Home Vitae Education Research Papers Teaching Links Events Talks Contacts

Preprints

  1. E. Cherrat, L. Afraites, and J. F. T. Rabago
    Numerical solution by shape optimization method to an inverse shape problem in multi-dimensional advection-diffusion problem with space dependent coefficients
    arXiv:     doi:

  2. J. F. T. Rabago and M. Kimura
    On the well-posedness of a Hele-Shaw-like system resulting from an inverse geometry problem formulated through a shape optimization setting
    arXiv:2407.03083    doi:

  3. J. F. T. Rabago, H. Notsu, and L. Afraites
    Detecting immersed obstacle in Stokes fluid flow using the coupled complex boundary method
    arXiv:2403.11819    doi:

Selected Recently Published Papers

Go to [Links] to see full list of papers on other webpages.

  1. J. F. T. Rabago, A. Hadri, L. Afraites, A. S. Hendy, and M. A. Zaky
    A robust alternating direction method of multipliers numerical scheme for solving geometric inverse problems in a shape optimization setting
    Computers & Mathematics with Applications, Volume 175, September 2024, Pages 19-32
    arXiv:2301.10355v3    doi:10.1016/j.camwa.2024.08.034

  2. L. Afraites and J. F. T. Rabago
    Boundary shape reconstruction with Robin condition: existence result, stability analysis, and inversion via multiple measurements
    Computational and Applied Mathematics, Volume 43, 2024, Article Number 270, 37 pages
    arXiv:2404.05202    doi:10.1007/s40314-024-02741-3

  3. Y. Sunayama, M. Kimura, and J. F. T. Rabago
    Comoving mesh method for multi-dimensional moving boundary problems: mean-curvature flow and Stefan problems
    Mathematics and Computers in Simulation, Volume 221, July 2024, Pages 589-605
    [PDF]    doi:10.1016/j.matcom.2024.03.020

  4. J. F. T. Rabago and H. Notsu
    Numerical solution to a free boundary problem for the Stokes equation using the coupled complex boundary method in shape optimization settings
    Applied Mathematics and Optimization, Volume 89, 2024, Article Number 2, 56 pages
    [PDF]    doi:10.1007/s00245-023-10065-7

  5. E. Charrat, L. Afraites, and J. F. T. Rabago
    Shape reconstruction for advection-diffusion problems by shape optimization method: the case of constant velocity
    Discrete and Continuous Dynamical Systems Series S
    [PDF]    doi:10.3934/dcdss.2023186

  6. L. Afraites and J. F. T. Rabago
    Shape optimization methods for detecting an unknown boundary with the Robin condition by a single measurement
    Discrete and Continuous Dynamical Systems Series S
    [PDF]    doi:10.3934/dcdss.2022196

  7. J. F. T. Rabago
    Numerical solution to the exterior Bernoulli problem using the Dirichlet-Robin energy gap cost functional approach in two and three dimensions
    Numerical Algorithms, Volume 94, February 2023, Pages 175-227
    [PDF]    doi:10.1007/s11075-023-01497-x

  8. J. F. T. Rabago
    On the new coupled complex boundary method in shape optimization framework for solving stationary free boundary problems
    Mathematical of Control and Related Fields, Volume 13, Number 4, December 2023, Pages 1362-1398
    [PDF]    doi:10.3934/mcrf.2022041

  9. Y. Sunayama, J. F. T. Rabago, and M. Kimura
    Comoving mesh method for certain classes of moving boundary problems
    Japan Journal of Industrial and Applied Mathematics, Volume 39, August 2022, Pages 973–1001
    [PDF]    doi:10.1007/s13160-022-00524-z

  10. J. F. T. Rabago and H. Azegami
    A second-order shape optimization algorithm for solving the exterior Bernoulli free boundary problem using a new boundary cost functional
    Computational Optimization and Applications, Volume 77, June 2020, Pages 251-305
    [PDF]    doi:10.1007/s10589-020-00199-7

  11. J. F. T. Rabago and H. Azegami
    A new energy-gap cost functional approach for the exterior Bernoulli free boundary problem
    Evolution Equations and Control Theory, Volume 8, Number 4, June 2019, Pages 785-824
    [PDF]    doi:10.3934/eect.2019038

  12. J. F. T. Rabago and H. Azegami
    An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data
    Journal of Engineering Mathematics, Volume 117, Number 1, June 2019, Pages 1-29
    [PDF]    doi:10.1007/s10665-019-10005-x

  13. J. F. T. Rabago and H. Azegami
    Shape optimization approach to defect-shape identification with convective boundary condition via partial boundary measurement
    Japan Journal of Industrial and Applied Mathematics, Volume 36, Number 1, June 2019, Pages 131-176
    [PDF]    doi:10.1007/s13160-018-0337-5

  14. J. F. T. Rabago and J. B. Bacani
    Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: a Lagrangian formulation
    Communications in Pure Applied Analysis, Volume 17, Number 6, June 2018, Pages 2683-2702
    [PDF]    doi:10.3934/cpaa.2018127

  15. J. F. T. Rabago and J. B. Bacani
    Shape optimization approach to the Bernoulli problem: a Lagrangian formulation
    IAENG International Journal of Applied Mathematics, Volume 47, Number 4, November 2017, Pages 417-424
    [PDF]    doi:

  16. J. B. Bacani and J. F. T. Rabago
    On the second-order shape derivative of the Kohn-Vogelius objective functional using the velocity method
    International Journal of Differential Equations, Volume 2015, December 2015, Article ID 954836, 10pp
    [PDF]    doi:10.1155/2015/954836