)), 𝑥 ∈ 𝛤 (𝑡), 𝑡 ⩾ 0,
0 (3)
590
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Specific forms of 𝐹 (𝑥;𝛤 (𝑡)) that are of interest are as follows:

• 𝐹 (𝑥;𝛤 (𝑡)) = (−∇𝑢 + 𝜸) ⋅ 𝜈 + 𝜆 in (1);
• 𝐹 (𝑥;𝛤 (𝑡)) = −𝜅 in (16).

Let us now define what we mean by a stationary solution to Problem 1.2.1.

Definition 1.2.1. A domain 𝛺∗ is said to be a stationary solution to Problem 1.2.1 if 𝛤 ∗ = 𝜕𝛺∗, and 𝐹 (𝑥;𝛤 ∗) = 0 for almost every
𝑥 ∈ 𝛤 ∗.

We associate with Problem 1.2.1 the 𝜀-regularized moving boundary problem given as follows:

roblem 1.2.2. Let 𝐵 and 𝛺 be two bounded domains with respective Lipschitz boundary 𝜕𝐵 and 𝛤 ∶= 𝜕𝛺 such that 𝐵 ⊂ 𝛺.
Given 𝛤 0, a real-valued function 𝐹 ( ⋅ ;𝛤 ) ∈ 𝐿2(𝛤 ), and a fix number 𝜀 > 0, we seek to find a moving surface 𝛤 (𝑡), which satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝛥𝐰 = 𝟎 in 𝛺(𝑡) ⧵ 𝐵, 𝑡 ⩾ 0,
𝐰 = 𝟎 on 𝜕𝐵,

𝜀∇𝐰 ⋅ 𝜈 + 𝐰 = 𝐹 ( ⋅ ;𝛤 (𝑡))𝜈 on 𝛤 (𝑡), 𝑡 ⩾ 0,
𝑉𝑛 = 𝐰 ⋅ 𝜈 on 𝛤 (𝑡), 𝑡 ⩾ 0.

(4)

The positive number 𝜀 is referred to here as the CMM parameter. With respect to Problem 1.2.2, a stationary solution 𝛺∗ is
define as follows.

Definition 1.2.2. A domain 𝛺∗ is said to be a stationary solution to Problem 1.2.2 if 𝛤 ∗ = 𝜕𝛺∗, and 𝐰 ∈ 𝐻1
𝜕𝐵,𝟎(𝛺

∗ ⧵ 𝐵;R𝑑 ) solves
the variational equation

𝜀∫𝛺∗⧵𝐵
∇𝐰 ∶ ∇𝝋 𝑑𝑥 + ∫𝛤 ∗

𝐰 ⋅ 𝝋 d𝑠 = ∫𝛤 ∗
𝐹 (⋅;𝛤 ∗)𝜈 ⋅ 𝝋 d𝑠, ∀𝝋 ∈ 𝐻1

𝜕𝐵,𝟎(𝛺
∗ ⧵ 𝐵;R𝑑 ), (5)

with 𝐰 ⋅ 𝜈 = 0 on 𝛤 ∗. (6)

For Lipschitz domain 𝛺∗ ⧵ 𝐵 and 𝐹 ( ⋅ ;𝛤 ) ∈ 𝐿2(𝛤 ), Eq. (5) can be shown to have a weak solution 𝐰 ∈ 𝐻1(𝛺∗ ⧵ 𝐵;R𝑑 ) via
Lax–Milgram lemma. With this definition of a stationary point given, one obtains the following.

Proposition 1.2.1 ([27, Prop. 3]). We suppose 𝛺∗ ⊃ 𝐵, 𝛤 ∗ = 𝜕𝛺∗ is Lipschitz, and 𝐹 ( ⋅ ;𝛤 ) ∈ 𝐿2(𝛤 ). Then, the following conditions are
quivalent:

(i) 𝛺∗ is a stationary solution to Problem 1.2.1,
(ii) 𝛺∗ is stationary solution to Problem 1.2.2, for any 𝜀 > 0,
(iii) 𝛺∗ is stationary solution to Problem 1.2.2, for some 𝜀 > 0.

For the 𝜀-approximation property of CMM, let us again fix 𝛺 and 𝐵 and suppose that their respective boundaries 𝛤 and 𝜕𝐵 are
ipschitz regular. Given a function 𝐠 ∶ 𝛤 → R𝑑 , the said property of CMM is simply concern about the convergence of the Robin
pproximation to the original Dirichlet boundary condition associated with the following system of PDEs:

− 𝛥𝐯 = 𝟎 in 𝛺 ⧵ 𝐵, 𝐯 = 𝟎 on 𝜕𝐵, 𝐯 = 𝐠 on 𝛤 . (7)

The corresponding variational equation of (7) admits a unique weak solution 𝐯 ∈ 𝐻1(𝛺 ⧵𝐵;R𝑑 ) for any given data 𝐠 ∈ 𝐻1∕2(𝛤 ;R𝑑 )
and Lipschitz domain 𝛺 ⧵ 𝐵. This follows immediately from the application of Lax–Milgram lemma.

Let us consider system (7) and denote its solution, depending on 𝐠 ∈ 𝐻1∕2(𝛤 ;R𝑑 ), by 𝐯𝑖 ∶= 𝐯(𝐠𝑖) and define the Dirichlet-to-
eumann map 𝛬 ∶ 𝐻1∕2(𝛤 ;R𝑑 ) → 𝐻−1∕2(𝛤 ;R𝑑 ). Then, the following lemma holds true:

emma 1.2.1 ([27, Lem. 1]). For 𝐠1, 𝐠2 ∈ 𝐻1∕2(𝛤 ;R𝑑 ), the map

( ⋅ , ⋅ )𝛬 ∶ 𝐻1∕2(𝛤 ;R𝑑 ) ×𝐻1∕2(𝛤 ;R𝑑 ) → R, (𝐠1, 𝐠2)𝛬 ∶= (𝛬𝐠1, 𝐠2)𝐿2(𝛤 ;R𝑑 ),

s an inner product on 𝐻1∕2(𝛤 ;R𝑑 ), and is equivalent to the 𝐻1∕2(𝛤 ;R𝑑 )-norm.

Now, for 𝜀 > 0 and 𝐠 ∈ 𝐻1∕2(𝛤 ;R𝑑 ), we define 𝐠𝜀 such that 𝜀𝛬𝐠𝜀 + 𝐠𝜀 = 𝜀∇𝐯𝜀 ⋅ 𝜈 + 𝐯𝜀 =∶ 𝐠, and system (7) with 𝐯 and 𝐠 replaced
y 𝐯𝜀 and 𝐠𝜀, respectively, and, instead of the Dirichlet condition, we imposed on 𝛤 the Robin condition 𝜀∇𝐯𝜀 ⋅ 𝜈 + 𝐯𝜀 = 𝐠. More
recisely, we consider the mixed Dirichlet–Robin problem

− 𝛥𝐯𝜀 = 𝟎 in 𝛺 ⧵ 𝐵, 𝐯𝜀 = 𝟎 on 𝜕𝐵, 𝜀∇𝐯𝜀 ⋅ 𝜈 + 𝐯𝜀 = 𝐠 on 𝛤 . (8)

Let us define the bilinear form 𝑎𝜀( ⋅ , ⋅ ) as follows:
𝜀

591

𝑎 (𝝋,𝝍) ∶= 𝐻−1∕2 ⟨(𝜀𝛬 + 𝐈)𝝋,𝝍⟩𝐻1∕2 = 𝜀(𝝋,𝝍)𝛬 + (𝝋,𝝍)𝐿2(𝛤 ;R𝑑 ).
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Then, we may write a weak formulation on 𝛤 for 𝐠𝜀 as follows: find 𝐠𝜀 ∈ 𝐻1∕2(𝛤 ;R𝑑 ) such that

𝑎𝜀(𝐠𝜀,𝝋) = (𝐠,𝝋)𝐿2(𝛤 ;R𝑑 ), for all 𝝋 ∈ 𝐻1∕2(𝛤 ;R𝑑 ). (9)

Again, the existence of unique weak solution 𝐠𝜀 ∈ 𝐻1∕2(𝛤 ;R𝑑 ) to the above variational problem can be proven using Lax–Milgram
lemma.

Using Lemma 1.2.1, one derives without difficulty the following convergence property of CMM:

Proposition 1.2.2 ([27, Prop. 4]). Let 𝐠 ∈ 𝐻1∕2(𝛤 ;R𝑑 ) and 𝛤 be Lipschitz regular. If 𝛬𝐠 ∈ 𝐿2(𝛤 ;R𝑑 ), then ‖𝐠𝜀 − 𝐠‖𝐿2(𝛤 ;R𝑑 ) ⩽
𝜀 ‖𝛬𝐠‖𝐿2(𝛤 ;R𝑑 ).

1.3. Motivation and the main idea behind CMM

In this section, we will provide a summary of the concept and the motivation behind the approach, along with its numerical
execution, replicating various aspects discussed in [27].

To explain the method with simplicity, we consider Problem 1.1.1 with 𝛼 = 1, 𝜆 = 0, and 𝜸 = 𝟎. Let 𝑇 > 0 be a given final time
of interest, 𝑁𝑇 a fixed positive integer, and 𝜏 = 𝑇 ∕𝑁𝑇 (note that this can be set differently) denotes the desired time discretization
step-size. For each time-step index 𝑘 = 0, 1,… , 𝑁𝑇 , the time-discretized version of domains, boundaries, and functions will be
denoted with superscript 𝑘 (e.g., 𝛺𝑘 ≈ 𝛺(𝑘𝜏) and 𝑢𝑘 ≈ 𝑢(⋅, 𝑘𝜏)). Moreover, we will occasionally write 𝑋 = 𝛺 ⧵𝐵 and its triangulation
(with maximum mesh size ℎ > 0) as 𝑋ℎ = 𝛺ℎ ⧵ 𝐵ℎ. Throughout the paper, whenever there is no confusion, the subscript ℎ and
uperscript 𝑘 will be dropped for ease of writing.

Now let 𝑇 , 𝑁𝑇 , 𝜀, and the known functions be fixed, and 𝛺0 be given. A naive numerical method to solve (1) is given as
ollows:

Conventional scheme for the (1)
For 𝑘 = 0, 1,… , 𝑁𝑇 , do the following:

Step 1. First, find 𝑢𝑘 in 𝛺𝑘 ⧵ 𝐵 that solves the equation

−𝛥𝑢𝑘 = 𝑓𝑘 in 𝛺𝑘 ⧵ 𝐵, ∇𝑢𝑘 ⋅ 𝜈𝑘 = 𝑞𝑘𝐵 on 𝜕𝐵, 𝑢𝑘 = 0 on 𝛤 𝑘.

Step 2. Then, define the normal velocity 𝑉 𝑘
𝑛 ∶= −∇𝑢𝑘 ⋅ 𝜈𝑘 on 𝛤 𝑘.

Step 3. Finally, update the moving boundary according to

𝛤 𝑘+1 ∶=
{

𝑥 + 𝜏𝑉 𝑘
𝑛 (𝑥)𝜈

𝑘(𝑥) |

|

|

𝑥 ∈ 𝛤 𝑘
}

.

As pointed out in [27], there are two issues in implementing the above scheme in a finite element method (FEM):

• If 𝑢𝑘ℎ ∈ P1(𝛤 𝑘
ℎ ), then, at time step 𝑘, 𝑉 𝑘

𝑛 ∈ P0(𝛤 𝑘
ℎ ) where 𝛤 𝑘

ℎ denotes the triangulation of the exterior boundary of 𝛺𝑘
ℎ ⧵ 𝐵ℎ. In

this situation, the FE space P0 is not enough to uniquely define 𝑉 𝑘
𝑛 on nodal points of the mesh. In fact, we need it to be in

P1(𝛤 𝑘
ℎ ) FE space in Step 3 of the scheme.

• Typically, FEM for MBPs requires mesh regeneration. While such procedure is not costly in 2D, it is obviously not the case in
3D.

o handle these issues, the following solutions were offered by the authors in [27]. For the second point, one simply needs to move
ot only the boundary nodes of the mesh, but also its internal nodes at every time step. To do this, a smooth extension 𝐰 (dropping
he time index 𝑘) of 𝑉𝑛𝜈 in the entirety of 𝑋 has to be constructed. In CMM, this is done by finding 𝐰ℎ ∈ P1(𝑋ℎ;R𝑑 ) which solves,
or example, the Laplace equation

− 𝛥𝐰ℎ = 𝟎 in 𝑋ℎ, 𝐰ℎ = 𝟎 on 𝜕𝐵ℎ, 𝐰ℎ = 𝑉𝑛𝜈 on 𝛤ℎ. (10)

Then, for each 𝑘 = 0, 1,… , 𝑁𝑇 , the mesh triangulation ℎ(𝛺
𝑘+1
ℎ ⧵ 𝐵ℎ) = {𝐾𝑘+1

𝑙 }𝑁𝑒
𝑙=1 (𝑁𝑒 the number of elements) of 𝛺

𝑘+1
ℎ ⧵ 𝐵ℎ are

defined as follows:

𝛺
𝑘+1
ℎ ⧵ 𝐵ℎ ∶=

{

𝑥 + 𝜏𝐰𝑘
ℎ(𝑥)

|

|

|

|

𝑥 ∈ 𝛺
𝑘
ℎ ⧵ 𝐵ℎ

}

, (11)

𝐾𝑘+1
𝑙 ∶=

{

𝑥 + 𝜏𝐰𝑘
ℎ(𝑥)

|

|

|

𝑥 ∈ 𝐾𝑘
𝑙

}

. (12)
592
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Remark 1.3.1. If 𝐰𝑘
ℎ belongs to higher order FE space, then, instead of (12), we define ℎ(𝛺

𝑘
ℎ ⧵ 𝐵ℎ) with the set of nodal points

 𝑘
ℎ = {𝑝𝑘𝑗 }

𝑁𝑝
𝑗=1:

ℎ(𝛺
𝑘+1
ℎ ⧵ 𝐵ℎ) ∶=

⎧

⎪

⎨

⎪

⎩

𝑝𝑘+1𝑗 ∶= 𝑝𝑘𝑗 + 𝜏𝐰𝑘
ℎ(𝑝

𝑘
𝑗 )

𝐾𝑘+1
𝑙 ∩ 𝑘+1

𝑙 = 𝐾𝑘
𝑙 ∩ 𝑘

𝑙 .
(13)

On the other hand, to address the first issue, we have proposed in [27] to apply a Robin approximation of the Dirichlet boundary
equation on the moving boundary. On this purpose, we fixed a real number 𝜀 > 0 and replace the equation 𝐰 = 𝑉𝑛𝜈 by 𝜀∇𝐰⋅𝜈+𝐰 = 𝑉𝑛𝜈
on 𝛤 𝑘 in (10). Doing so leads us to finding 𝐰ℎ ∈ P1(𝑋ℎ;R𝑑 ) which solves the following system:

⎧

⎪

⎨

⎪

⎩

−𝛥𝐰ℎ = 𝟎 in 𝛺ℎ ⧵ 𝐵ℎ,
𝐰ℎ = 𝟎 on 𝜕𝐵ℎ,

𝜀∇𝐰ℎ ⋅ 𝜈ℎ + 𝐰ℎ = 𝑉𝑛𝜈 on 𝛤ℎ.
(14)

For convenience, let us define the bilinear form 𝑎𝑋,𝑌 (𝝋,𝝍) – which is continuous and coercive on associated space – as follows:

𝑎𝑋,𝑌 (𝝋,𝝍) = ∫𝑋
∇𝐰 ∶ ∇𝝋 𝑑𝑥 + 1

𝜀 ∫𝑌
𝐰 ⋅ 𝝋 𝑑𝑠.

The weak formulation of (14) is stated as follows:

⎧

⎪

⎨

⎪

⎩

find 𝐰 ∈ 𝐻1
𝜕𝐵,𝟎(𝑋ℎ;R𝑑 ) such that

𝑎𝑋ℎ ,𝛤ℎ (𝐰,𝝋) =
1
𝜀 ∫𝛤ℎ

𝑉𝑛𝜈 ⋅ 𝝋 𝑑𝑠, for all 𝝋 ∈ 𝐻1
𝜕𝐵,𝟎(𝑋ℎ;R𝑑 ),

(15)

here 𝐻1
𝜕𝐵,𝟎(𝑋;R𝑑 ) ∶= {𝝋 ∈ 𝐻1(𝑋;R𝑑 ) ∣ 𝝋 = 𝟎 on 𝜕𝐵}. Obviously, the integral equation in above equation can be evaluated even

or 𝑉𝑛𝜈 ∈ P0(𝛤ℎ).
An algorithm following the above resolutions to solve Problem 1.1.1 with 𝛼 = 1, 𝑔 = 0, 𝜆 = 0, and 𝜸 = 𝟎 is provided in [27,

lgorithm 1, p. 981].

. Mean curvature flow problem

.1. Application of CMM to MCF

We will showcase in this short section how CMM is applied to solve MCF problems [7,13,14,16]. It could be argued that using the
roposed scheme is somehow inappropriate to use for MCF problems since CMM not only discretizes the boundary, but the whole
omain. We underline here that the discretization of the domain is not needed in numerically solving moving boundary problems
hose movement is only influence by its geometric shape — at least when a different approach from FEM is employed. However,

his section actually serves as a preparation for solving the one-phase quasi-stationary Stefan problem with Gibbs–Thomson law
nd kinetic undercooling which we will examine in detail in a follow-up investigation. For this reason, we will exhibit below the
pplicability of CMM to MCF problems.

Mean-curvature flow problems are typically described by the normal flow 𝑉𝑛𝜈 with speed

𝑉𝑛 = −𝜅 on 𝛤 (𝑡), (16)

here 𝜅 denotes the sum of principal curvatures of the moving surface 𝛤 (𝑡) for 𝑑 ⩾ 3. In 2D, of course, 𝜅 corresponds to the curvature
f the moving boundary 𝛤 (𝑡).

Given the normal speed 𝑉𝑛 = −𝜅, the corresponding weak formulation of (14) can be stated as follows:

⎧

⎪

⎨

⎪

⎩

find 𝐰 ∈ 𝐻1(𝛺;R𝑑 ) such that

𝑎𝛺,𝛤 (𝐰,𝝋) = −1
𝜀 ∫𝛤

div𝛤 𝝋 𝑑𝑠, for all 𝝋 ∈ 𝐻1(𝛺;R𝑑 ),
(17)

where div𝛤 denotes the tangential divergence (see, e.g., [18, Chap. 3, Sec. 1, Def. 2.3, p. 53]). The variational equation above was
obtained via the Gauss–Green formula on 𝛤 (see, e.g., [18, Chap. 2, Sec. 2, Thm. 2.18, p. 56]). Observe above that the equation does
not require the explicit computation of 𝜅 which is an advantage of CMM.

The above idea is realized numerically with the help of the identity

∫𝛤
div𝛤 𝝋 𝑑𝑠 = ∫𝛤

(

div𝝋 −
𝜕𝝋
𝜕𝜈

⋅ 𝜈
)

𝑑𝑠;

see [27]. More precisely, we will apply CMM to the MCF problem by solving the following variational problem:

⎧

⎪

⎨

⎪

find 𝐰ℎ ∈ P1(𝛺ℎ;R𝑑 ) such that

𝑎𝛺ℎ ,𝛤ℎ (𝐰ℎ,𝝋ℎ) = −1
∫

(

div𝝋ℎ −
𝜕𝝋ℎ ⋅ 𝜈

)

𝑑𝑠, ∀𝝋ℎ ∈ P1(𝛺ℎ;R𝑑 ).
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Fig. 1. Time variation of volume |𝛺𝑘
ℎ| for Example 1.

For the MCF problem, the CMM algorithm is formulated as follows:
Algorithm 1 CMM Algorithm for MCF

1: Set 𝑇 > 0, 𝑁𝑇 ∈ N, 𝜀 > 0, 𝑘 = 0, and generate 𝛺
0
ℎ ≈ 𝛺

0
.

2: while 𝑘 ⩽ 𝑁𝑇 do
3: Compute 𝐰𝑘

ℎ ∈ P1(𝛺𝑘
ℎ;R

𝑑 ) by solving

𝑎𝛺𝑘
ℎ ,𝛤

𝑘
ℎ
(𝐰ℎ, 𝜑ℎ) = −1

𝜀 ∫𝛤 𝑘
ℎ

(

div𝜑ℎ −
𝜕𝜑ℎ
𝜕𝜈

⋅ 𝜈
)

𝑑𝑠, ∀𝜑ℎ ∈ P1(𝛺𝑘
ℎ;R

𝑑 ).

4: Update the current domain by moving the mesh according to (11) and (12).
5: 𝑘 ← 𝑘 + 1
6: end while

2.2. Numerical examples

As the numerical investigation carried out in [27] was limited to two dimensional cases, we provide here two numerical examples
n the case of three dimensions. The first one considers the case when the moving surface has an initial shape given by a sphere
hile the second one issues an example with a torus as the initial shape.

umerical example 1. We let 𝛺0 ∶=
{

𝑥 ∈ R3
| |𝑥| ⩽ 1

}

and execute the scheme with parameter values 𝜀 = 0.01, 𝜏 = 10−4, ℎ ≈ 0.33,
and 𝑇 = 1.

Numerical example 2. We consider a torus with major radius 𝑅0 = 2 and minor radius 𝑟0 = 1, i.e., we let 𝛺0 ∶= {𝑥 ∈ R3 ∣
(
√

𝑥21 + 𝑥22 − 2)2 + 𝑥23 ⩽ 1}. For this experiment, we set 𝜀 = 0.1, 𝜏 = 10−5, ℎ ≈ 0.98, and 𝑇 = 1.

For the first test case, we note that a sphere of radius 𝑅 has the mean curvature 𝜅 = −(𝑑−1)∕𝑅. Because of the radial symmetry,
we get the exact solution 𝑅(𝑡) =

√

𝑅2
0 − 2(𝑑 − 1)𝑡 for 𝑡 ∈ (0, 𝑅2

0∕2(𝑑 − 1)) when the initial radius is 𝑅0 ∶= 𝑅(0). The time variation
of the volume |𝛺𝑘

ℎ| for this test example is plotted in Fig. 1. Evidently, the computed volume agrees with the volume of the true
solution, and as expected, the sphere eventually vanishes in time.

On the other hand, the torus does not keep a circular cross-section under MCF because the curvature of the torus is greater on
the outside of the hole away from the center. However, thin torus is known to shrink into a circular ring of singularities centered
on the 𝑧-axis, and this has been confirmed numerically by the level-set method [3].

As expected, see Fig. 2(a) to Fig. 2(e), the surface area of the evolving domain decreases due to the mean curvature flow. We
note, however, that unlike the sphere, no exact solution is known for the torus. Therefore, by assuming that the curvature flow
depends only on the minor radius 𝑟(𝑡), the volume of the torus can be approximated as |𝛺| ≈ 2𝜋2𝑅0(𝑟20 − 2𝑡) for 𝑡 ∈ (0, 𝑟20∕2). The
time variation of the mesh volume |𝛺𝑘

ℎ|, which is plotted in Fig. 2(f), closely agrees with the volume of the approximated solution.

3. Stefan problem

While the previous work [27] have dealt with quasi-stationary problems such as the Hele-Shaw problem and the curve shortening
problem with CMM, this section will focus on the Stefan problem, one of the problems where the interior of the domain is also
described by a time-evolution equation:
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Fig. 2. Computational results for Example 2.

Problem 3.0.1. Find 𝛺(𝑡) ⊃ 𝐵 and 𝑢(⋅, 𝑡) ∶ 𝛺(𝑡) ⧵ 𝐵 → R such that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝑢
𝜕𝑡

− 𝛥𝑢 = 𝑓 in 𝛺(𝑡) ⧵ 𝐵, 𝑡 ∈ [0, 𝑇 ],

(1 − 𝛼)𝑢 + 𝛼 𝜕𝑢
𝜕𝜈

= 𝑞𝐵 on 𝜕𝐵,

𝑢 = 0 on 𝛤 (𝑡), 𝑡 ∈ [0, 𝑇 ],
𝑉𝑛 = (−∇𝑢 + 𝛾) ⋅ 𝜈 on 𝛤 (𝑡), 𝑡 ∈ [0, 𝑇 ],

𝛺(0) = 𝛺0,

𝑢(⋅, 0) = 𝑢0(⋅) in 𝛺0 ⧵ 𝐵,

(18)

where 𝑓 ∶ R𝑑 ×[0, 𝑇 ] → R, 𝑞𝐵 ∶ 𝜕𝐵×[0, 𝑇 ] → R, 𝜸 ∶ R𝑑 ×[0, 𝑇 ] → R𝑑 are given functions, 𝛺0 is the initial profile of 𝛺(𝑡), 𝑢0 ∶ 𝛺0 → R,
and 𝑉𝑛 ∶= 𝑉𝑛(𝑥, 𝑡), 𝑥 ∈ 𝛤 (𝑡), describes the outward normal velocity of the moving interface 𝛤 (𝑡). The constant 𝛼 ∈ {0, 1} dictates
whether the fixed part accepts a Dirichlet or Neumann boundary condition.

The Stefan problem, introduced by Jožef Stefan in 1889, models the melting ice as a moving boundary problem. It involves the
Stefan condition, which dictates the boundary’s normal velocity proportional to the temperature gradient at the interface. These
conditions are based on the Fourier law for heat conduction, Fick law for mass diffusion, and Darcy law for osmotic flow. When
considering only one variable, like in (18), it becomes the one-phase Stefan problem. Analytical solutions are challenging to obtain,
except for special cases like one-dimensional situations [22], leading to the active study of numerical methods. One such method is
the level-set approach, which can handle various moving boundary problems, including topological changes [19]. Another method,
the enthalpy formulation, employs enthalpy to convert the Stefan problem into a nonlinear diffusion equation containing implicit free
boundary information [4,23]. The CMM is an explicit front tracking-type method that is advantageous due to easy implementation,
extensibility to 3D problems, and avoidance of mesh regeneration at each time step during approximation. Therefore, exploring the
application of CMM to non-stationary problems, such as the Stefan problem, becomes relevant.

Before we demonstrate the application of CMM to Stefan problems, we briefly offer insights into prior research on one/multi-
phase Stefan/Hele-Shaw problems, with a focus on numerical aspects. Many of the relevant studies can be found and were
reviewed in the work of Visintin [29] and in the references therein. Firstly, the nonlinear analytic semigroup approach for two-
phase Stefan/Hele-Shaw problems, with or without curvature terms, allows one to prove the existence of a time-local classical
solution. However, it does not help us consider a useful numerical scheme. Meanwhile, several weak formulations for two-phase
Stefan/Hele-Shaw problems with/without curvature terms are known, and it is possible to consider numerical schemes based on
weak formulations. Moreover, variational inequality formulations for one-phase Stefan/Hele-Shaw problems without curvature terms
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are known, and it is possible to consider numerical schemes based on those formulations. However, to the best of our knowledge,
no suitable weak formulations are known for one-phase Stefan/Hele-Shaw problems with curvature terms. Thus, finding satisfactory
numerical solutions, especially for three-dimensional problems, remains an issue. The CMM, as proposed in this paper, addresses
the above mentioned issues for solving one/multi-phase Stefan/Hele-Shaw problems.

3.1. Application of CMM to one-phase Stefan problems

In the following, we set 𝛼 = 1 for simplicity. Utilizing the same notation introduced in Section 1.3, a naive numerical method
or Stefan problem using CMM consists of the following steps.

Conventional scheme for (18)
At each time 𝑡 = 𝑘𝜏, 𝑘 = 0, 1, 2,…, let 𝛺𝑘

ℎ and 𝑢𝑘ℎ be given. The evolution of the domain is numerically solved by the following
steps:

Step 1. First, define the normal velocity as 𝑉 𝑘
𝑛 ∶= (−∇𝑢𝑘ℎ + 𝛾𝑘) ⋅ 𝜈𝑘ℎ on 𝛤 𝑘

ℎ .

Step 2. Then, create an extension of 𝑉 𝑘
𝑛 𝜈

𝑘 by solving the FE solution 𝐰𝑘
ℎ ∈ P1(𝛺𝑘

ℎ ⧵ 𝐵ℎ;R𝑑 ) for the following:

⎧

⎪

⎨

⎪

⎩

−𝛥𝐰𝑘
ℎ = 𝟎 in 𝛺𝑘

ℎ ⧵ 𝐵ℎ,

𝐰𝑘
ℎ = 𝟎 on 𝜕𝐵ℎ,

𝜀∇𝐰𝑘
ℎ ⋅ 𝜈

𝑘
ℎ + 𝐰𝑘

ℎ = 𝑉 𝑘
𝑛 𝜈

𝑘
ℎ on 𝛤 𝑘

ℎ .

Step 3. Next, update the current domain by moving the mesh according to

𝛺
𝑘+1
ℎ ⧵ 𝐵ℎ ∶=

{

𝑥 + 𝜏𝐰𝑘
ℎ(𝑥)

|

|

|

|

𝑥 ∈ 𝛺
𝑘
ℎ ⧵ 𝐵ℎ

}

.

Step 4. Finally, we solve the FE solution 𝑢𝑘+1ℎ over the domain 𝛺𝑘+1
ℎ ⧵ 𝐵ℎ:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑢
𝜕𝑡

𝑘+1
− 𝛥𝑢𝑘+1 = 𝑓𝑘+1 in 𝛺𝑘+1

ℎ ⧵ 𝐵ℎ,

∇𝑢𝑘+1 ⋅ 𝜈𝑘+1 = 𝑞𝑘+1𝐵 on 𝜕𝐵ℎ,

𝑢𝑘+1 = 0 on 𝛤 𝑘+1
ℎ .

(19)

Recall that CMM is an alternative solution procedure that breaks down the quasi-stationary moving boundary problem into
wo steps. First, it tackles the boundary value problem in a fixed domain. Second, it updates the mesh by employing harmonic
xpansion of the given normal velocity. In order to solve the time-evolution equation using a simple difference approximation with
he non-stationary term as (𝑢𝑘+1ℎ − 𝑢𝑘ℎ)∕𝜏, we require the knowledge of the previous information 𝑢𝑘ℎ in the updated mesh 𝛺𝑘+1

ℎ .
A straightforward approach to address this issue is to extend the values of 𝑢𝑘ℎ from 𝛺𝑘

ℎ to 𝛺𝑘+1
ℎ via interpolation. Alternatively,

since CMM follows a Lagrangian approach with a Laplacian vector field, the non-stationary terms can be expressed in terms of the
material derivative.

In this study, we propose an Arbitrary Lagrangian-Eulerian (ALE) method that employs the material derivative and the Galerkin
method of characteristics [28]. The Galerkin method of characteristics is recognized as an effective approach for solving convection
problems. It is worth noting that, unlike the original Galerkin method of characteristics, in the numerical procedure that we propose
below, the advection term is retained instead of being handled solely by the material derivative. Nevertheless, this approach offers
the advantage of enabling CMM to be applied to non-stationary problems with a non-zero Dirichlet condition 𝑢 ≢ 0 on 𝛤 .

Given a flow velocity field 𝐰̃, the material derivative (or Lagrangian derivative) 𝐷𝑢∕𝐷𝑡 is defined as follows:
𝐷𝑢
𝐷𝑡

∶= 𝜕𝑢
𝜕𝑡

+ 𝐰̃ ⋅ ∇𝑢. (20)

For clarity, let us briefly review the method of characteristics. If 𝑋 ∶ (0, 𝑇 ] → R𝑑 is a solution to the ordinary differential equation
(ODE)

𝑑𝑋
𝑑𝑡

(𝑡) = 𝐰̃(𝑋(𝑡), 𝑡),

here 𝑋(𝑡) is the characteristic curve, then (20) can be described as
𝑑 𝑢(𝑋(𝑡), 𝑡) = 𝜕𝑢 (𝑋(𝑡), 𝑡) + ∇𝑢(𝑋(𝑡), 𝑡) ⋅ 𝑑𝑋 (𝑡) = 𝜕𝑢 (𝑋(𝑡), 𝑡) + ∇𝑢(𝑋(𝑡), 𝑡) ⋅ 𝐰̃(𝑋(𝑡), 𝑡) = 𝐷𝑢 (𝑋(𝑡), 𝑡). (21)
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Fig. 3. Setting the advection 𝐰̃𝑘+1.

The symbols used for discretization are used as they are from the previous subsections. Approximating the left side of (21) by the
backward-Euler method, one obtains the following equation:

𝐷𝑢
𝐷𝑡

(𝑋(𝑡), 𝑡) ≈
𝑢(𝑋(𝑡), 𝑡) − 𝑢(𝑋(𝑡 − 𝜏), 𝑡 − 𝜏)

𝜏
. (22)

Subject to an initial condition 𝑋(𝑡) = 𝑥𝑡, we get an approximation of 𝑋 at 𝑡 − 𝜏:

𝑋(𝑡 − 𝜏) ≈ 𝑥𝑡 − 𝜏𝐰̃(𝑥𝑡, 𝑡) =∶ 𝑋1(𝑥𝑡). (23)

Hereinafter, we consider the application of method of characteristics to CMM. Using the material derivative (20), the heat equation
can be rewritten as

𝐷𝑢
𝐷𝑡

− 𝐰̃ ⋅ ∇𝑢 − 𝛥𝑢 = 𝑓. (24)

Therefore, (19) is time-discretized by (22), (23), and (24),

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑘+1 − 𝑢𝑘◦𝑋𝑘+1
1

𝜏
− 𝐰̃𝑘+1 ⋅ ∇𝑢𝑘+1 − 𝛥𝑢𝑘+1 = 𝑓𝑘+1 in 𝛺𝑘+1

ℎ ⧵ 𝐵ℎ,

∇𝑢𝑘+1 ⋅ 𝜈𝑘+1 = 𝑞𝑘+1𝐵 on 𝜕𝐵ℎ,

𝑢𝑘+1 = 0 on 𝛤 𝑘+1,

(25)

where 𝑋𝑘+1
1 (𝑥) ∶= 𝑥 − 𝜏𝐰̃𝑘+1(𝑥) for 𝑥 ∈ 𝛺𝑘+1

ℎ . However, given the above system of equations, two issues emerge: (i) the calculation
of the advection term 𝐰̃𝑘+1 ⋅ ∇𝑢𝑘+1 for unknown 𝐰̃𝑘+1, and (ii) the exact definition of 𝐰̃.

To address this issues, we suggest simply reusing 𝐰𝑘
ℎ as 𝐰̃𝑘+1. More precisely, let the triangular mesh be ℎ(𝛺

𝑘
ℎ ⧵𝐵ℎ) with the set

of nodal points  𝑘
ℎ = {𝑝𝑘𝑗 }

𝑁𝑝
𝑗=1. For 𝑝𝑘+1𝑗 ∶= 𝑝𝑘𝑗 + 𝜏𝐰𝑘

ℎ(𝑝
𝑘
𝑗 ), we set (see Fig. 3 for illustration)

𝐰̃𝑘+1(𝑝𝑘+1𝑗 ) ∶= 𝐰𝑘
ℎ(𝑝

𝑘
𝑗 ) for all 𝑗 = 1,… , 𝑁𝑝. (26)

By doing so, 𝑢𝑘ℎ◦𝑋
𝑘+1
1 is known, and 𝐰̃𝑘+1 ⋅∇𝑢𝑘+1 can easily be calculated for all nodal points. The advantage of defining (26) is

that at least the material derivative can be calculated correctly. Thus, all we have to do now is solve the weak formulation of (25)
numerically: find 𝑢𝑘+1ℎ ∈ 𝐻1

𝛤 𝑘+1
ℎ ,0

(𝛺𝑘+1
ℎ ⧵ 𝐵ℎ) such that

∫𝛺𝑘+1
ℎ ⧵𝐵ℎ

(

𝑢𝑘+1ℎ − 𝑢𝑘ℎ◦𝑋
𝑘+1
1

𝜏

)

𝜑ℎ 𝑑𝑥 − ∫𝛺𝑘+1
ℎ ⧵𝐵ℎ

(∇𝑢𝑘+1ℎ ⋅ 𝐰̃𝑘+1)𝜑ℎ 𝑑𝑥

+ ∫𝛺𝑘+1
ℎ ⧵𝐵ℎ

∇𝑢𝑘+1ℎ ⋅ ∇𝜑ℎ 𝑑𝑥 − ∫𝜕𝐵ℎ

𝑞𝑘+1𝐵 𝜑ℎ d𝑠 − ∫𝛺𝑘+1
ℎ ⧵𝐵ℎ

𝑓𝑘+1𝜑ℎ 𝑑𝑥

= 0, for all 𝜑ℎ ∈ 𝐻1
𝛤 𝑘+1
ℎ ,0

(𝛺𝑘+1
ℎ ⧵ 𝐵ℎ).

(27)

The above schemes is summarized in Algorithm 2.
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Algorithm 2 CMM for the one-phase Stefan problem

1: Specify 𝑇 > 0, 𝑁𝑇 ∈ N, 𝜀 > 0, and set 𝑘 = 0. Also, generate a finite element mesh of the initial domain 𝛺
0
ℎ ≈ 𝛺

0
, and let 𝑢0ℎ ≈ 𝑢0

be given.
2: while 𝑘 ⩽ 𝑁𝑇 do
3: Define the normal velocity as 𝑉 𝑘

𝑛 ∶= (−∇𝑢𝑘ℎ + 𝛾𝑘) ⋅ 𝜈𝑘 on 𝛤 𝑘
ℎ .

4: Create an extension of 𝑉 𝑘
𝑛 𝜈

𝑘 by solving the finite element solution 𝐰𝑘
ℎ ∈ P1(𝛺𝑘

ℎ;R
𝑑 ) of the following system PDEs:

−𝛥𝐰𝑘 = 𝟎 in 𝛺𝑘
ℎ, 𝐰𝑘 = 𝟎 on 𝜕𝐵ℎ, 𝜀∇𝐰𝑘 ⋅ 𝜈𝑘 + 𝐰𝑘 = 𝑉 𝑘

𝑛 𝜈
𝑘 on 𝛤 𝑘

ℎ .

5: Update the current domain by moving the mesh according to the following:

𝛺
𝑘+1
ℎ ⧵ 𝐵ℎ ∶=

{

𝑥 + 𝜏𝐰𝑘
ℎ(𝑥)

|

|

|

|

𝑥 ∈ 𝛺
𝑘
ℎ ⧵ 𝐵ℎ

}

.

6: Solve the finite element solution 𝑢𝑘+1ℎ ∈ P1(𝛺𝑘+1
ℎ ) for the following:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑘+1 − 𝑢𝑘◦𝑋𝑘+1
1

𝜏
− 𝐰̃𝑘+1 ⋅ ∇𝑢𝑘+1 − 𝛥𝑢𝑘+1 = 𝑓𝑘+1 in 𝛺𝑘+1

ℎ ⧵ 𝐵ℎ,

∇𝑢𝑘+1 ⋅ 𝜈𝑘+1 = 𝑞𝑘+1𝐵 on 𝜕𝐵ℎ,

𝑢𝑘+1 = 0 on 𝛤 𝑘+1.

(28)

or

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑘+1 − 𝑢̃𝑘

𝜏
− 𝛥𝑢𝑘+1 = 𝑓𝑘+1 in 𝛺𝑘+1

ℎ ⧵ 𝐵ℎ,

∇𝑢𝑘+1 ⋅ 𝜈𝑘+1 = 𝑞𝑘+1𝐵 on 𝜕𝐵ℎ,

𝑢𝑘+1 = 0 on 𝛤 𝑘+1,

(29)

where 𝑋𝑘+1
1 (𝑥) ∶= 𝑥 − 𝜏𝐰̃𝑘+1(𝑥) for 𝑥 ∈ 𝛺𝑘+1

ℎ , 𝐰̃𝑘+1(𝑝𝑘+1𝑗 ) ∶= 𝐰𝑘
ℎ(𝑝

𝑘
𝑗 ), 𝑗 = 1,⋯ , 𝑁𝑝, and 𝑢̃𝑘 ∈ 𝛺𝑘+1

ℎ is the zero-extension of 𝑢𝑘ℎ.
7: 𝑘 ← 𝑘 + 1
8: end while

Remark 3.1.1. We emphasize that the proposed numerical method is not limited to one-phase problems, but is also applicable
o two-phase and more general multi-phase Stefan problems. The comoving mesh method introduced in this study is independent
f the number of phases present in the physical problem described by the evolution equation. As the internal nodes of the mesh
iscretization move simultaneously with the nodes on the moving boundary, the interface boundary adjusts according to the interface
elocity of the associated 𝜀-regularized moving interface/boundary problem. Therefore, extending the method to multi-phase Stefan
roblems poses no difficulty.

.2. A numerical example for the classical Stefan problem

In the following, we present a numerical example of the classical Stefan problem:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝑢
𝜕𝑡

− 𝛥𝑢 = 0 in 𝛺(𝑡) ⧵ 𝐵, 𝑡 ∈ [0, 𝑇 ],

∇𝑢 ⋅ 𝜈 = 1 on 𝜕𝐵,
𝑢 = 0 on 𝛤 (𝑡), 𝑡 ∈ [0, 𝑇 ],

𝑉𝑛 = −∇𝑢 ⋅ 𝜈 on 𝛤 (𝑡), 𝑡 ∈ [0, 𝑇 ],
𝛺(0) = 𝛺0
𝑢(⋅, 0) = 1 in 𝛺(0) ⧵ 𝐵.

(30)

Note that, because of the maximum principle, 𝑢 is positive in 𝛺(𝑡) ⧵ 𝐵. This means that ∇𝑢 ⋅ 𝜈 < 0 on the moving boundary, and, in
his case, since the normal velocity 𝑉𝑛 is always positive, the hypersurface expands.

umerical example 3. In this example, the initial profile is given as an hypotrochoid:

𝛺0 ∶=

{

(𝑟, 𝜃) ∈ R2
|

|

|

|

0 ⩽ 𝑟2 <
(𝑚 − 1)2 + 𝑠2 + 2(𝑚 − 1)𝑠 cos(𝑚𝜃)

2
, 𝜃 ∈ [0, 2𝜋]

}

,
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Fig. 4. Computational results of Example 3.

ith 𝑚 = 5 and 𝑠 = 0.7. Moreover, 𝐵 is the circle 𝐶(𝟎, 0.5) as shown in Fig. 4(a), and the final time is set to 𝑇 = 1. Algorithm 2 is executed
sing mesh sizes of uniform width ℎ ≈ 0.085 with parameter value 𝜀 = 0.1 and time step size 𝜏 = 0.01. Fig. 4 summarizes the mesh profile
t the initial and final times, along with the trajectory nodes and the evolution of the shape.

.3. EOC for the moving boundary diffusion problem

Before checking the EOC of the Stefan problem, we consider the following moving boundary diffusion problem for the purpose
f checking the accuracy of the non-stationary terms.

roblem 3.3.1. Suppose 𝜙(𝑥, 𝑡) is a smooth function with |∇𝜙| ≠ 0 on {𝜙 = 0} for 𝑡 ∈ [0, 𝑇 ]. For a given 𝛺(𝑡) ∶= {𝑥 ∈ R𝑑 ∣ 𝜙(𝑥, 𝑡) < 0},
𝑓, 𝑔 ∶ R𝑑 × [0, 𝑇 ] → R, and 𝑢0 ∶ R𝑑 → R, find 𝑢(⋅, 𝑡) ∶ 𝛺(𝑡) → R such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑢
𝜕𝑡

− 𝛥𝑢 = 𝑓 in 𝛺(𝑡), 𝑡 ∈ (0, 𝑇 ],

𝑢 = 𝑔 on 𝛤 (𝑡) ∶= 𝜕𝛺(𝑡), 𝑡 ∈ (0, 𝑇 ],
𝑢(⋅, 0) = 𝑢0(⋅) in 𝛺(0),

(31)

We state the following construction of the appropriate manufactured solution.

Proposition 3.3.1. We define 𝑓 ∶= −
𝜕𝜙
𝜕𝑡

+ 𝛥𝜙, 𝑔 ∶= 0. Then, 𝑢 = −𝜙 is the solution of (31).

roof. The proposition easily follows from straightforward computation of 𝑉𝑛 with the normal vector 𝜈 computed via the level-set
unction 𝜙. □

We now examine the EOC of the scheme using Proposition 3.3.1 and the following numerical errors

err𝑘 ∶= max
0⩽𝑘⩽𝑁𝑇

{

‖

‖

‖

𝑢𝑘ℎ −𝛱ℎ𝑢(⋅, 𝑘𝜏)
‖

‖

‖𝑘

}

, 𝑘 ∈ {𝐿2(𝛺𝑘
ℎ),𝐻

1(𝛺𝑘
ℎ)}.

Numerical example 4. As an example, we perform a numerical experiment with the following conditions: 𝜀 ∈ {10−4, 10−1}, ℎ ≈ 𝜏,

𝜙(𝑥, 𝑡) ∶=
𝑥21

2(𝑡 + 1)
+

𝑥22
𝑡 + 1

− 1, 𝑡 ∈ [0, 1], (𝑥 ∶= (𝑥1, 𝑥2)).

Therefore, the solution domain 𝛺(𝑡) =
{

𝑥 ∈ R2 |

|

|

0.5𝑥21 + 𝑥22 < 𝑡 + 1
}

is an elliptical shape whose area is expanding through time. Fig. 5
summarizes the error of convergences with respect to the 𝐿2 and 𝐻1 norms.

Numerical example 5. In the previous example, we discussed an example in which the area expands, whereas in this numerical example,
the area of the region does not change, but rather moves in a parallel direction: 𝜀 ∈ {10−4, 10−1}, ℎ ≈ 𝜏,

𝜙(𝑥, 𝑡) ∶= 0.5(𝑥1 − 𝑡)2 + (𝑥2 − 𝑡)2 − 1, 𝑡 ∈ [0, 1], (𝑥 ∶= (𝑥1, 𝑥2)),

so 𝛺(𝑡) =
{

𝑥 ∈ R2 |

|

|

0.5(𝑥1 − 𝑡)2 + (𝑥2 − 𝑡)2 < 1,
}

.

To check the accuracy of the discretization of the nonstationary terms, two numerical experimental examples diffusion-ellipse
and ith known moving boundaries were performed. Then, when the parameter 𝜀 is sufficiently small, EOC is approximately first
order, and convergence is expected for both numerical examples. Furthermore, comparing ALE method (Figs. 6(a)–6(b)) and zero-
extension (Figs. 6(c)–6(d)), the error trends appear almost identical. One reason is that both are discretized in time using backward
Euler method, which is a first-order numerical procedure.
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Algorithm 3 CMM for the moving boundary diffusion problem

1: Specify 𝑇 > 0, 𝑁𝑇 ∈ N, 𝜀 > 0, and set 𝑘 = 0. Also, generate a finite element mesh of the initial domain 𝛺
0
ℎ ≈ 𝛺

0
, and let 𝑢0ℎ ≈ 𝑢0

be given.
2: while 𝑘 ⩽ 𝑁𝑇 do
3: Define the normal velocity as 𝑉 𝑘

𝑛 ∶= 𝜙𝑡∕|∇𝜙| on 𝛤 𝑘
ℎ .

4: Create an extension of 𝑉 𝑘
𝑛 𝜈

𝑘 by solving the finite element solution 𝐰𝑘
ℎ ∈ P1(𝛺𝑘

ℎ;R
𝑑 ) for the following:

−𝛥𝐰𝑘 = 𝟎 in 𝛺𝑘
ℎ, 𝜀∇𝐰𝑘 ⋅ 𝜈𝑘 + 𝐰𝑘 = 𝑉 𝑘

𝑛 𝜈
𝑘 on 𝛤 𝑘

ℎ .

5: Update the current domain by moving the mesh according to

𝛺𝑘+1
ℎ ∶=

{

𝑥 + 𝜏𝐰𝑘
ℎ(𝑥)

|

|

|

|

𝑥 ∈ 𝛺𝑘
ℎ

}

, where 𝜏 = 𝑇 ∕𝑁𝑇 .

6: Solve the finite element solution 𝑢𝑘+1ℎ ∈ P1(𝛺𝑘+1
ℎ ) for the following:

⎧

⎪

⎨

⎪

⎩

𝑢𝑘+1 − 𝑢𝑘◦𝑋𝑘+1
1

𝜏
− 𝐰̃𝑘+1 ⋅ ∇𝑢𝑘+1 − 𝛥𝑢𝑘+1 = 𝑓𝑘+1 in 𝛺𝑘+1

ℎ ,

𝑢𝑘+1 = 0 on 𝛤 𝑘+1.
(32)

or
𝑢𝑘+1 − 𝑢̃𝑘

𝜏
− 𝛥𝑢𝑘+1 = 𝑓𝑘+1 in 𝛺𝑘+1

ℎ , 𝑢𝑘+1 = 0 on 𝛤 𝑘+1
ℎ , (33)

where 𝑋𝑘+1
1 (𝑥) ∶= 𝑥 − 𝜏𝐰̃𝑘+1(𝑥) for 𝑥 ∈ 𝛺𝑘+1

ℎ , 𝐰̃𝑘+1(𝑝𝑘+1𝑗 ) ∶= 𝐰𝑘
ℎ(𝑝

𝑘
𝑗 ), 𝑗 = 1,⋯ , 𝑁𝑝, and 𝑢̃𝑘 ∈ 𝛺𝑘+1

ℎ is the zero-extension of 𝑢𝑘ℎ.
7: 𝑘 ← 𝑘 + 1
8: end while

Fig. 5. Error of convergences for Example 4.

Fig. 6. Error of convergences for Example 5.
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Fig. 7. Error of convergences for Example 6 (ALE method).

3.4. EOC for the Stefan problem

We will check the accuracy of CMM for the Stefan problem (18). On this purpose, we state the following construction of the
appropriate manufactured solution.

Proposition 3.4.1. We set 𝛼 = 1 and define 𝑓 ∶= − 𝜕𝜙
𝜕𝑡 + 𝛥𝜙, 𝑞𝐵 ∶= −∇𝜙 ⋅ 𝜈, 𝛾 ∶=

(

− 𝜙𝑡
|∇𝜙|2

− 1
)

∇𝜙, 𝛺0 ∶= {𝜙(𝑥, 0) < 0}. Then, 𝑢 = −𝜙
nd 𝛺(𝑡) ∶= {𝑥 ∈ R𝑑 ∣ 𝜙(𝑥, 𝑡) < 0} are the solutions of (18).

roof. The proposition readily follows from a straightforward computation of 𝑉𝑛 using the normal vector 𝜈 calculated via the
evel-set function 𝜙. □

We now examine the EOC of the scheme using Proposition 3.4.1. With regards to EOC, we define the numerical errors as follows:

err𝛤 ∶= max
0⩽𝑘⩽𝑁𝑇

max
𝑥∈𝛤 𝑘

ℎ

dist(𝑥, 𝛤 (𝑘𝜏)), err𝑘 ∶= max
0⩽𝑘⩽𝑁𝑇

{

‖

‖

‖

𝑢𝑘ℎ −𝛱ℎ𝑢(⋅, 𝑘𝜏)
‖

‖

‖𝑘

}

,

here 𝑘 ∈ {𝐿2(𝛺𝑘
ℎ),𝐻

1(𝛺𝑘
ℎ)}, and 𝛱ℎ ∶ 𝐻1(𝛺) → P1(ℎ(𝛺)) is the projection map such that 𝛱ℎ𝑢(𝑝) = 𝑢(𝑝) for all nodal points

∈ ℎ of ℎ(𝛺).

umerical example 6. As an example, we perform a numerical experiment with the following conditions: 𝜀 ∈ {10−4, 10−1}, ℎ ≈ 10𝜏,

𝜙(𝑥, 𝑡) ∶=
𝑥21

2(𝑡 + 1)
+

𝑥22
𝑡 + 1

− 1, 𝑡 ∈ [0, 1], (𝑥 ∶= (𝑥1, 𝑥2)),

so the fixed domain is given by the set 𝐵 ∶=
{

𝑥 ∈ R2 |

|

|

𝑥21 + 𝑥22 ⩽ 0.52
}

, while the evolving domain is given by 𝛺(𝑡) =
{

𝑥 ∈ R2

|

|

|

0.5𝑥21 + 𝑥22 < 𝑡 + 1
}

.

The EOC of the CMM for the Stefan problem is shown in comparison with the ALE method (Fig. 7) and interpolation at the
revious nodes (Fig. 8). As with the moving boundary diffusion problem, the order of convergence for both methods with respect
o the 𝐿2 and 𝐻1 error is first order when 𝜀 is sufficiently small, and there is not much difference. The shape error graphs were
lso similar to those obtained in numerical experiments for the Hele-Shaw problem issued in [27].

. Extensions by linear elasticity equation

In this section, let us consider the extension of 𝑉𝑛𝜈 by a linear elasticity equation instead of the harmonic extension used in (14).
uch choice of extension has been first considered in [1] and was called the traction method in the context of shape optimization.

Let us again consider our computational domain to have an interior (i.e., 𝐵 ≠ ∅) and exterior boundary 𝜕𝐵 and 𝛤 , respectively. For
MM with the linear elasticity equation, the interior and boundary nodes of the mesh are moved simultaneously by the displacement
ector 𝐰 satisfying

⎧

⎪

⎨

⎪

⎩

−div𝝈(𝐰) = 𝟎 in 𝛺 ⧵ 𝐵,
𝐰 = 𝟎 on 𝜕𝐵,
𝐰 = 𝑉𝑛𝜈 on 𝛤 ,

(34)

where 𝝈(𝐰) ∈ R𝑑×𝑑 is the stress tensor and satisfies Hooke’s law; i.e., 𝝈(𝐰) = 𝐂𝐞(𝐰) where 𝐂 ∈ R𝑑×𝑑×𝑑×𝑑 is the elasticity tensor (for
sotropic linear elastic materials) and 𝐞(𝐰) ∈ R𝑑×𝑑 is the strain tensor. Using the strain–displacement equation 𝐞(𝐰) = 1 (∇𝐰+(∇𝐰)⊤)
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Fig. 8. Error of convergences for Example 6 (zero-extension).

and the definition of the tensor 𝐂𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), where 𝜆 and 𝜇 are the Lamé constants, we can write 𝝈(𝐰) =
𝜆(div𝐰))𝐼 + 2𝜇𝐞(𝐰).

In the following, for simplicity, we will omit the number of iterations 𝑘, and furthermore, we will collectively set the boundary
onditions for the boundary of 𝑋 = 𝛺 ⧵ 𝐵 as follows:

𝐠 ∶=
{

𝟎 on 𝜕𝐵,
𝑉𝑛𝜈 on 𝛤 .

Using Gauss–Green’s formula for sufficiently smooth matrix 𝐴 and vector 𝐯:

∫𝛺
−div𝐴 ⋅ 𝐯 𝑑𝑥 = ∫𝛺

𝐴 ∶ ∇𝐯 𝑑𝑥 − ∫𝛤
(𝐴𝜈) ⋅ 𝐯 𝑑𝑠,

he weak form of system (34) is given as follows: find 𝐰 ∈ 𝐻1(𝑋;R𝑑 ) with 𝐰 = 𝐠 on 𝜕𝑋 such that

∫𝑋
[𝜆(div𝐰)(div𝝋) + 2𝜇𝐞(𝐰) ∶ 𝐞(𝝋)] 𝑑𝑥 = 0, ∀𝝋 ∈ 𝐻1

0 (𝑋;R𝑑 ). (35)

The weak solution of (35) uniquely exists and satisfies the following variational principle (see, e.g. [6, Sec. 3, Chap. 4]):

𝐰 = arg min
𝐯∈𝐻1(𝑋;R𝑑 )
𝐯=𝐠 on 𝜕𝑋

𝐸(𝐯), 𝐸(𝐯) ∶= ∫𝑋

[

𝜆(𝑑𝑖𝑣𝐯)2 + 2𝜇|𝐞(𝐯)|2
]

𝑑𝑥. (36)

On the other hand, we introduce the deviatoric strain tensor

𝐞̃(𝐰) ∶= 𝐞(𝐰) − div𝐰
𝑑

𝐼,

which is the strain tensor minus the mean strain. Using the equations

𝐞̃(𝐰) ∶ 𝐼 = tr(𝐞(𝐰)) − div𝐰
𝑑

|𝐼|2 = tr(𝐞(𝐰)) − tr(𝐞(𝐰))
𝑑

𝑑 = 0

and

𝐞(𝐰) ∶ 𝐞(𝐯) =
(

𝐞̃(𝐰) + div𝐰
𝑑

𝐼
)

∶
(

𝐞̃(𝐯) + div 𝐯
𝑑

𝐼
)

= 𝐞̃(𝐰) ∶ 𝐞̃(𝐯) + (div𝐰)(div 𝐯)
𝑑

,

we can rewrite (36) using the deviatoric strain tensor as follows:

𝐸(𝐯) =
(

𝜆 +
2𝜇
𝑑

)

∫𝑋
(div 𝐯)2 𝑑𝑥 + 2𝜇 ∫𝑋

|𝐞̃(𝐯)|2 𝑑𝑥 =∶
(

𝜆 +
2𝜇
𝑑

)

𝐸iso + 2𝜇𝐸dev. (37)

Note that Eq. (37) is divided into terms 𝐸iso and 𝐸dev representing volume change and shape change respectively.
Here, it is known that in the finite element method, the ratio of the diameters of the inscribed and circumscribed circles, called

the aspect ratio 𝜎𝐾 = ℎ𝐾∕𝜌𝐾 , affects the local interpolation error in each element 𝐾 (see, [9, Chap. 1.5]):

|

|

𝑢 −𝛱ℎ𝑢||1,2,𝐾 ⩽ 𝐶ℎ𝐾𝜎𝐾 |𝑢|2,2,𝐾 , ∀𝑢 ∈ 𝐻1
0 (𝐾). (38)

where |𝑢|𝑠,𝑝,𝐾 ∶=
∑

|𝛼|=𝑠 ‖𝜕
𝛼𝑢‖𝐿𝑝(𝐾) is a semi-norm in 𝑊 𝑠,𝑝(𝐾), 𝜌𝐾 and ℎ𝐾 are the diameters of the inscribed and circumscribed

circles, respectively. Therefore, only 𝐸𝑑𝑒𝑣 needs to be considered, since the quality of the mesh should not change even if 𝐸𝑖𝑠𝑜, which
represents isotropic deformation, is large. To see the relationship between shape change and deviatoric part 𝐸dev, we calculate 𝐸𝑑𝑒𝑣
for similarity transformation (translation and rotation) and non-similarity transformation (scaling and shearing):

Example 4.0.1. We consider the affine map 𝛷 ∶ 𝑥 ↦ 𝐴𝑥+ 𝐛 where 𝐴 ∈ R𝑑×𝑑 and 𝐛 ∈ R𝑑 . Then, the displacement vector 𝐯 is given
602

by 𝐯(𝑥) = 𝛷(𝑥) − 𝑥 = (𝐴 − 𝐼)𝑥 + 𝐛, and
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𝐸dev = ∫𝑋
|𝐞̃(𝐯)|2 𝑑𝑥 = ∫𝑋

[

|𝐞(𝐯)|2 − 1
𝑑
tr(𝐞(𝐯))2

]

𝑑𝑥 = ∫𝑋

[

|

|

|

|

1
2
(𝐴 + 𝐴⊤) − 𝐼

|

|

|

|

2
− 1

𝑑
(tr(𝐴) − 𝑑)2

]

𝑑𝑥.

First we consider the similarity transformation. In the translation case 𝛷(𝑥) ∶= 𝐼𝑥 + 𝐛, (𝐛 ∈ R𝑑), clearly

𝐸dev = ∫𝑋

[

|

|

|

|

1
2
(𝐴 + 𝐴⊤) − 𝐼

|

|

|

|

2
− 1

𝑑
(tr(𝐴) − 𝑑)2

]

𝑑𝑥 = 0.

Also, for the 2D-rotation case 𝛷(𝑥) = 𝐴𝑥, where

𝐴 =
(

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)

, 𝜃 ∈ (0, 2𝜋),

we have

|

|

|

|

1
2
(𝐴 + 𝐴⊤) − 𝐼

|

|

|

|

2
= 2(cos 𝜃 − 1)2, tr 𝐴 = 2 cos 𝜃.

Therefore, we have

𝐸dev = ∫𝑋

[

|

|

|

|

1
2
(𝐴 + 𝐴⊤) − 𝐼

|

|

|

|

2
− 1

22
(tr(𝐴) − 𝑑)2

]

𝑑𝑥 = ∫𝑋

[

2(cos 𝜃 − 1)2 − 1
2
(2 cos 𝜃 − 2)2

]

𝑑𝑥 = 0.

On the other hand, 𝐸dev is not 0 for the non-similarity transformation. In fact, for the shearing in 𝑦-axis case 𝛷(𝑥) = 𝐴𝑥, where

𝐴 =
(

1 𝑠𝑥
0 1

)

, 𝑠𝑥 ∈ R,

we have

|

|

|

|

1
2
(𝐴 + 𝐴⊤) − 𝐼

|

|

|

|

2
=

𝑠2𝑥
2
, tr 𝐴 = 𝑑.

Therefore, for 𝑠𝑥 ≠ 0, we get

𝐸dev = ∫𝑋

[

|

|

|

|

1
2
(𝐴 + 𝐴⊤) − 𝐼

|

|

|

|

2
− 1

22
(tr(𝐴) − 𝑑)2

]

𝑑𝑥 = ∫𝑋

𝑠2𝑥
2

𝑑𝑥 > 0.

Furthermore, for the scaling case 𝛷(𝑥) ∶= 𝐴𝑥, where 𝐴 =
(

𝑎𝑥 0
0 𝑎𝑦

)

, 𝑎𝑥, 𝑎𝑦 ∈ R, we have

𝐸dev = ∫𝑋

[

|

|

|

|

1
2
(𝐴 + 𝐴⊤) − 𝐼

|

|

|

|

2
− 1

𝑑
(tr(𝐴) − 𝑑)2

]

𝑑𝑥 = ∫𝑋
1
2
|

|

|

𝑎𝑥 − 𝑎𝑦
|

|

|

2
𝑑𝑥 ⩾ 0.

The equal sign is valid only if the aspect ratio is fixed, i.e. 𝑎𝑥 = 𝑎𝑦.

Based on above discussion, the following results pertaining to mesh quality obtained via linear elasticity equation, especially in
two dimensions, can easily be proved.

Proposition 4.0.1. Let 𝑋 be a bounded domain in R2. We suppose 𝐰 ∈ 𝐻1(𝑋;R2). Then, the equation −𝛥𝐰 = 0 in D ′(𝑋) is equivalent
to the variational equation

∫𝑋
𝐞̃(𝐰) ∶ 𝐞̃(𝝋) 𝑑𝑥 = 0, ∀𝝋 ∈ 𝐻1

𝟎 (𝑋;R2).

Proof. We introduce the notation 𝜕𝑖𝑤𝑗 ∶= 𝜕𝑤𝑗
/

𝜕𝑥𝑖 . For all 𝝋 ∈ 𝐶∞
𝟎 (𝑋;R2), we have the following computations

∫𝑋
𝐞̃(𝐰) ∶ 𝐞̃(𝝋) 𝑑𝑥

= 1
2 ∫𝑋

[

(𝜕2𝑤2 − 𝜕1𝑤1)(𝜕2𝜑2 − 𝜕1𝜑1) + (𝜕1𝑤2 + 𝜕2𝑤1)(𝜕1𝜑2 + 𝜕2𝜑1)
]

𝑑𝑥

= 1
2

[

D ⟨𝜕1𝜑1, (−𝜕2𝑤2 + 𝜕1𝑤1)⟩D′ + D ⟨𝜕2𝜑2, (𝜕2𝑤2 − 𝜕1𝑤1)⟩D′

+ D ⟨𝜕2𝜑1, (𝜕1𝑤2 + 𝜕2𝑤1)⟩D′ + D ⟨𝜕1𝜑2, (𝜕1𝑤2 + 𝜕2𝑤1)⟩D′

]

= 1 [
⟨𝜑 , (𝜕 𝜕 𝑤 − 𝜕 𝜕 𝑤 )⟩ + ⟨𝜑 , (−𝜕 𝜕 𝑤 + 𝜕 𝜕 𝑤 )⟩
603
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S

i

P

I

f

+ D ⟨𝜑1, (−𝜕1𝜕2𝑤2 − 𝜕2𝜕2𝑤1)⟩D′ + D ⟨𝜑2, (−𝜕1𝜕1𝑤2 − 𝜕1𝜕2𝑤1)⟩D′

]

= 1
2

2
∑

𝑖=1
D ⟨𝜑𝑖,−𝛥𝑤𝑖⟩D′ =

1
2 D ⟨𝝋,−𝛥𝐰⟩D′

= 1
2 ∫𝑋

∇𝐰 ∶ ∇𝝋 𝑑𝑥.

ince 𝐶∞
0 (𝑋;R2) is dense in 𝐻1

0 (𝑋;R2), we conclude that

∫𝑋
𝐞̃(𝐰) ∶ 𝐞̃(𝝋) 𝑑𝑥 = 1

2 ∫𝑋
∇𝐰 ∶ ∇𝝋 𝑑𝑥, for all 𝝋 ∈ 𝐻1

0 (𝑋;R2). □

Therefore, in two dimensions, it is better in terms of mesh quality to extend the velocity field by 𝐰 satisfying the following
Laplace equation:

−𝛥𝐰 = 𝟎 in 𝑋, 𝐰 = 𝐠 on 𝜕𝑋.

On the other hand, if it is in three dimensions, the formula is a bit complicated because the terms do not cancel each other out as
in the case of two dimensions, but it can be obtained as follows.

Proposition 4.0.2. Let 𝑋 be a bounded domain in R3. We suppose 𝐰 ∈ 𝐻1(𝑋;R3). Then, the equation −𝛥𝐰 − 1
3∇(div𝐰) = 0 in D ′(𝑋),

s equivalent to the variational equation

∫𝑋
𝐞̃(𝐰) ∶ 𝐞̃(𝝋) 𝑑𝑥 = 0, for all 𝝋 ∈ 𝐻1

𝟎 (𝑋;R3).

roof. For any 𝝋 ∈ 𝐶∞
𝟎 (𝑋;R3), we have the following computations

∫𝑋
𝐞̃(𝐰) ∶ 𝐞̃(𝝋) 𝑑𝑥

= ∫𝑋

{ 3
∑

𝑖=1

(

𝜕𝑖𝑤𝑖 −
1
3
div𝐰

)(

𝜕𝑖𝜑𝑖 −
1
3
div𝝋

)

+ 1
4
∑

𝑖≠𝑗
(𝜕𝑖𝑤𝑗 + 𝜕𝑗𝑤𝑖)(𝜕𝑖𝜑𝑗 + 𝜕𝑗𝜑𝑖)

}

𝑑𝑥

= ∫𝑋

{ 3
∑

𝑖=1
𝜕𝑖𝜑𝑖

(

𝜕𝑖𝑤𝑖 −
1
3
div𝐰

)

− 1
3
div𝝋

[ 3
∑

𝑖=1

(

𝜕𝑖𝑤𝑖 −
1
3
div𝐰

)

]

+ 1
2

[

𝜕2𝜑1(𝜕1𝑤2 + 𝜕2𝑤1) + 𝜕1𝜑2(𝜕1𝑤2 + 𝜕2𝑤1)

+ 𝜕2𝜑3(𝜕2𝑤3 + 𝜕3𝑤2) + 𝜕3𝜑2(𝜕2𝑤3 + 𝜕3𝑤2)

+ 𝜕3𝜑1(𝜕3𝑤1 + 𝜕1𝑤3) + 𝜕1𝜑3(𝜕3𝑤1 + 𝜕1𝑤3)

]}

𝑑𝑥

=
3
∑

𝑖=1 D

⟨

𝜑𝑖, (−𝜕𝑖𝜕𝑖𝑤𝑖 +
1
3
𝜕𝑖(div𝐰))

⟩

D′

+ 1
2

{

D ⟨𝜑1, (−𝜕1𝜕2𝑤2 − 𝜕2𝜕2𝑤1)⟩D′ + D ⟨𝜑2, (−𝜕1𝜕1𝑤2 − 𝜕1𝜕2𝑤1)⟩D′

+ D ⟨𝜑3, (−𝜕2𝜕2𝑤3 − 𝜕2𝜕3𝑤2)⟩D′ + D ⟨𝜑2, (−𝜕2𝜕3𝑤3 − 𝜕3𝜕3𝑤2)⟩D′

+ D ⟨𝜑1, (−𝜕3𝜕3𝑤1 − 𝜕1𝜕3𝑤3)⟩D′ + D ⟨𝜑3, (−𝜕1𝜕3𝑤1 − 𝜕1𝜕1𝑤3)⟩D′

}

=
3
∑

𝑖=1 D

⟨

𝜑𝑖,
(

−1
2
𝛥𝑤𝑖 −

1
6
𝜕𝑖(div𝐰)

)⟩

D′

=
D

⟨

𝝋,
(

−1
2
𝛥𝐰 − 1

6
∇(div𝐰)

)⟩

D′

= 1
2 ∫𝑋

∇𝐰 ∶ ∇𝝋 + 1
3
(div𝐰)(div𝝋) 𝑑𝑥 = 0.

n view of the last line above, varying 𝜑, we get the desired result. □

From the previous proposition, we infer that, in three dimensions, it is better in terms of mesh quality to extend the velocity
ield by 𝐰 satisfying the following problem:

−𝛥𝐰 − 1∇(div𝐰) = 𝟎 in 𝑋, 𝐰 = 𝐠 on 𝜕𝑋.
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5. Conclusion

We have presented in this investigation some further developments and applications of the so-called ‘comoving mesh method’ or
MM for solving mean-curvature flow problems. Moreover, we have demonstrated how CMM can be applied to solve the one-phase
tefan problem. Additionally, with the smooth extension obtained using the linear elasticity equation instead of the Laplace equation,
e have provided two properties of CMM relating to mesh quality. It was found that using the Laplace equation for smoothly
xtending the normal flows is optimal in the case of two dimensions. However, in the case of three dimensions, an additional
xpression in terms of the divergence of the smooth extension appears in the main equation.

In our next investigation, we will apply the method to more general moving boundary problems, such as the one-phase
uasi-stationary Stefan problem with Gibbs–Thomson law and kinetic undercooling, while considering three-dimensional cases.
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